1
|
Huang Y, Li C, Li Z, Xie Y, Chen H, Li S, Liang Y, Wu Z. Design, Synthesis, and Biological Evaluation of a Novel [ 18F]-Labeled Arginine Derivative for Tumor Imaging. Pharmaceuticals (Basel) 2023; 16:1477. [PMID: 37895948 PMCID: PMC10610273 DOI: 10.3390/ph16101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
To better diagnose and treat tumors related to arginine metabolism, (2S,4S)-2-amino-4-(4-(2-(fluoro-18F)ethoxy)benzyl)-5-guanidinopentanoic acid ([18F]7) was designed and prepared by introducing [18F]fluoroethoxy benzyl on carbon-4 of arginine. [18F]7 and 7 were successfully prepared using synthesis methods similar to those used for (2S,4S)-4-[18F]FEBGln and (2S,4S)-4-FEBGln, respectively. In vitro experiments on cell transport mechanisms showed that [18F]7 was similar to (2S,4S)4-[18F]FPArg and was transported into tumor cells by cationic amino acid transporters. However, [18F]7 can also enter MCF-7 cells via ASC and ASC2 amino acid transporters. Further microPET-CT imaging showed that the initial uptake and retention properties of [18F]7 in MCF-7 subcutaneous tumors were good (2.29 ± 0.09%ID/g at 2.5 min and 1.71 ± 0.09%ID/g at 60 min after administration), without significant defluorination in vivo. However, compared to (2S,4S)4-[18F]FPArg (3.06 ± 0.59%ID/g at 60 min after administration), [18F]7 exhibited lower tumor uptake and higher nonspecific uptake. When further applied to U87MG imaging, [18F]7 can quickly visualize brain gliomas (tumor-to-brain, 1.85 at 60 min after administration). Therefore, based on the above results, [18F]7 will likely be applied for the diagnosis of arginine nutrition-deficient tumors and efficacy evaluations.
Collapse
Affiliation(s)
- Yong Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Chengze Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Bansode AH, Damuka N, Bashetti N, Gollapelli KK, Krizan I, Bhoopal B, Miller M, Jv SK, Whitlow CT, McClain D, Ma T, Jorgensen MJ, Solingapuram Sai KK. First GPR119 PET Imaging Ligand: Synthesis, Radiochemistry, and Preliminary Evaluations. J Med Chem 2023; 66:9120-9129. [PMID: 37315328 PMCID: PMC10999001 DOI: 10.1021/acs.jmedchem.3c00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.
Collapse
Affiliation(s)
- Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Shanmukha Kumar Jv
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Donald McClain
- Department of Endocrinology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Matthew J Jorgensen
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | | |
Collapse
|
3
|
Xiang J, Ma L, Tong J, Zuo N, Hu W, Luo Y, Liu J, Liang T, Ren Q, Liu Q. Boron-peptide conjugates with angiopep-2 for boron neutron capture therapy. Front Med (Lausanne) 2023; 10:1199881. [PMID: 37324130 PMCID: PMC10267362 DOI: 10.3389/fmed.2023.1199881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Boron neutron capture therapy (BNCT) induces intracellular nuclear reaction to destroy cancer cells during thermal neutron irradiation. To selectively eliminate cancer cells but avoid harmful effects on normal tissues, novel boron-peptide conjugates with angiopep-2, namely ANG-B, were constructed and evaluated in preclinical settings. Boron-peptide conjugates were synthesized using solid-phase peptide synthesis, and the molecular mass was validated by mass spectrometry afterwards. Boron concentrations in 6 cancer cell lines and an intracranial glioma mouse model after treatments were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Phenylalanine (BPA) was tested in parallel for comparison. In vitro treatment with boron delivery peptides significantly increased boron uptake in cancer cells. BNCT with 5 mM ANG-B caused 86.5% ± 5.3% of clonogenic cell death, while BPA at the same concentration caused 73.3% ± 6.0% clonogenic cell death. The in vivo effect of ANG-B in an intracranial glioma mouse model was evaluated by PET/CT imaging at 31 days after BNCT. The mouse glioma tumours in the ANG-B-treated group were shrunk by 62.9% on average, while the BPA-treated tumours shrank by only 23.0%. Therefore, ANG-B is an efficient boron delivery agent, which has low cytotoxicity and high tumour-to-blood ratio. Based on these experimental results, we expected that ANG-B may leverage BNCT performance in clinical applications in future.
Collapse
Affiliation(s)
- Jing Xiang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lin Ma
- Department of Stomatology, General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jianfei Tong
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
- Spallation Neutron Source Science Center, Dongguan, China
| | - Nan Zuo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Department of Stomatology, The First Hospital, Harbin Medical University, Harbin, China
| | - Weitao Hu
- School of Stomatology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yupeng Luo
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Liang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
- Spallation Neutron Source Science Center, Dongguan, China
| | - Qiushi Ren
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qi Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Damuka N, Bashetti N, Mintz A, Bansode AH, Miller M, Krizan I, Furdui C, Bhoopal B, Gollapelli KK, Shanmukha Kumar JV, Deep G, Dugan G, Cline M, Solingapuram Sai KK. [ 18F]KS1, a novel ascorbate-based ligand images ROS in tumor models of rodents and nonhuman primates. Biomed Pharmacother 2022; 156:113937. [PMID: 36411624 PMCID: PMC11017304 DOI: 10.1016/j.biopha.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, United States
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg Dugan
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
5
|
Xiang J, Ma L, Gu Z, Jin H, Zhai H, Tong J, Liang T, Li J, Ren Q, Liu Q. A Boronated Derivative of Temozolomide Showing Enhanced Efficacy in Boron Neutron Capture Therapy of Glioblastoma. Cells 2022; 11:cells11071173. [PMID: 35406737 PMCID: PMC8998031 DOI: 10.3390/cells11071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
There is an incontestable need for improved treatment modality for glioblastoma due to its extraordinary resistance to traditional chemoradiation therapy. Boron neutron capture therapy (BNCT) may play a role in the future. We designed and synthesized a 10B-boronated derivative of temozolomide, TMZB. BNCT was carried out with a total neutron radiation fluence of 2.4 ± 0.3 × 1011 n/cm2. The effects of TMZB in BNCT were measured with a clonogenic cell survival assay in vitro and PET/CT imaging in vivo. Then, 10B-boronated phenylalanine (BPA) was tested in parallel with TMZB for comparison. The IC50 of TMZB for the cytotoxicity of clonogenic cells in HS683 was 0.208 mM, which is comparable to the IC50 of temozolomide at 0.213 mM. In BNCT treatment, 0.243 mM TMZB caused 91.2% ± 6.4% of clonogenic cell death, while 0.239 mM BPA eliminated 63.7% ± 6.3% of clonogenic cells. TMZB had a tumor-to-normal brain ratio of 2.9 ± 1.1 and a tumor-to-blood ratio of 3.8 ± 0.2 in a mouse glioblastoma model. BNCT with TMZB in this model caused 58.2% tumor shrinkage at 31 days after neutron irradiation, while the number for BPA was 35.2%. Therefore, by combining the effects of chemotherapy from temozolomide and radiotherapy with heavy charged particles from BNCT, TMZB-based BNCT exhibited promising potential for therapeutic applications in glioblastoma treatment.
Collapse
Affiliation(s)
- Jing Xiang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
| | - Lin Ma
- Department of Stomatology, General Hospital, Shenzhen University, Shenzhen 518055, China;
| | - Zheng Gu
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
| | - Hongjun Jin
- Guangdong Provincial Key Lab of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
| | - Hongbin Zhai
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Jianfei Tong
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tianjiao Liang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Juan Li
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.R.); (Q.L.); Tel.: +86-0755-26038837 (Q.R. & Q.L.)
| | - Qi Liu
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.R.); (Q.L.); Tel.: +86-0755-26038837 (Q.R. & Q.L.)
| |
Collapse
|
6
|
Santo G, Laudicella R, Linguanti F, Nappi AG, Abenavoli E, Vergura V, Rubini G, Sciagrà R, Arnone G, Schillaci O, Minutoli F, Baldari S, Quartuccio N, Bisdas S. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence also in Comparison with MRI. Diagnostics (Basel) 2022; 12:844. [PMID: 35453892 PMCID: PMC9027186 DOI: 10.3390/diagnostics12040844] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
AIM In this comprehensive review we present an update on the most relevant studies evaluating the utility of amino acid PET radiotracers for the evaluation of glioma recurrence as compared to magnetic resonance imaging (MRI). METHODS A literature search extended until June 2020 on the PubMed/MEDLINE literature database was conducted using the terms "high-grade glioma", "glioblastoma", "brain tumors", "positron emission tomography", "PET", "amino acid PET", "[11C]methyl-l-methionine", "[18F]fluoroethyl-tyrosine", "[18F]fluoro-l-dihydroxy-phenylalanine", "MET", "FET", "DOPA", "magnetic resonance imaging", "MRI", "advanced MRI", "magnetic resonance spectroscopy", "perfusion-weighted imaging", "diffusion-weighted imaging", "MRS", "PWI", "DWI", "hybrid PET/MR", "glioma recurrence", "pseudoprogression", "PSP", "treatment-related change", and "radiation necrosis" alone and in combination. Only original articles edited in English and about humans with at least 10 patients were included. RESULTS Forty-four articles were finally selected. Conventional amino acid PET tracers were demonstrated to be reliable diagnostic techniques in differentiating tumor recurrence thanks to their high uptake from tumor tissue and low background in normal grey matter, giving additional and early information to standard modalities. Among them, MET-PET seems to present the highest diagnostic value but its use is limited to on-site cyclotron facilities. [18F]labelled amino acids, such as FDOPA and FET, were developed to provide a more suitable PET tracer for routine clinical applications, and demonstrated similar diagnostic performance. When compared to the gold standard MRI, amino acid PET provides complementary and comparable information to standard modalities and seems to represent an essential tool in the differentiation between tumor recurrence and other entities such as pseudoprogression, radiation necrosis, and pseudoresponse. CONCLUSIONS Despite the introduction of new advanced imaging techniques, the diagnosis of glioma recurrence remains challenging. In this scenario, the growing knowledge about imaging techniques and analysis, such as the combined PET/MRI and the application of artificial intelligence (AI) and machine learning (ML), could represent promising tools to face this difficult and debated clinical issue.
Collapse
Affiliation(s)
- Giulia Santo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Anna Giulia Nappi
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Vittoria Vergura
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Fabio Minutoli
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
| |
Collapse
|
7
|
Borchert T, Beitar L, Langer LBN, Polyak A, Wester HJ, Ross TL, Hilfiker-Kleiner D, Bengel FM, Thackeray JT. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol 2021; 28:1636-1645. [PMID: 31659697 DOI: 10.1007/s12350-019-01929-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Leukocyte subtypes bear distinct pro-inflammatory, reparative, and regulatory functions. Imaging inflammation provides information on disease prognosis and may guide therapy, but the cellular basis of the signal remains equivocal. We evaluated leukocyte subtype specificity of characterized clinically relevant inflammation-targeted radiotracers. METHODS AND RESULTS Leukocyte populations were purified from blood- and THP-1-derived macrophages were polarized into M1-, reparative M2a-, or M2c-macrophages. In vitro uptake assays were conducted using tracers of enhanced glucose or amino acid metabolism and molecular markers of inflammatory cells. Both 18F-deoxyglucose (18F-FDG) and the labeled amino acid 11C-methionine (11C-MET) displayed higher uptake in neutrophils and monocytes compared to other leukocytes (P = 0.005), and markedly higher accumulation in pro-inflammatory M1-macrophages compared to reparative M2a-macrophages (P < 0.001). Molecular tracers 68Ga-DOTATATE targeting the somatostatin receptor type 2 and 68Ga-pentixafor targeting the chemokine receptor type 4 (CXCR4) exhibited broad uptake by leukocyte subpopulations and polarized macrophages with highest uptake in T-cells/natural killer cells and B-cells compared to neutrophils. Mitochondrial translocator protein (TSPO)-targeted 18F-flutriciclamide selectively accumulated in monocytes and pro-inflammatory M1 macrophages (P < 0.001). Uptake by myocytes and fibroblasts tended to be higher for metabolic radiotracers. CONCLUSIONS The different in vitro cellular uptake profiles may allow isolation of distinct phases of the inflammatory pathway with specific inflammation-targeted radiotracers. The pathogenetic cell population in specific inflammatory diseases should be considered in the selection of an appropriate imaging agent.
Collapse
Affiliation(s)
- Tobias Borchert
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Laura Beitar
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Laura B N Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andras Polyak
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans-Jürgen Wester
- Department of Radiopharmaceutical Chemistry, Technical University of Munich, Munich, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Effect of ethanol and cocaine on [ 11C]MPC-6827 uptake in SH-SY5Y cells. Mol Biol Rep 2021; 48:3871-3876. [PMID: 33880672 PMCID: PMC8172511 DOI: 10.1007/s11033-021-06336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 10/26/2022]
Abstract
Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.
Collapse
|
9
|
von Spreckelsen N, Fadzen CM, Hartrampf N, Ghotmi Y, Wolfe JM, Dubey S, Yang BY, Kijewski MF, Wang S, Farquhar C, Bergmann S, Zdioruk M, Wasserburg JR, Scott B, Murrell E, Bononi FC, Luyt LG, DiCarli M, Lamfers MLM, Ligon KL, Chiocca EA, Viapiano MS, Pentelute BL, Lawler SE, Cho CF. Targeting glioblastoma using a novel peptide specific to a deglycosylated isoform of brevican. ADVANCED THERAPEUTICS 2021; 4:2000244. [PMID: 33997269 PMCID: PMC8114962 DOI: 10.1002/adtp.202000244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest form of brain tumor and remains amongst the most difficult cancers to treat. Brevican (Bcan), a central nervous system (CNS)-specific extracellular matrix protein, is upregulated in high-grade glioma cells, including GBM. A Bcan isoform lacking most glycosylation, dg-Bcan, is found only in GBM tissues. Here, dg-Bcan is explored as a molecular target for GBM. In this study, we screened a d-peptide library to identify a small 8-amino acid dg-Bcan-Targeting Peptide (BTP) candidate, called BTP-7 that binds dg-Bcan with high affinity and specificity. BTP-7 is preferentially internalized by dg-Bcan-expressing patient-derived GBM cells. To demonstrate GBM targeting, we radiolabeled BTP-7 with 18F, a radioisotope of fluorine, and found increased radiotracer accumulation in intracranial GBM established in mice using positron emission tomography (PET) imaging. dg-Bcan is an attractive molecular target for GBM, and BTP-7 represents a promising lead candidate for further development into novel imaging agents and targeted therapeutics.
Collapse
Affiliation(s)
- Niklas von Spreckelsen
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50937 Cologne, Germany
| | - Colin M. Fadzen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Nina Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yarah Ghotmi
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Justin M. Wolfe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Shipra Dubey
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Bo Yeun Yang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Marie F. Kijewski
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Shuyan Wang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Charlotte Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sonja Bergmann
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Mykola Zdioruk
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - J. Roscoe Wasserburg
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Benjamin Scott
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Emily Murrell
- Department of Chemistry, University of Western Ontario, London, ON N6C 4K3 Canada
| | - Fernanda C. Bononi
- Department of Chemistry, University of Western Ontario, London, ON N6C 4K3 Canada
| | - Leonard G. Luyt
- Department of Chemistry, University of Western Ontario, London, ON N6C 4K3 Canada
| | - Marcelo DiCarli
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Keith L. Ligon
- Department of Pathology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sean E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Choi-Fong Cho
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
10
|
Liu S, Wu R, Sun Y, Ploessl K, Zhang Y, Liu Y, Wu Z, Zhu L, Kung HF. Design, synthesis and evaluation of a novel glutamine derivative (2 S,4 R)-2-amino-4-cyano-4-[ 18F]fluorobutanoic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new glutamine derivative (2S,4R)-2-amino-4-cyano-4-[18F]fluorobutanoic acid (2S,4R)-4-[18F]FCABA ([18F]1) and its labeled precursor can be converted into (2S,4R)-4-[18F]FGln and (2S,4R)4-[18F]FGlu by changing the labeling conditions.
Collapse
Affiliation(s)
- Song Liu
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Renbo Wu
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Yuli Sun
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Karl Ploessl
- Department of Radiology
- University of Pennsylvania
- Philadelphia
- USA
| | - Yan Zhang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University
- Beijing 100069
- China
| | - Zehui Wu
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Lin Zhu
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Hank F. Kung
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| |
Collapse
|
11
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
12
|
Huang Y, Liu S, Wu R, Zhang L, Zhang Y, Hong H, Zhang A, Xiao H, Liu Y, Wu Z, Zhu L, Kung HF. Synthesis and preliminary evaluation of a novel glutamine derivative: (2S,4S)4-[ 18F]FEBGln. Bioorg Med Chem Lett 2019; 29:1047-1050. [PMID: 30871772 DOI: 10.1016/j.bmcl.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Abstract
We report the preparation of a novel glutamine derivative, (2S,4S)-2,5-diamino-4-(4-(2-fluoroethoxy)benzyl)-5-oxopentanoic acid, (2S, 4S)4-[18F]FEBGln ([18F]4), through efficient organic and radiosyntheses. In vitro assays of [18F]4 using MCF-7 cells showed that it entered cells via multiple amino acid transporter systems including system L and ASC2 transporters but not through the system A transporter. [18F]4 showed promising properties for tumor imaging and may serve as a lead compound for further optimizing and targeting the system L transporter associated with enhanced glutamine metabolism in cancer cells.
Collapse
Affiliation(s)
- Yong Huang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Song Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Renbo Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lifang Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Aili Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hao Xiao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia 19104, United States.
| |
Collapse
|
13
|
Nodwell MB, Yang H, Merkens H, Malik N, Čolović M, Björn Wagner, Martin RE, Bénard F, Schaffer P, Britton R. 18F-Branched-Chain Amino Acids: Structure-Activity Relationships and PET Imaging Potential. J Nucl Med 2019; 60:1003-1009. [PMID: 30683769 DOI: 10.2967/jnumed.118.220483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
The large, neutral L-type amino acid transporters (LAT1-LAT4) are sodium-independent transporters that are widely distributed throughout the body. LAT expression levels are increased in many types of cancer, and their expression increases as cancers progress, leading to high expression levels in high-grade tumors and metastases. Because of the key role and overexpression of LAT in many types of cancer, radiolabeled LAT substrates are promising candidates for nuclear imaging of malignancies that are not well revealed by conventional radiotracers. The goal of this study was to examine the structure-activity relationships of a series of 18F-labeled amino acids that were predicted to be substrates of the LAT transport system. Methods: Using a photocatalytic radical fluorination, we prepared a series of 11 fluorinated branched-chain amino acids and evaluated them and their nonfluorinated parents in a cell-based LAT affinity assay. We radiofluorinated selected branched-chain amino acids via the same radical fluorination reaction and evaluated tumor uptake in U-87 glioma xenograft-bearing mice. Results: Structure-activity relationship trends observed in a LAT affinity assay were maintained in further in vitro studies, as well as in vivo using a U-87 xenograft model. LAT1 uptake was tolerant of fluorinated amino acid stereochemistry and chain length. PET imaging and biodistribution studies showed that the tracer (S)-5-18F-fluorohomoleucine had rapid tumor uptake, favorable in vivo kinetics, and good stability. Conclusion: By using an in vitro affinity assay, we could predict LAT-mediated cancer cell uptake in a panel of fluorinated amino acids. These predictions were consistent when applied to different cell lines and murine tumor models, and several new tracers may be suitable for further development as oncologic PET imaging agents.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Noeen Malik
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Milena Čolović
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Björn Wagner
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; and
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
14
|
Prudner BC, Sun F, Kremer JC, Xu J, Huang C, Sai KKS, Morgan Z, Leeds H, McConathy J, Van Tine BA. Amino Acid Uptake Measured by [ 18F]AFETP Increases in Response to Arginine Starvation in ASS1-Deficient Sarcomas. Am J Cancer Res 2018; 8:2107-2116. [PMID: 29721066 PMCID: PMC5928874 DOI: 10.7150/thno.22083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/13/2018] [Indexed: 01/04/2023] Open
Abstract
Rational: In a subset of cancers, arginine auxotrophy occurs due to the loss of expression of argininosuccinate synthetase 1 (ASS1). This loss of ASS1 expression makes cancers sensitive to arginine starvation that is induced by PEGylated arginine deiminase (ADI-PEG20). Although ADI-PEG20 treatment is effective, it does have important limitations. Arginine starvation is only beneficial in patients with cancers that are ASS1-deficient. Also, these tumors may metabolically reprogram to express ASS1, transforming them from an auxotrophic phenotype to a prototrophic phenotype and thus rendering ADI-PEG20 ineffective. Due to these limitations of ADI-PEG20 treatment and the potential for developing resistance, non-invasive tools to monitor sensitivity to arginine starvation are needed. Methods: Within this study, we assess the utility of a novel positron emission tomography (PET) tracer to determine sarcomas reliant on extracellular arginine for survival by measuring changes in amino acid transport in arginine auxotrophic sarcoma cells treated with ADI-PEG20. The uptake of the 18F-labeled histidine analogue, (S)-2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (AFETP), was assessed in vitro and in vivo using human-derived sarcoma cell lines. In addition, we examined the expression and localization of cationic amino acid transporters in response to arginine starvation with ADI-PEG20. Results: In vitro studies revealed that in response to ADI-PEG20 treatment, arginine auxotrophs increase the uptake of L-[3H]arginine and [18F]AFETP due to an increase in the expression and localization to the plasma membrane of the cationic amino acid transporter CAT-1. Furthermore, in vivo PET imaging studies in mice with arginine-dependent osteosarcoma xenografts showed increased [18F]AFETP uptake in tumors 4 days after ADI-PEG20 treatment compared to baseline. Conclusion: CAT-1 transporters localizes to the plasma membrane as a result of arginine starvation with ADI-PEG20 in ASS1-deficient tumor cells and provides a mechanism for using cationic amino acid transport substrates such as [18F]AFETP for identifying tumors susceptible to ADI-PEG20 treatment though non-invasive PET imaging techniques. These findings indicate that [18F]AFETP-PET may be suitable for the early detection of tumor response to arginine depletion due to ADI-PEG20 treatment.
Collapse
|
15
|
Morais M, Ferreira VFC, Figueira F, Mendes F, Raposinho P, Santos I, Oliveira BL, Correia JDG. Technetium-99m complexes of l-arginine derivatives for targeting amino acid transporters. Dalton Trans 2017; 46:14537-14547. [PMID: 28612866 DOI: 10.1039/c7dt01146f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although relevant from the clinical point of view, radiotracers targeting cationic amino acid transporters are relatively unexplored and, in particular, no metal-based radiotracers are known. The rare examples of complexes recognized by amino acid transporters, namely by the Na+-independent neutral l-type amino acid transporter 1 (LAT1), are 99mTc(i)/Re(i) compounds. Herein, we describe conjugates comprising a pyrazolyl-diamine chelating unit and the cationic amino acid l-arginine (l-Arg) linked by a propyl (L1) or hexyl linker (L2), which allowed the preparation of stable complexes of the type fac-[99mTc(CO)3(k3-L)]+ (Tc1, L = L1; Tc2, L = L2) and of the respective surrogates Re1 and Re2. Interestingly, complex Tc2 exhibited moderate levels of time-dependent internalization in three human tumoural cell lines, with approximately 3% of total applied activity internalized, corresponding to 21% of the cell-associated activity. A putative mechanism of retention in the cytoplasm of cells could be the interaction of the complex with inducible nitric oxide synthase (iNOS), which is the enzyme responsible for the catalytic oxidation of l-Arg to citrulline and nitric oxide. However, the surrogate complex Re2 does not recognize iNOS, as demonstrated by the in vitro assays with purified iNOS and in studies with lipopolysaccharide(LPS)-activated macrophages. Preliminary mechanistic studies suggest that the internalization of Tc2 is linked to the cationic amino acid transporters, namely system y+. This finding might open the way towards the development of novel families of metal-based radiotracers for probing metabolically active cancer cells.
Collapse
Affiliation(s)
- Maurício Morais
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sai KKS, Sattiraju A, Almaguel FG, Xuan A, Rideout S, Krishnaswamy RS, Zhang J, Herpai DM, Debinski W, Mintz A. Peptide-based PET imaging of the tumor restricted IL13RA2 biomarker. Oncotarget 2017; 8:50997-51007. [PMID: 28881623 PMCID: PMC5584224 DOI: 10.18632/oncotarget.16549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Peptides that target cancer cell surface receptors are promising platforms to deliver diagnostic and therapeutic payloads specifically to cancer but not normal tissue. IL13RA2 is a tumor-restricted receptor found to be present in several aggressive malignancies, including in the vast majority of high-grade gliomas and malignant melanoma. This receptor has been successfully targeted for diagnostic and therapeutic purposes using modified IL-13 ligand and more recently using a specific peptide, Pep-1L. In the current work, we establish the in vitro and in vivo tumor binding properties of radiolabeled Pep-1L, designed for tumor imaging. We radiolabeled Pep-1L with Copper-64 and demonstrated specific cell uptake in the IL13RA2-over expressing G48 glioblastoma cell line having abundant IL13RA2 expression. [64Cu]Pep-1L binding was blocked by unlabeled ligand, demonstrating specificity. To demonstrate in vivo tumor uptake, we intravenously injected into tumor-bearing mice and demonstrated that [64Cu]Pep-1L specifically bound tumors at 24 hours, which was significantly blocked (3-fold) by pre-injecting unlabeled peptide. To further demonstrate specificity of Pep-1L towards IL13RA2 in vivo, we exploited an IL13RA2-inducible melanoma tumor model that does not express receptor at baseline but expresses abundant receptor after treatment with doxycycline. We injected [64Cu]Pep-1L into mice bearing IL13RA2-inducible melanoma tumors and performed in vivo PET/CT and post-necropsy biodistribution studies and found that tumors that were induced to express IL13RA2 receptor by doxycycline pretreatment bound radiolabeled Pep-1L 3-4 fold greater than uninduced tumors, demonstrating receptor specificity. This work demonstrates that [64Cu]Pep-1L selectively binds hIL13RA2-expressing tumors and validates Pep-1L as an effective platform to deliver diagnostics and therapeutics to IL13RA2-expressing cancers.
Collapse
Affiliation(s)
| | - Anirudh Sattiraju
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Frankis G Almaguel
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ang Xuan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephanie Rideout
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - JoAnn Zhang
- MicroPET/CT Imaging Section, TriFoil Imaging, Chatsworth, CA, USA
| | - Denise M Herpai
- Department of Cancer Biology, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
17
|
Bouhlel A, Alyami W, Li A, Yuan L, Rich K, McConathy J. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET). J Med Chem 2016; 59:3515-31. [PMID: 26967318 DOI: 10.1021/acs.jmedchem.6b00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Inserm, Vascular Center of Marseille (UMR_S1076), CERIMED, Aix-Marseille University , Marseille, France
| | - Wadha Alyami
- Doisy College of Health Sciences, Saint Louis University , St. Louis, Missouri 63103, United States
| | - Aixiao Li
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States
| | - Liya Yuan
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Keith Rich
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jonathan McConathy
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Department of Radiology, University of Alabama at Birmingham , Birmingham, Alabama 35249, United States
| |
Collapse
|
18
|
Yook CM, Lee SJ, Oh SJ, Ha HJ, Lee JJ. Simple preparation of new [(18) F]F-labeled synthetic amino acid derivatives with two click reactions in one-pot and SPE purification. J Labelled Comp Radiopharm 2015; 58:317-26. [PMID: 26031401 DOI: 10.1002/jlcr.3297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/01/2015] [Accepted: 04/12/2015] [Indexed: 01/23/2023]
Abstract
New [(18) F]fluorinated 1,2,3-triazolyl amino acid derivatives were efficiently prepared from Huisgen 1,3-dipolar cycloaddition reactions, well known as click reaction. We developed two simultaneous click reactions in one-pot with a simple solid-phase extraction (SPE) purification method. [(18) F]fluoro-1-propyne was obtained at a 45% non-decay corrected radiochemical yield based on the [(18) F]fluoride ion. The one-pot and simultaneous two click reactions were performed with unprotected azido-alkyl amino acid, [(18) F]fluoro-1-propyne, and lipophilic additive alkyne to produce three synthetic amino acid derivatives, AMC-101 ([(18) F]-6a), AMC-102 ([(18) F]-6b), and AMC-103 ([(18) F]-6c) with 29%, 28%, and 24% of non-decay corrected radiochemical yields, respectively. All radiotracers indicated that radiochemical purities were >95% without any residual organic solvent. Our new method involving two click reactions in one-pot showed high radiochemical and chemical purity by easy removal of the residual precursor from the simultaneous two click reactions.
Collapse
Affiliation(s)
- Cheol-Min Yook
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyunggi-do, 449-719, South Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul, 138-736, South Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul, 138-736, South Korea
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyunggi-do, 449-719, South Korea
| | - Jong Jin Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul, 138-736, South Korea
| |
Collapse
|
19
|
Bouhlel A, Zhou D, Li A, Yuan L, Rich KM, McConathy J. Synthesis, Radiolabeling, and Biological Evaluation of (R)- and (S)-2-Amino-5-[(18)F]fluoro-2-methylpentanoic Acid ((R)-, (S)-[(18)F]FAMPe) as Potential Positron Emission Tomography Tracers for Brain Tumors. J Med Chem 2015; 58:3817-29. [PMID: 25843369 DOI: 10.1021/jm502023y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel (18)F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[(18)F]fluoro-2-methylpentanoic acid ([(18)F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [(18)F]FAMPe were obtained in good radiochemical yield (24-52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that (S)-[(18)F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and small animal PET/CT studies in the mouse DBT model of glioblastoma showed that both (R)- and (S)-[(18)F]FAMPe have good tumor imaging properties with the (S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Comparison of the SUVs showed that (S)-[(18)F]FAMPe had higher tumor to brain ratios compared to (S)-[(18)F]FET, a well-established system L substrate.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Dong Zhou
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Keith M Rich
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
20
|
PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today 2014; 20:306-17. [PMID: 25448762 DOI: 10.1016/j.drudis.2014.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022]
Abstract
Glioma is the most aggressive brain tumour, resulting in death often within 1-2 years. Current treatment strategies involve surgical resection followed by chemoradiation therapy. Despite continuing improvements in the delivery of adjuvant therapies, there has not been a dramatic increase in survival for glioma. Molecular imaging techniques have become central in the development of new therapeutic strategies in recent years. The multimodal imaging technology of positron emission tomography/magnetic resonance imaging (PET/MRI) has recently been realised on a preclinical scale and the effect of this technology is starting to be observed in preclinical drug development for glioma. Here, we propose that PET/MRI will play an integral part in the development of new diagnostic and therapeutic strategies for glioma.
Collapse
|
21
|
Facile purification and click labeling with 2-[ 18F]fluoroethyl azide using solid phase extraction cartridges. Tetrahedron Lett 2014; 56:952-954. [PMID: 26989269 DOI: 10.1016/j.tetlet.2014.10.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A facile method was developed to purify 2-[18F]fluoroethyl azide ([18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. This solid phase extraction methodology for purification and click labeling with [18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield, and compatible with automated synthesis of 18F-labeled PET tracers.
Collapse
|
22
|
Nedergaard MK, Kristoffersen K, Michaelsen SR, Madsen J, Poulsen HS, Stockhausen MT, Lassen U, Kjaer A. The use of longitudinal 18F-FET MicroPET imaging to evaluate response to irinotecan in orthotopic human glioblastoma multiforme xenografts. PLoS One 2014; 9:e100009. [PMID: 24918622 PMCID: PMC4053391 DOI: 10.1371/journal.pone.0100009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022] Open
Abstract
Objectives Brain tumor imaging is challenging. Although 18F-FET PET is widely used in the clinic, the value of 18F-FET MicroPET to evaluate brain tumors in xenograft has not been assessed to date. The aim of this study therefore was to evaluate the performance of in vivo18F-FET MicroPET in detecting a treatment response in xenografts. In addition, the correlations between the 18F-FET tumor accumulation and the gene expression of Ki67 and the amino acid transporters LAT1 and LAT2 were investigated. Furthermore, Ki67, LAT1 and LAT2 gene expression in xenograft and archival patient tumors was compared. Methods Human GBM cells were injected orthotopically in nude mice and 18F-FET uptake was followed by weekly MicroPET/CT. When tumor take was observed, mice were treated with CPT-11 or saline weekly. After two weeks of treatment the brain tumors were isolated and quantitative polymerase chain reaction were performed on the xenograft tumors and in parallel on archival patient tumor specimens. Results The relative tumor-to-brain (T/B) ratio of SUVmax was significantly lower after one week (123±6%, n = 7 vs. 147±6%, n = 7; p = 0.018) and after two weeks (142±8%, n = 5 vs. 204±27%, n = 4; p = 0.047) in the CPT-11 group compared with the control group. Strong negative correlations between SUVmax T/B ratio and LAT1 (r = −0.62, p = 0.04) and LAT2 (r = −0.67, p = 0.02) were observed. In addition, a strong positive correlation between LAT1 and Ki67 was detected in xenografts. Furthermore, a 1.6 fold higher expression of LAT1 and a 23 fold higher expression of LAT2 were observed in patient specimens compared to xenografts. Conclusions 18F-FET MicroPET can be used to detect a treatment response to CPT-11 in GBM xenografts. The strong negative correlation between SUVmax T/B ratio and LAT1/LAT2 indicates an export transport function. We suggest that 18F-FET PET may be used for detection of early treatment response in patients.
Collapse
Affiliation(s)
- Mette K. Nedergaard
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Karina Kristoffersen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Signe R. Michaelsen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Hans S. Poulsen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrik Lassen
- Phase 1 Unit, Department of Oncology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Pretze M, Wängler C, Wängler B. 6-[18F]fluoro-L-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:674063. [PMID: 24987698 PMCID: PMC4058520 DOI: 10.1155/2014/674063] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 11/18/2022]
Abstract
For many years, the main application of [(18)F]F-DOPA has been the PET imaging of neuropsychiatric diseases, movement disorders, and brain malignancies. Recent findings however point to very favorable results of this tracer for the imaging of other malignant diseases such as neuroendocrine tumors, pheochromocytoma, and pancreatic adenocarcinoma expanding its application spectrum. With the application of this tracer in neuroendocrine tumor imaging, improved radiosyntheses have been developed. Among these, the no-carrier-added nucleophilic introduction of fluorine-18, especially, has gained increasing attention as it gives [(18)F]F-DOPA in higher specific activities and shorter reaction times by less intricate synthesis protocols. The nucleophilic syntheses which were developed recently are able to provide [(18)F]F-DOPA by automated syntheses in very high specific activities, radiochemical yields, and enantiomeric purities. This review summarizes the developments in the field of [(18)F]F-DOPA syntheses using electrophilic synthesis pathways as well as recent developments of nucleophilic syntheses of [(18)F]F-DOPA and compares the different synthesis strategies regarding the accessibility and applicability of the products for human in vivo PET tumor imaging.
Collapse
Affiliation(s)
- M. Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - C. Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - B. Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
24
|
18F-labeling using click cycloadditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361329. [PMID: 25003110 PMCID: PMC4070495 DOI: 10.1155/2014/361329] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Due to expanding applications of positron emission tomography (PET) there is a demand for developing new techniques to introduce fluorine-18 (t1/2 = 109.8 min). Considering that most novel PET tracers are sensitive biomolecules and that direct introduction of fluorine-18 often needs harsh conditions, the insertion of 18F in those molecules poses an exceeding challenge. Two major challenges during 18F-labeling are a regioselective introduction and a fast and high yielding way under mild conditions. Furthermore, attention has to be paid to functionalities, which are usually present in complex structures of the target molecule. The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and several copper-free click reactions represent such methods for radiolabeling of sensitive molecules under the above-mentioned criteria. This minireview will provide a quick overview about the development of novel 18F-labeled prosthetic groups for click cycloadditions and will summarize recent trends in copper-catalyzed and copper-free click 18F-cycloadditions.
Collapse
|
25
|
Müller A, Chiotellis A, Keller C, Ametamey SM, Schibli R, Mu L, Krämer SD. Imaging Tumour ATB0,+ Transport Activity by PET with the Cationic Amino Acid O-2((2-[18F]fluoroethyl)methyl-amino)ethyltyrosine. Mol Imaging Biol 2013; 16:412-20. [DOI: 10.1007/s11307-013-0711-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/03/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
|
26
|
Ikotun OF, Marquez BV, Huang C, Masuko K, Daiji M, Masuko T, McConathy J, Lapi SE. Imaging the L-type amino acid transporter-1 (LAT1) with Zr-89 immunoPET. PLoS One 2013; 8:e77476. [PMID: 24143237 PMCID: PMC3797081 DOI: 10.1371/journal.pone.0077476] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022] Open
Abstract
The L-type amino acid transporter-1 (LAT1, SLC7A5) is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-L-tyrosine (FET) that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g) at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.
Collapse
Affiliation(s)
- Oluwatayo F. Ikotun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bernadette V. Marquez
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chaofeng Huang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kazue Masuko
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, Osaka, Japan
| | - Miyamoto Daiji
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, Osaka, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, Osaka, Japan
| | - Jonathan McConathy
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Suzanne E. Lapi
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18. Molecules 2013; 18:8618-65. [PMID: 23881051 PMCID: PMC6270032 DOI: 10.3390/molecules18078618] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/18/2022] Open
Abstract
The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile bioorthogonal conjugation techniques especially for the radiolabeling of biologically active high molecular weight compounds like peptides, proteins or antibodies. Taking into consideration that the introduction of fluorine-18 (t(1/2) = 109.8 min) proceeds under harsh conditions, radiolabeling of these biologically active molecules represents an outstanding challenge and is of enormous interest. Special attention has to be paid to the method of 18F-introduction. It should proceed in a regioselective manner under mild physiological conditions, in an acceptable time span, with high yields and high specific activities. For these reasons and due to the high number of functional groups found in these compounds, a specific labeling procedure has to be developed for every bioactive macromolecule. Bioorthogonal strategies including the Cu-assisted Huisgen cycloaddition and its copper-free click variant, both Staudinger Ligations or the tetrazine-click reaction have been successfully applied and represent valuable alternatives for the selective introduction of fluorine-18 to overcome the afore mentioned obstacles. This comprehensive review deals with the progress and illustrates the latest developments in the field of bioorthogonal labeling with the focus on the preparation of radiofluorinated building blocks and tracers for molecular imaging.
Collapse
|