1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Zeng H, Geng X, Wan H, Qu X, Tang S, Zhang R, Zhou M, Yu Z, Pan J, Zheng H, Zhu Y, Huang S, Huang D. A Molecular Signature of the Ubiquitin-Proteasome System for Forecasting Prognosis in Thyroid Carcinoma Patients. J Inflamm Res 2024; 17:10397-10419. [PMID: 39654864 PMCID: PMC11627108 DOI: 10.2147/jir.s499820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background The ubiquitin-proteasome system (UPS) is vital for protein quality control and its dysregulation is linked to diseases, including cancer. Targeting the UPS is becoming a promising approach in cancer therapy. However, the role of UPS modulation in thyroid carcinoma (THCA) remains to be fully elucidated. Methods Initially, we utilized data from The Cancer Genome Atlas (TCGA) database to employ weighted gene co-expression network analysis (WGCNA) with LASSO regression to develop a prognostic model for core UPS genes implicated in THCA. Subsequently, we stratified the THCA training set into two distinct subtypes based on ubiquitin-proteasome system prognostic model score (UPS-PMS) characteristics. Key genes within the model were then subjected to functional analysis, immunotherapy evaluation, and drug sensitivity studies. Results We delineated a prognostic model of the UPS comprising six genes, which we subsequently demonstrated was capable of forecasting patient prognosis. Moreover, our findings indicated a substantial correlation between UPS-PMS and immune microenvironmental factors, notably a negative correlation with myeloid immune cells and a potential influence on the Th1 to Th2 cells ratio. Especially, we observed a significant association between high UPS-PMS and an immunosuppressive microenvironment. Then, we elucidated the biological distinctions among various THCA sample subtypes, highlighting that the cluster_1 subtype is associated with an unfavorable prognosis. Of note, KCNA1 was identified as a pivotal prognostic gene within the UPS-PMS framework. We constructed a three-tiered regulatory network centered on KCNA1-related competing endogenous RNA (ceRNA). Furthermore, our results suggested that KCNA1 has potential as a target for immunotherapeutic strategies. Concurrently, drug sensitivity analyses demonstrated that high KCNA1 expression promoted gemcitabine resistance in patients, while KCNA1 knockdown increased sensitivity to gemcitabine. Conclusion In conclusion, we developed a novel UPS-based prognostic model for THCA, identified key gene KCNA1, and assessed immunotherapy and drug sensitivity, revealing new therapeutic targets.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hao Wan
- First College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xiaoyu Qu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Shengwei Tang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Ruiyu Zhang
- First College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jingying Pan
- First College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
3
|
Crescenzi E, Leonardi A, Pacifico F. NF-κB in Thyroid Cancer: An Update. Int J Mol Sci 2024; 25:11464. [PMID: 39519020 PMCID: PMC11546487 DOI: 10.3390/ijms252111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in thyroid cancer being only partially understood, during the last few years, it has become clear that NF-κB contributes in different ways to the oncogenic potential of thyroid neoplastic cells. Indeed, it enhances their proliferation and viability, promotes their migration to and colonization of distant organs, and fuels their microenvironment. In addition, NF-κB signaling plays an important role in cancer stem cells from more aggressive thyroid carcinomas. Interfering with the different upstream and/or downstream pathways that drive NF-κB activity in thyroid neoplastic cells is an attractive strategy for the development of novel therapeutic drugs capable of overcoming the therapy resistance of advanced thyroid carcinomas. This review focuses on the recent findings about the key functions of NF-κB in thyroid cancer and discusses the potential implications of targeting NF-κB in advanced thyroid carcinomas.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| |
Collapse
|
4
|
Zafeiropoulou K, Kalampounias G, Alexis S, Anastasopoulos D, Symeonidis A, Katsoris P. Autophagy and oxidative stress modulation mediate Bortezomib resistance in prostate cancer. PLoS One 2024; 19:e0289904. [PMID: 38412186 PMCID: PMC10898778 DOI: 10.1371/journal.pone.0289904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.
Collapse
Affiliation(s)
- Kalliopi Zafeiropoulou
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Spyridon Alexis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Daniil Anastasopoulos
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Utilizing Three-Dimensional Culture Methods to Improve High-Throughput Drug Screening in Anaplastic Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14081855. [PMID: 35454763 PMCID: PMC9031362 DOI: 10.3390/cancers14081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive endocrine neoplasm, with a median survival of just four to six months post-diagnosis. Even with surgical and chemotherapeutic interventions, the five-year survival rate is less than 5%. Although combination dabrafenib/trametinib therapy was recently approved for treatment of the ~25% of ATCs harboring BRAFV600E mutations, there are no approved, effective treatments for BRAF-wildtype disease. Herein, we perform a screen of 1525 drugs and evaluate therapeutic candidates using monolayer cell lines and four corresponding spheroid models of anaplastic thyroid carcinoma. We utilize three-dimensional culture methods, as they have been shown to more accurately recapitulate tumor responses in vivo. These three-dimensional cultures include four distinct ATC spheroid lines representing unique morphology and mutational drivers to provide drug prioritization that will be more readily translatable to the clinic. Using this screen, we identify three exceptionally potent compounds (bortezomib, cabazitaxel, and YM155) that have established safety profiles and could potentially be moved into clinical trial for the treatment of anaplastic thyroid carcinoma, a disease with few treatment options.
Collapse
|
6
|
Liu L, Liu A, Dong J, Zuo Z, Liu X. Proteasome 26S subunit, non-ATPase 1 (PSMD1) facilitated the progression of lung adenocarcinoma by the de-ubiquitination and stability of PTEN-induced kinase 1 (PINK1). Exp Cell Res 2022; 413:113075. [DOI: 10.1016/j.yexcr.2022.113075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
|
7
|
Mirzaei-Seresht B, Bazrgar M, Sheidai M, Hassani SN, Masoudi NS, Mollammohammadi S. Chromosomal instability reducing effect of paclitaxel and lapatinib in mouse embryonic stem cells with chromosomal abnormality. Mol Biol Rep 2020; 47:8605-8614. [PMID: 33057993 DOI: 10.1007/s11033-020-05903-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Chromosomal abnormalities, as a frequent phenomenon in cultured embryonic stem cells (ESCs), is a major obstacle in the ESC application in regenerative medicine. Recent studies showed that aneuploid embryonic stem cells of humans and mice are more vulnerable to anticancer drugs, compared with normal cells. The aim of the current study was to evaluate effects of three anticancer drugs, paclitaxel, lapatinib and bortezomib, on mouse embryonic stem cells (mESCs) as a suitable and available model. To assess in vitro cell toxicity, two mESC lines were treated with the aforementioned drugs. Using G-band karyotyping and micronucleus assay, the effect of anticancer drugs in terms of reduction of chromosomal instability in the mESCs was evaluated in control and treatment groups. Also, apoptosis rate of both groups was estimated by FITC-Annexin V/Propidium Iodide (PI) double staining. In addition, the effect of these three drugs in maintaining the pluripotency was assessed through alkaline phosphatase assay and quantification of the expression of three key pluripotency genes, Nanog, Pou5f1 and Sox-2 was performed using Real Time PCR. The rate of numerical abnormalities after treatment with paclitaxel and lapatinib was lower than the control group. The expression level of pluripotency genes exhibited no significant difference between control and treatment groups. Administration of paclitaxel and lapatinib to the mESCs culture at an appropriate dose and in a timely manner could decrease chromosome stability without affecting pluripotency.
Collapse
Affiliation(s)
- Banafsheh Mirzaei-Seresht
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Highway, P.O.Box:16635-148, Tehran, Iran.,Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Highway, P.O.Box:16635-148, Tehran, Iran.
| | - Masoud Sheidai
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Highway, P.O.Box:16635-148, Tehran, Iran
| | - Sepideh Mollammohammadi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Anania MC, Di Marco T, Mazzoni M, Greco A. Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12010129. [PMID: 31947935 PMCID: PMC7017043 DOI: 10.3390/cancers12010129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.
Collapse
|
9
|
Shin HJ, Hwang KA, Go RE, Kim SU, Choi KC. Antithyroid cancer effects of human neural stem cells expressing therapeutic genes on anaplastic thyroid cancer cells. J Cell Biochem 2019; 121:1586-1598. [PMID: 31512776 DOI: 10.1002/jcb.29393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/31/2019] [Indexed: 11/07/2022]
Abstract
Stem cells that express therapeutic proteins have been identified to have an anticancer effects on various types of cancer. In the present study study, human neural stem cells (hNSCs) that were genetically engineered to express cytosine deaminase (CD) and human interferon-β (IFN-β) were used for anaplastic thyroid cancer (ATC) treatment owing to their tumor-tropic properties and therapeutic effects. CD is an enzyme that converts 5-fluorocytosine (5-FC), a prodrug, to 5-fluorouracil (5-FU) which is a medication to suppress tumor growth through DNA synthesis inhibition. Also, IFN-β suppresses tumor growth by the induction of apoptotic process. In water soluble tetrazolium salt (WST) assay, SNU-80 cells which are human female ATC cells were cocultured with three cell types including engineered hNSCs such as HB1.F3, HB1.F3.CD, and HB1.F3.CD.IFN-β cells on transwells and treated with 5-FC for 72 hours. Finally, the SNU-80 cell viability was reduced by the coculture with HB1.F3.CD and HB1.F3.CD.IFN-β cells. In dichlorofluorescein diacetate (DCF-DA) and TdT-mediated dUTP nick-end labeling (TUNEL) assays, the production of reactive oxygen species (ROS) and the number of apoptotic cells were increased by HB1.F3.CD and HB1.F3.CD.IFN-β cells in the presence of 5-FC. In Western blot assay, ROS, and apoptosis-related genes were increased in SNU-80 cells when they were cocultured with HB1.F3.CD and HB1.F3.CD.IFN-β cells. In transwell migration assay, hNSCs selectively migrated to SNU-80 cells because hNSCs interacted with chemoattractant factors like SDF-1α, uPAR, and CCR2 secreted by SNU-80 cells. Taken together, engineered hNSCs were revealed to selectively migrate to ATC cells and to inhibit growth as well as to induce apoptosis of ATC cells via ROS production through the actions of transgenes such as CD and IFN-β. Therefore, these engineered hNSCs can be promising candidates for the treatment of metastatic ATC.
Collapse
Affiliation(s)
- Hye-Ji Shin
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,Institute of Life Science and Bio-Engineering, TheraCell Bio & Science, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
10
|
Xiong W, Wang W, Huang H, Jiang Y, Guo W, Liu H, Yu J, Hu Y, Wan J, Li G. Prognostic Significance of PSMD1 Expression in Patients with Gastric Cancer. J Cancer 2019; 10:4357-4367. [PMID: 31413756 PMCID: PMC6691719 DOI: 10.7150/jca.31543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background: PSMD1 has been considered to be involved in many human cancers, but its prognostic significance in gastric cancer (GC) has not been elucidated. The aim of this study was to evaluate the prognostic value of PSMD1 expression in tumor tissues of GC patients. Methods: We retrospectively analyzed the expression of PSMD1 in 241 paraffin-embedded GC specimens of the training cohort by immunohistochemistry. The prognostic value of PSMD1 expression was assessed using Kaplan-Meier survival curves and multivariate COX regression models. PSMD1 expression and other GC-associated risk factors were used to generate two nomograms to evaluate prognosis, and the performance of the two nomograms was assessed with respect to its calibration, discrimination, and clinical usefulness. Further validation was performed using an independent cohort of 170 cases. Results: High PSMD1 expression was significantly associated with decreased disease-free survival (DFS) and overall survival (OS) in GC patients. Furthermore, multivariate Cox proportional hazard analysis demonstrated that PSMD1 was an independent prognostic factor for DFS and OS. The two nomograms that were developed by integrating PSMD1 expression and the TNM staging system showed better prediction of DFS and OS than TNM staging system alone(C-index for training cohort: 0.708 (95% CI:0.670-0.746) and 0.712 (0.671-0.752), respectively; C-index for validation cohort: 0.704 (0.651-0.757) and 0.711 (0.656-0.767), respectively). Decision curve analysis demonstrated that the nomograms showed potential for clinical use. Conclusion: Intratumoral PSMD1 expression is a novel independent predictor of DFS and OS in GC patients. In the future, large-scale prospective studies will be necessary to confirm our findings regarding its potential prognostic and therapeutic value for GC patients.
Collapse
Affiliation(s)
- Wenjun Xiong
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haipeng Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jin Wan
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| |
Collapse
|
11
|
Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA Desaturase 1 as a Therapeutic Target for the Treatment of Cancer. Cancers (Basel) 2019; 11:cancers11070948. [PMID: 31284458 PMCID: PMC6678606 DOI: 10.3390/cancers11070948] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
A distinctive feature of cancer cells of various origins involves alterations of the composition of lipids, with significant enrichment in monounsaturated fatty acids. These molecules, in addition to being structural components of newly formed cell membranes of intensely proliferating cancer cells, support tumorigenic signaling. An increase in the expression of stearoyl-CoA desaturase 1 (SCD1), the enzyme that converts saturated fatty acids to ∆9-monounsaturated fatty acids, has been observed in a wide range of cancer cells, and this increase is correlated with cancer aggressiveness and poor outcomes for patients. Studies have demonstrated the involvement of SCD1 in the promotion of cancer cell proliferation, migration, metastasis, and tumor growth. Many studies have reported a role for this lipogenic factor in maintaining the characteristics of cancer stem cells (i.e., the population of cells that contributes to cancer progression and resistance to chemotherapy). Importantly, both the products of SCD1 activity and its direct impact on tumorigenic pathways have been demonstrated. Based on these findings, SCD1 appears to be a significant player in the development of malignant disease and may be a promising target for anticancer therapy. Numerous chemical compounds that exert inhibitory effects on SCD1 have been developed and preclinically tested. The present review summarizes our current knowledge of the ways in which SCD1 contributes to the progression of cancer and discusses opportunities and challenges of using SCD1 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
12
|
REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway. Cell Death Differ 2019; 27:497-508. [PMID: 31243343 PMCID: PMC7205985 DOI: 10.1038/s41418-019-0367-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive human thyroid malignancy, characterized by dedifferentiation and resistance to radioiodine therapy. The underlying mechanisms regulating ATC dedifferentiation are largely unknown. Here, we show that REGγ, a noncanonical proteasome activator highly expressed in ATC, is an important regulator of differentiation in ATC cells. Ablation of REGγ significantly restored expression of thyroid-specific genes, enhanced iodine uptake, and improved the efficacy of 131I therapy in ATC xenograft models. Mechanistically, REGγ directly binds to the TGF-β signaling antagonist Smad7 and promotes its degradation, leading to the activation of the TGF-β signal pathway. With gain- and loss-of-function studies, we demonstrate that Smad7 is an important mediator for the REGγ function in ATC cell dedifferentiation, which is supported by expression profiles in human ATC tissues. It seems that REGγ impinges on repression of thyroid-specific genes and promotion of tumor malignancy in ATC cells by activating the TGF-β signal pathway via degradation of Smad7. Thus, REGγ may serve as a novel therapeutic target for allowing radioiodine therapy in anaplastic thyroid cancer patients with poor prognosis.
Collapse
|
13
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
14
|
Saini S, Maker AV, Burman KD, Prabhakar BS. Molecular aberrations and signaling cascades implicated in the pathogenesis of anaplastic thyroid cancer. Biochim Biophys Acta Rev Cancer 2018; 1872:188262. [PMID: 30605717 DOI: 10.1016/j.bbcan.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) accounts for >40% thyroid cancer-related deaths and has a dismal prognosis. In the past decade, significant efforts have been made towards understanding the pathogenesis of this disease and developing novel therapeutics. Unfortunately, effective treatment is still lacking and a more thorough understanding of ATC pathogenesis may provide new opportunities to improve ATC therapeutics. This review provides insights into ATC clinical presentation and pathology, and the putative role of genetic aberrations and alterations in molecular signaling pathways in ATC pathogenesis. We reviewed prevalent mutations, chromosomal abnormalities and fusions, epigenetic alterations and dysregulations in ATC, and highlighted several signaling cascades which appeared to be integral to ATC pathogenesis. Moreover, these features offer insights into de-differentiated, aggressive and drug-resistant phenotype of ATC, and thus may help in exploring potential new molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Kenneth D Burman
- Medstar Washington Hospital Medical Center, Washington, DC, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States.
| |
Collapse
|
15
|
Roeten MSF, Cloos J, Jansen G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 2018; 81:227-243. [PMID: 29184971 PMCID: PMC5778165 DOI: 10.1007/s00280-017-3489-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Targeting of the protein degradation pathway, in particular, the ubiquitin-proteasome system, has emerged as an attractive novel cancer chemotherapeutic modality. Although proteasome inhibitors have been most successfully applied in the treatment of hematological malignancies, they also received continuing interest for the treatment of solid tumors. In this review, we summarize the current positioning of proteasome inhibitors in the treatment of common solid malignancies (e.g., lung, colon, pancreas, breast, and head and neck cancer), addressing topics of their mechanism(s) of action, predictive factors and molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Margot S F Roeten
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Location VUmc, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zhang L, Boufraqech M, Lake R, Kebebew E. Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer. Oncotarget 2017; 7:16517-28. [PMID: 26934320 PMCID: PMC4941332 DOI: 10.18632/oncotarget.7760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies, with no effective treatment currently available. Previously, we identified agents active against ATC cells, both in vitro and in vivo, using quantitative high-throughput screening of 3282 clinically approved drugs and small molecules. Here, we report that combining two of these active agents, carfilzomib, a second-generation proteasome inhibitor, and CUDC-101, a histone deacetylase and multi-kinase inhibitor, results in increased, synergistic activity in ATC cells. The combination of carfilzomib and CUDC-101 synergistically inhibited cellular proliferation and caused cell death in multiple ATC cell lines harboring various driver mutations observed in human ATC tumors. This increased anti-ATC effect was associated with a synergistically enhanced G2/M cell cycle arrest and increased caspase 3/7 activity induced by the drug combination. Mechanistically, treatment with carfilzomib and CUDC-101 increased p21 expression and poly (ADP-ribose) polymerase protein cleavage. Our results suggest that combining carfilzomib and CUDC-101 would offer an effective therapeutic strategy to treat ATC.
Collapse
Affiliation(s)
- Lisa Zhang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Manzella L, Stella S, Pennisi MS, Tirrò E, Massimino M, Romano C, Puma A, Tavarelli M, Vigneri P. New Insights in Thyroid Cancer and p53 Family Proteins. Int J Mol Sci 2017. [PMID: 28635633 PMCID: PMC5486146 DOI: 10.3390/ijms18061325] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancers are common endocrine malignancies that comprise tumors with different clinical and histological features. Indeed, papillary and follicular thyroid cancers are slow-growing, well-differentiated tumors, whereas anaplastic thyroid cancers are undifferentiated neoplasias that behave much more aggressively. Well-differentiated thyroid carcinomas are efficiently cured by surgery and radioiodine, unlike undifferentiated tumors that fail to uptake radioactive iodine and are usually resistant to chemotherapy. Therefore, novel and more effective therapies for these aggressive neoplasias are urgently needed. Whereas most genetic events underlying the pathogenesis of well-differentiated thyroid cancers have been identified, the molecular mechanisms that generate undifferentiated thyroid carcinomas are still unclear. To date, one of the best-characterized genetic alterations leading to the development of poorly differentiated thyroid tumors is the loss of the p53 tumor suppressor gene. In addition, the existence of a complex network among p53 family members (p63 and p73) and their interactions with other factors that promote thyroid cancer progression has been well documented. In this review, we provide an update on the current knowledge of the role of p53 family proteins in thyroid cancer and their possible use as a therapeutic target for the treatment of the most aggressive variants of this disease.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| | - Martina Tavarelli
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi Nesima Medical Center, University of Catania, 95122 Catania, Italy.
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
18
|
Jonker PKC, van Dam GM, Oosting SF, Kruijff S, Fehrmann RSN. Identification of novel therapeutic targets in anaplastic thyroid carcinoma using functional genomic mRNA-profiling: Paving the way for new avenues? Surgery 2016; 161:202-211. [PMID: 27865593 DOI: 10.1016/j.surg.2016.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/30/2016] [Accepted: 06/18/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Currently, anaplastic thyroid carcinoma has a very poor prognosis and there is an unmet need for new therapeutic options. Therefore, this study aims to identify upregulated genes in anaplastic thyroid carcinoma with known drug interactions that could serve as new therapeutic targets. METHODS Publicly available microarray expression profiles of anaplastic thyroid carcinoma and normal thyroid tissue were collected. FGmRNA-profiling was applied, which is a recently developed method that enhances the ability to capture the downstream effects of genomic alterations on gene expression levels. Next, a comparison between FGmRNA-profiles of anaplastic thyroid carcinoma and normal thyroid samples was performed. Significantly upregulated genes in ATC were prioritized based on: 1) known interaction with antineoplastic drugs, 2) current drug development status in human, and 3) association with biologic pathways known to be involved in anaplastic thyroid carcinoma carcinogenesis. RESULTS In the study, 25 anaplastic thyroid carcinoma and 80 normal thyroid samples were included for FGmRNA-profiling. Class comparison identified 301 significantly upregulated genes. Following prioritization, MTOR, MET, WEE1, PSMD1, MERTK, FGFR3, RARG, and ESR2 were identified as potential therapeutic targets. CONCLUSION We prioritized 8 potential therapeutic druggable targets in anaplastic thyroid carcinoma. Ultimately, inhibition of these therapeutic targets might improve patient outcome in anaplastic thyroid carcinoma by reducing locoregional disease and distant metastases.
Collapse
Affiliation(s)
- Pascal K C Jonker
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Becker JP, Clemens JR, Theile D, Weiss J. Bortezomib and ixazomib protect firefly luciferase from degradation and can flaw respective reporter gene assays. Anal Biochem 2016; 509:124-129. [DOI: 10.1016/j.ab.2016.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|
20
|
Dupain C, Ali HM, Mouhoub TA, Urbinati G, Massaad-Massade L. Induction of TTF-1 or PAX-8 expression on proliferation and tumorigenicity in thyroid carcinomas. Int J Oncol 2016; 49:1248-58. [DOI: 10.3892/ijo.2016.3617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
|
21
|
Jin S, Borkhuu O, Bao W, Yang YT. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J Clin Med Res 2016; 8:284-96. [PMID: 26985248 PMCID: PMC4780491 DOI: 10.14740/jocmr2480w] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer is a common malignancy of endocrine system, and has now become the fastest increasing cancer among all the malignancies. The development, progression, invasion, and metastasis are closely associated with multiple signaling pathways and the functions of related molecules, such as Src, Janus kinase (JAK)-signal transducers and activators of transcription (STAT), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, NF-κB, thyroid stimulating hormone receptor (TSHR), Wnt-β-catenin and Notch signaling pathways. Each of the signaling pathways could exert its function singly or through network with other pathways. These pathways could cooperate, promote, antagonize, or interact with each other to form a complex network for the regulation. Dysfunction of this network could increase the development, progression, invasion, and metastasis of thyroid cancer. Inoperable thyroid cancer still has a poor prognosis. However, signaling pathway-related targeted therapies offer the hope of longer quality of meaningful life for this small group of patients. Signaling pathway-related targets provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. In the present work, the advances in these signaling pathways and targeted treatments of thyroid cancer were reviewed.
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Oyungerel Borkhuu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yun-Tian Yang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
22
|
Haghpanah V, Fallah P, Naderi M, Tavakoli R, Soleimani M, Larijani B. Cancer stem-like cell behavior in anaplastic thyroid cancer: A challenging dilemma. Life Sci 2016; 146:34-9. [PMID: 26772823 DOI: 10.1016/j.lfs.2015.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/10/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
AIMS Anaplastic thyroid carcinoma (ATC) is an undifferentiated tumor of the thyroid which is characterized with poor prognosis, leading to its aggressive behavior and resistance to conventional therapies. Cancer stem cells (CSCs) are tumor cells that have self-renewal and clonal tumor initiation. Like other cancers, many studies have shown that ATC also has tumor cells with properties like stem cells. To evaluate the concept of cancer stem-like cell theory of ATC, we conducted this study to emphasize both on the concept of cancer stemness origin of these cells and target them for further therapeutic purposes. In the current study, we showed that two ATC cell lines, SW1736 and C643, have subpopulations (SP) that are similar to CSCs. MATERIALS AND METHODS Using MACS technique, cells positive for CD133 were isolated and subsequently validated with flow cytometry. For further analysis, expression of some stemness markers was evaluated. KEY FINDINGS ABCG2, CD133, and Sox2 were significantly up-regulated, while Nestin was down-regulated in CD133(pos) subpopulation compared to CD133(neg) cells. In contrast to previous reports that over-expression of Nestin was considered as a marker for thyroid CSCs, we noticed that expression of Nestin was declined in stem cell-like tumor cells, derived from ATC cell lines. SIGNIFICANCE This study reconfirmed the concept of cancer stem-like cell identity of SW1736 and C643 cells. Indeed, the characterization of CSCs should not be merely based on surface markers. Cell origin and genetic background should be additionally considered on CSCs subpopulation of ATCs for therapeutics.
Collapse
Affiliation(s)
- Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Naderi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Wang HJ, Yao JM, Zhang ZW, Zhao JY, Shang HX, Liao L, Dong JJ. Expression of Pax8 is decreased and bortezomib does not increase the iodine uptake in thyroid carcinoma cells. Thorac Cancer 2015; 6:792-6. [PMID: 26557920 PMCID: PMC4632934 DOI: 10.1111/1759-7714.12277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/19/2015] [Indexed: 11/27/2022] Open
Abstract
Fundamental treatment for papillary thyroid carcinoma (PTC) involves total or subtotal thyroidectomy. Iodine-131 ((131)I) is routinely utilized to target remnant thyroid cancer and metastasis after thyroidectomy. The effectiveness of other therapeutic modalities remains unsatisfactory; thus, these patients have a poor prognosis. The manner in which the ability of (131)I uptake can be improved is vital for their prognosis. Bortezomib has been used as a re-differentiation agent for the treatment of patients with multiple myeloma; however, little is reported about the role of bortezomib in thyroid cancer. To evaluate the therapeutic potential of bortezomib in a human PTC cell line, expression of paired-box 8 (Pax8) protein was determined using Western blot in PTC, normal thyroid, and anaplastic/undifferentiated thyroid carcinoma (ATC) cells. The expression of Pax8 protein in PTC cells pretreated with bortezomib was determined using the same method. Iodine uptake was determined using (131)I radioactivity assay. The level of Pax8 protein in normal thyroid cells was significantly higher than in PTC (P < 0.05) and ATC cells (P < 0.05); its expression in PTC cells was also significantly higher than in ATC cells (P < 0.05). The PTC cells in the bortezomib-treated group showed a higher expression of Pax8 protein than the control group (P < 0.05). These findings indicate that bortezomib can increase the expression of Pax8, but does not significantly increase the iodine uptake of PTC cells.
Collapse
Affiliation(s)
- Huan-Jun Wang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| | - Jin-Ming Yao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| | - Zhong-Wen Zhang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| | - Jun-Yu Zhao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| | - Hong-Xia Shang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| | - Lin Liao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| | - Jian-Jun Dong
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University Jinan, Shandong, China
| |
Collapse
|
24
|
Marlow LA, Bok I, Smallridge RC, Copland JA. RhoB upregulation leads to either apoptosis or cytostasis through differential target selection. Endocr Relat Cancer 2015. [PMID: 26206775 PMCID: PMC4559850 DOI: 10.1530/erc-14-0302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anaplastic thyroid carcinoma is a highly aggressive undifferentiated carcinoma with a mortality rate near 100% due to an assortment of genomic abnormalities which impede the success of therapeutic options. Our laboratory has previously identified that RhoB upregulation serves as a novel molecular therapeutic target and agents upregulating RhoB combined with paclitaxel lead to antitumor synergy. Knowing that histone deacetylase 1 (HDAC1) transcriptionally suppresses RhoB, we sought to extend our findings to other HDACs and to identify the HDAC inhibitor (HDACi) that optimally synergize with paclitaxel. Here we identify HDAC6 as a newly discovered RhoB repressor. By using isoform selective HDAC inhibitors (HDACi) and shRNAs, we show that RhoB has divergent downstream signaling partners, which are dependent on the HDAC isoform that is inhibited. When RhoB upregulates only p21 (cyclin kinase inhibitor) using a class I HDACi (romidepsin), cells undergo cytostasis. When RhoB upregulates BIMEL using class II/(I) HDACi (belinostat or vorinostat), apoptosis occurs. Combinatorial synergy with paclitaxel is dependent upon RhoB and BIMEL while upregulation of RhoB and only p21 blocks synergy. This bifurcated regulation of the cell cycle by RhoB is novel and silencing either p21 or BIMEL turns the previously silenced pathway on, leading to phenotypic reversal. This study intimates that the combination of belinostat/vorinostat with paclitaxel may prove to be an effective therapeutic strategy via the novel observation that class II/(I) HDACi antagonize HDAC6-mediated suppression of RhoB and subsequent BIMEL, thereby promoting antitumor synergy. These overall observations may provide a mechanistic understanding of optimal therapeutic response.
Collapse
Affiliation(s)
- Laura A Marlow
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Ilah Bok
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Robert C Smallridge
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - John A Copland
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Anaplastic thyroid cancer (ATC) is a rare malignancy of the thyroid with a high mortality rate. Conventional therapy has not been effective. Several biological agents are being investigated. The purpose of the review is to highlight the current standards for treatment and review new targets for treating ATC. RECENT FINDINGS Retrospective studies have led to formulation of guidelines for management, including those by the American Thyroid Association. An expansion in the understanding of the genetic mutations has led to several newer biological agents being tested to treat ATC. Aurora kinase inhibitors, PPAR γ agonists, and vascular targeting agents are some of the latest therapeutic agents that have shown promise and could become standard of therapy with further supporting research. SUMMARY Further well coordinated preclinical and clinical research is needed to support the emerging treatments for ATC.
Collapse
Affiliation(s)
- Rohit Ranganath
- aMemorial Sloan Kettering Cancer Center, New York bMercy Catholic Medical Center, Philadelphia, USA
| | | | | |
Collapse
|
26
|
Haghpanah V, Fallah P, Tavakoli R, Naderi M, Samimi H, Soleimani M, Larijani B. Antisense-miR-21 enhances differentiation/apoptosis and reduces cancer stemness state on anaplastic thyroid cancer. Tumour Biol 2015; 37:1299-308. [PMID: 26289851 DOI: 10.1007/s13277-015-3923-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive malignancy in thyroid cancers. Resistance to current therapies is still a challenge. MicroRNAs are a class of small non-coding RNAs, regulating gene expression. MiR-21 is an oncomiR that is overexpressed in nearly all cancers including ATC. Accumulating evidence suggested that miR-21 has a role in cancer stemness state, apoptosis, cell cycle progression, and differentiation. Therefore, we evaluated the application of Off-miR-21 to sequester the microRNA for therapeutic purposes on ATC cell lines. In this study, C643 and SW1736 were transducted by hsa-miR-21 antagomir (Off-miR-21). PTEN gene expression was performed as a known target of miR-21. Stemness state in cancer stem cells (CSCs) was evaluated by the changes of CSC biomarkers including Oct-4 and ABCG2. Apoptosis was assessed by PDCD4 and Mcl-1 gene expression and flow cytometry. Sodium/iodide symporter (NIS) and thyroglobulin (TG) were measured as ATC differentiation markers. In addition, cell cycle progression was investigated via the alterations of p21 gene expression and flow cytometry. Specific downregulation of miR-21 induced the differentiation and apoptosis in C643 and SW1736. Inversely, the treatment inhibited stemness state and cell cycle progression. Knockdown of miR-21 significantly increased the expression of PDCD4, p21, NIS, and TG while leading to decreased expression of Oct-4, ABCG2, and Mcl-1.Taken together, the results suggest that miR-21, as an oncomiR, has a role not only in stemness state but also in tumor growth, differentiation, and apoptosis. Hence, suppression of miR-21 could pave the way for ATC therapy.
Collapse
Affiliation(s)
- Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114, Iran
| | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Mahmood Naderi
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114, Iran.
| |
Collapse
|
27
|
Mehta A, Zhang L, Boufraqech M, Zhang Y, Patel D, Shen M, Kebebew E. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer. Endocr Relat Cancer 2015; 22:319-29. [PMID: 25972243 DOI: 10.1530/erc-14-0510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies. Currently, there is no standard or effective therapy for ATC. Drug repurposing for cancer treatment is an emerging approach for identifying compounds that may have antineoplastic effects. The aim of this study was to use high-throughput drug library screening to identify and subsequently validate novel therapeutic agents with anticancer effects in ATC. We performed quantitative high-throughput screening (qHTS) in ATC cell lines (SW-1736, 8505C, and C-643), using a compound library of 3282 drugs. qHTS identified 100 compounds that were active in all three ATC cell lines. Proteasome inhibitors were one of the most active drug categories according to enrichment analysis. Of the three proteasome inhibitors screened, a second-generation proteasome inhibitor, carfilzomib, was the most active. Treatment of ATC cells with carfilzomib significantly inhibited cellular proliferation and induced G2/M cell cycle arrest and caspase-dependent apoptosis. Mechanistically, carfilzomib increased expression of p27 (CDKN1B) and decreased expression of the anti-apoptotic protein ATF4. Pretreatment with carfilzomib reduced in vivo metastases (lung, bone, liver, and kidney) and disease progression, and decreased N-cadherin expression. Carfilzomib treatment of mice with established, widely metastatic disease significantly increased their survival, without significant toxicity. Our findings support the use or clinical study of carfilzomib as a therapeutic option in patients with advanced and metastatic ATC.
Collapse
Affiliation(s)
- Amit Mehta
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Lisa Zhang
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Myriem Boufraqech
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Yaqin Zhang
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Dhaval Patel
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Min Shen
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USAGeisel School of Medicine at DartmouthHanover, New Hampshire 03755, USANational Institutes of HealthNational Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| |
Collapse
|
28
|
von Roemeling CA, Marlow LA, Pinkerton AB, Crist A, Miller J, Tun HW, Smallridge RC, Copland JA. Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J Clin Endocrinol Metab 2015; 100:E697-709. [PMID: 25675381 PMCID: PMC4422887 DOI: 10.1210/jc.2014-2764] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Currently there are no efficacious therapies for patients with anaplastic thyroid carcinoma (ATC) that result in long-term disease stabilization or regression. OBJECTIVE We sought to identify pathways critical for ATC cell progression and viability in an effort to develop new therapeutic strategies. We investigated the effects of targeted inhibition of stearoyl-CoA desaturase 1 (SCD1), a constituent of fatty acid metabolism overexpressed in ATC. DESIGN A gene array of ATC and normal thyroid tissue was performed to identify gene transcripts demonstrating altered expression in tumor samples. Effects of pharmacological and the genetic inhibition of SCD1 on tumor cell viability as well as cell signaling responses to therapy were evaluated in in vitro and in vivo models of this rare, lethal malignancy. RESULTS The gene array analysis revealed consistent distortion of fatty acid metabolism and overexpression of SCD1 in ATC and well-differentiated thyroid carcinomas. SCD1 is critical for ATC cell survival and proliferation, the inhibition of which induced endoplasmic reticulum stress, activation of the unfolded protein response, and apoptosis. Combined suppression of endoplasmic reticulum-associated degradation, a prosurvival component of the unfolded protein response, using proteasome inhibitors resulted in a synergistic decrease in tumor cell proliferation and increased cell death. CONCLUSIONS SCD1 is a novel oncogenic factor specifically required for tumor cell viability in ATC. Furthermore, the expression of SCD1 appears to be correlated with thyroid tumor aggressiveness and may serve as a prognostic biomarker. These findings substantiate SCD1 as a novel tumor-specific target for therapy in patients with ATC and should be further investigated in a clinical setting.
Collapse
Affiliation(s)
- Christina A von Roemeling
- Departments of Cancer Biology (C.A.v.R., L.A.M., A.C., J.M., H.W.T., R.C.S., J.A.C.) and Hematology and Oncology (H.W.T.), and Division of Endocrinology and Metabolism (R.C.S.), Mayo Clinic, Jacksonville, Florida, 32224; The Mayo Clinic Graduate School (C.A.v.R.), Rochester, Minnesota 55905; and Conrad Prebys Center for Chemical Genomics (A.B.P.), Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dang L, Wen F, Yang Y, Liu D, Wu K, Qi Y, Li X, Zhao J, Zhu D, Zhang C, Zhao S. Proteasome inhibitor MG132 inhibits the proliferation and promotes the cisplatin-induced apoptosis of human esophageal squamous cell carcinoma cells. Int J Mol Med 2014; 33:1083-8. [PMID: 24584782 PMCID: PMC4020493 DOI: 10.3892/ijmm.2014.1678] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Comprehensive treatment based on chemotherapy is regarded as the first-line treatment for patients with unresectable or metastatic esophageal squamous cell carcinoma (ESCC). However, chemoresistance is common among patients with ESCC. Therefore, there is a need to explore new therapeutic strategies or adjuvant drugs. One promising possibility is to use dietary agents that can increase tumor cell sensitivity to drugs. In this study, we initially investigated the antitumor activity of proteasome inhibitor MG132 in vitro and in vivo. Effects of MG132 on the enhancment of the anticancer functions of cisplatin were then investigated in human esophageal cancer EC9706 cells in relation to apoptosis and cell signaling events. Exposure of cells to MG132 resulted in a marked decrease in cell viability in a dose- and time-dependent manner. Administration of MG132 markedly inhibited tumor growth in the EC9706 xenograft model. MG132 significantly enhanced cisplatin-induced apoptosis in association with the activation of caspase-3 and -8. These events were accompanied by the downregulation of NF-κB, which plays a key role in cell apoptosis. Taken together, these findings demonstrate a novel mechanism by which proteasome inhibitor MG132 potentiates cisplatin-induced apoptosis in human ESCC and inhibitory activity of tumor growth of the EC9706 xenograft model.
Collapse
Affiliation(s)
- Lifeng Dang
- Physical Examination Centre, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fengbiao Wen
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Donglei Liu
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kai Wu
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yu Qi
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiangnan Li
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jia Zhao
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dengyan Zhu
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chunyang Zhang
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
30
|
He W, Qi B, Zhou Q, Lu C, Huang Q, Xian L, Chen M. Key genes and pathways in thyroid cancer based on gene set enrichment analysis. Oncol Rep 2013; 30:1391-7. [PMID: 23784086 DOI: 10.3892/or.2013.2557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/15/2013] [Indexed: 11/06/2022] Open
Abstract
The incidence of thyroid cancer and its associated morbidity has shown the most rapid increase among all cancers since 1982, but the mechanisms involved in thyroid cancer, particularly significant key genes induced in thyroid cancer, remain undefined. In many studies, gene probes have been used to search for key genes involved in causing and facilitating thyroid cancer. As a result, many possible virulence genes and pathways have been identified. However, these studies lack a case contrast for selecting the most possible virulence genes and pathways, as well as conclusive results with which to clarify the mechanisms of cancer development. In the present study, we used gene set enrichment and meta-analysis to select key genes and pathways. Based on gene set enrichment, we identified 5 downregulated and 4 upregulated mixed pathways in 6 tissue datasets. Based on the meta-analysis, there were 17 common pathways in the tissue datasets. One pathway, the p53 signaling pathway, which includes 13 genes, was identified by both the gene set enrichment analysis and meta-analysis. Genes are important elements that form key pathways. These pathways can induce the development of thyroid cancer later in life. The key pathways and genes identified in the present study can be used in the next stage of research, which will involve gene elimination and other methods of experimentation.
Collapse
Affiliation(s)
- Wenwu He
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|