1
|
Movahed F, Navaei O, Taghlidi S, Nurzadeh M, Gharaati ME, Rabiei M. Radiolabeled HER2-targeted molecular probes in breast cancer imaging: current knowledge and future prospective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6129-6141. [PMID: 39751821 DOI: 10.1007/s00210-024-03691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Breast cancer is the most frequent non-dermatologic malignancy in women. Breast cancer is characterized by the expression of the human epidermal growth factor receptor type 2 (HER2), and the presence or lack of estrogen receptor (ER) and progesterone receptor (PR) expression. HER2 overexpression is reported in about 20 to 25% of breast cancer patients, which is usually linked to cancer progression, metastases, and poor survival. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are the gold standards for determining HER2 status, even though IHC has largely focused on quantifying HER2+ status versus "other" HER2 status (including variants with low or no expression). Recent findings regarding the beneficial therapeutic effects of anti-HER2 monoclonal antibodies (mAb) in HER2low metastatic patients lead to changes in the classic definition of advanced breast cancer, and methods for precise assessment of HER2 status are being developed. As a result, various radiolabeled HER-targeted mAbs and antibody fragments have been designed to avoid repeated biopsies with potential bias due to tumor heterogeneity, including single-chain variable fragment (scFv), F(ab')2, affibody, and nanobody. These small targeting radiotracers displayed favorable biodistributions, clearance, and stability, allowing for higher image quality, shorter circulation half-life, and lower immunogenicity. This study aimed to comprehensively review the application of radiolabeled anti-HER2 antibody fragments in breast cancer in vivo imaging and provide a better understanding of targeted HER2 quantification.
Collapse
Affiliation(s)
- Fatemeh Movahed
- Department of Gynecology and Obstetrics, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ouldouz Navaei
- Department of Biotechnology, Università Milano-Bicocca Milano, Milan, Italy
| | - Shiva Taghlidi
- Medicine and Surgery, Università Degli Studi Di Milano-Bicocca, Milan, Italy
| | - Maryam Nurzadeh
- Department of Fetomaternal, Faculty of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Eslami Gharaati
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Giang KA, Nilvebrant J, Liu H, Káradóttir H, Diao Y, Svensson Gelius S, Nygren PÅ. An Anti-BCMA Affibody Affinity Protein for Therapeutic and Diagnostic Use in Multiple Myeloma. Int J Mol Sci 2025; 26:5186. [PMID: 40507995 PMCID: PMC12154184 DOI: 10.3390/ijms26115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
B Cell Maturation Antigen (BCMA) has gained considerable attention as a target in directed therapies for multiple myeloma (MM) treatment, via immunoglobulin-based bispecific T cell engagers or CAR T cell strategies. We describe the development of alternative, non-immunoglobulin BCMA-recognising affinity proteins, based on the small (58 aa) three-helix bundle affibody scaffold. A first selection campaign using a naïve affibody phage library resulted in the isolation of several BCMA-binding clones with different kinetic profiles. One clone showing the slowest dissociation kinetics was chosen as the template for the construction of two second-generation libraries. Characterization of output clones from selections using these libraries led to the identification of clone 1-E6, which demonstrated low nM affinity to BCMA and high thermal stability. Biosensor experiments showed that 1-E6 interfered with the binding of BCMA to both its natural ligand APRIL and to the clinically evaluated anti-BCMA monoclonal antibody belantamab, suggesting overlapping epitopes. A fluorescently labelled head-to-tail homodimer construct of 1-E6 showed specific binding to the BCMA+ MM.1s cell line in both flow cytometry and fluorescence microscopy. Taken together, the results suggest that the small anti-BCMA affibody 1-E6 could be an interesting alternative to antibody-based affinity units in the development of BCMA-targeted therapies and diagnostics.
Collapse
Affiliation(s)
- Kim Anh Giang
- Department of Protein Science, KTH-Royal Institute of Technology, SE-114 28 Stockholm, Sweden; (K.A.G.); (J.N.); (H.L.)
| | - Johan Nilvebrant
- Department of Protein Science, KTH-Royal Institute of Technology, SE-114 28 Stockholm, Sweden; (K.A.G.); (J.N.); (H.L.)
| | - Hao Liu
- Department of Protein Science, KTH-Royal Institute of Technology, SE-114 28 Stockholm, Sweden; (K.A.G.); (J.N.); (H.L.)
| | - Harpa Káradóttir
- Oncopeptides AB, SE-171 48 Solna, Sweden; (H.K.); (Y.D.); (S.S.G.)
| | - Yumei Diao
- Oncopeptides AB, SE-171 48 Solna, Sweden; (H.K.); (Y.D.); (S.S.G.)
| | | | - Per-Åke Nygren
- Department of Protein Science, KTH-Royal Institute of Technology, SE-114 28 Stockholm, Sweden; (K.A.G.); (J.N.); (H.L.)
| |
Collapse
|
3
|
Murugan D, Thirumalaiswamy HV, Murugesan V, Venkatesan J, Balachandran U, Lakshminarayanan K, Satpati D, Nikolić S, Rangasamy L. Unlocking the power of affibody conjugated radioactive metallopharmaceuticals for targeted cancer diagnosis and therapy. Pharmacol Ther 2025:108863. [PMID: 40294752 DOI: 10.1016/j.pharmthera.2025.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/02/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
Cancer is the second-largest death-causing disease after cardiovascular diseases. Effective research on cancer diagnosis and subsequent elimination plays a vital role in reducing the cancer-related death toll. Radiotherapy is one of the best strategies that could kill masses of solid tumour tissues; however, the efficacy is limited due to the bystander effect. This issue could be solved by the emergence of targeted delivery of radiometallic complexes, enabling clinicians to monitor the tumour regions and effectively destroy the tumour. Affibody® molecules are a class of synthetic peptides known as antibody mimics having the binding sites of an antibody. The specificity of affibodies is found to be greater than that of antibodies due to their small size. This review intends to highlight the recent developments in the field of affibody-targeted radiometallopharmaceuticals. These approaches could be essential for early cancer detection, tumour staging, and monitoring the response to therapy and could produce better therapeutic outcomes. In an attempt to provide ideas and inspiration for the researchers to design affibody-conjugated radiopharmaceuticals that are clinically applicable, we have provided an in-depth exploration of the various types of affibody-conjugated radiopharmaceuticals that are currently in clinical trials and various other pre-clinically tested conjugates in this article. Only a few review reports on affibody-conjugated radiometallopharmaceuticals, typically focusing on a specific molecular target or radionuclides reported. In this review, we provide a comprehensive overview of most radiometals, such as 111In, 68Ga, 64Cu, 55Co, 57Co, 44Sc, 99mTc, 89Zr, 90Y, 211At, 188Re, and 177Lu, choice of chelators, and potential cancer-associated molecular targets such HER2, EGFR or HER1, HER3, IGF-1R, PDGFRβ, VEGFR2, PD-L1, CAIX, PD-L1, neonatal Fc receptor (FcRn) and B7-H3. This approach highlights the advancements made over the past twenty years in affibody conjugates for radio imaging and therapy in oncology.
Collapse
Affiliation(s)
- Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Janarthanan Venkatesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Unnikrishnan Balachandran
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Kalaiarasu Lakshminarayanan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Stefan Nikolić
- Innovative Centre of the Faculty of Chemistry Belgrade, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Iaboni M, Crivellin F, Arena F, La Cava F, Cordaro A, Stummo F, Faletto D, Huet S, Candela L, Pedrault J, Zanella ER, Bertotti A, Blasi F, Maiocchi A, Poggi L, Reitano E. Complete preclinical evaluation of the novel antibody mimetic Nanofitin-IRDye800CW for diverse non-invasive diagnostic applications in the management of HER-2 positive tumors. Sci Rep 2025; 15:9832. [PMID: 40118987 PMCID: PMC11928573 DOI: 10.1038/s41598-025-93696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
There are well-known limitations associated to the use of antibodies in the non-invasive detection of HER-2 expression. In fact, current procedures recommended for diagnostic purposes of HER-2 status are still invasive techniques. Here, a novel, smaller diagnostic probe, the anti-HER-2 Nanofitin conjugated to the fluorophore IRDye800CW (NF-800), underwent an in vitro/in vivo proof of concept study by Optical Imaging. NF-800 showed high affinity and specificity for the cellular target, and the ability to internalize into HER-2 positive cells. By ex vivo analysis, NF-800 showed a selective tumor accumulation in xenograft tumor models, and also a good tumor targeting efficacy in translational preclinical setups, such as orthotopic and patient-derived xenograft (PDX) models. In the latter, NF-800 was compared to the anti-HER-2 antibody Trastuzumab, displaying a large diagnostic advantage. Interestingly, NF-800 did not seem to share the same binding site with Trastuzumab and Pertuzumab, opening specific theragnostic opportunities for NF-800 in combination with standard-of-care antibodies.
Collapse
Affiliation(s)
- Margherita Iaboni
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy.
| | - Federico Crivellin
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Francesca Arena
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Francesca La Cava
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Alessia Cordaro
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Francesco Stummo
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Daniele Faletto
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Simon Huet
- Affilogic SAS, 24 Rue de La Rainière, 44300, Nantes, France
| | - Leo Candela
- Affilogic SAS, 24 Rue de La Rainière, 44300, Nantes, France
| | - Jessy Pedrault
- Affilogic SAS, 24 Rue de La Rainière, 44300, Nantes, France
| | - Eugenia R Zanella
- Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, 10060, Candiolo, Turin, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, 10060, Candiolo, Turin, Italy
- Department of Oncology, University of Turin, Candiolo, Turin, Italy
| | - Francesco Blasi
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Alessandro Maiocchi
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Luisa Poggi
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| | - Erika Reitano
- Bracco Research Centre, Bracco Imaging Spa, Via Ribes 5, 10010, Colleretto Giacosa, Turin, Italy
| |
Collapse
|
5
|
Tolmachev V, Papalanis E, Bezverkhniaia EA, Rosly AH, Vorobyeva A, Orlova A, Carlqvist M, Frejd FY, Oroujeni M. Impact of Radiometal Chelates on In Vivo Visualization of Immune Checkpoint Protein Using Radiolabeled Affibody Molecules. ACS Pharmacol Transl Sci 2025; 8:706-717. [PMID: 40109742 PMCID: PMC11915182 DOI: 10.1021/acsptsci.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
The immune checkpoint protein B7-H3 (CD276) is overexpressed in various cancers and is an attractive target for the treatment of malignant tumors. Radionuclide molecular imaging of B7-H3 expression using engineered scaffold proteins such as Affibody molecules is a promising strategy for the selection of potential responders to B7-H3-targeted therapy. Feasibility of B7-H3 imaging was demonstrated using two 99mTc-labeled probes, AC12 and an affinity-matured SYNT179 using a [99mTc]Tc-GGGC label. This study aimed to evaluate whether the use of a residualizing 111In-based label provides better imaging contrast compared with a nonresidualizing label. To do that, SYNT179 and AC12-GGGC Affibody molecules were labeled with 111In using (4,10-bis-carboxymethyl-7-{[2-(2,5-dioxo-3-thioxo-pyrrolidin-1-yl)-ethylcarbamoyl]-methyl}-1,4,7,10-tetraaza-cyclododec-1-yl)-acetic acid (maleimide-DOTA) chelator, site-specifically coupled to the C-terminus of Affibody molecules. The binding affinities of the 111In-labeled conjugates to B7-H3-expressing living cells were higher compared with the affinities of the 99mTc-labeled variants. In mice with B7-H3-expressing xenografts, the tumor uptake of 111In-labeled proteins (3.6 ± 0.3 and 1.8 ± 0.5%ID/g for [111In]In-SYNT179-DOTA and [111In]In-AC12-DOTA, respectively) was significantly (p < 0.05, ANOVA) higher than those for 99mTc-labeled counterparts (1.6 ± 0.2%ID/g and 0.8 ± 0.2%ID/g for [99mTc]Tc-SYNT179 and [99mTc]Tc-AC12-GGGC, respectively). The best variant, [111In]In-SYNT179-DOTA, provided a tumor-to-blood ratio of 31.1 ± 2.9, which was twice higher than that for [99mTc]Tc-SYNT179 and 7-fold higher than that for [99mTc]Tc-AC12-GGGC. Both 111In-labeled Affibody molecules had higher renal retention compared with 99mTc-labeled ones, but the hepatobiliary excretion of 111In-labeled proteins was appreciably lower, potentially improving the imaging of abdominal metastases. Overall, [111In]In-SYNT179-DOTA is the most promising tracer for visualization of B7-H3 expression.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Eleftherios Papalanis
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | | | - Alia Hani Rosly
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Affibody AB, 171 65 Solna, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
6
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
7
|
Lechi F, Eriksson J, Odell LR, Wegrzyniak O, Löfblom J, Frejd FY, Zhang B, Eriksson O. Optimized method for fluorine-18 radiolabeling of Affibody molecules using RESCA. EJNMMI Radiopharm Chem 2024; 9:73. [PMID: 39460878 PMCID: PMC11512968 DOI: 10.1186/s41181-024-00304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In recent years, the interest in Al[18F]F as a labeling agent for Positron Emission Tomography (PET) radiotracers has risen, as it allows for fast and efficient fluorine-18 labeling by harnessing chelation chemistry. The introduction of Restrained Complexing Agent (RESCA) as a chelator has also shown that chelator-based radiolabeling reactions can be performed in mild conditions, making the radiolabeling process attractively more facile than most conventional radiofluorination methods. The aim of the study was to establish optimized conditions for Al[18F]F labeling of Affibody molecules using RESCA as a complexing agent, using Z09591 and Z0185, two Affibody proteins targeting PDGFRβ and TNFα, respectively, as model compounds. RESULTS The Al[18F]F labeling of RESCA-conjugated Z09591 was tested at different temperatures (rt to 60 °C) and with varying reaction times (12 to 60 min), and optimal conditions were then implemented on RESCA-Z0185. The optimized synthesis method was: 1.5-2.5 GBq of cyclotron produced fluorine-18 were trapped on a QMA cartridge and eluted with saline solution to react with 12 nmol of AlCl3 and form Al[18F]F. The respective RESCA-conjugated Affibody molecule (14 nmol) in NaOAc solution was added to the Al[18F]F solution and left to react at 60 °C for 12 min. The mixture was purified on a NAP5 size exclusion column and then analyzed by HPLC. The entire process took approximately 35 min, was highly reproducible, indicating the efficiency and reliability of the method. The labeled compounds demonstrated retained biological function for their respective targets after purification. CONCLUSIONS We present a general and optimized method for Al[18F]F labeling of RESCA-conjugated Affibody molecules, which can be widely applied to this class of peptide-based imaging agents. Moreover, radiochemical yields were improved when the labeling was conducted at 37 °C or above. In vitro and in vivo assessment of the respective tracers was promising, showing retained binding capacity as well as moderate defluorination, which is usually regarded as a potential downside for RESCA-conjugated tracers.
Collapse
Affiliation(s)
- Francesco Lechi
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- PET center, Uppsala University Hospital, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olivia Wegrzyniak
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Engineering, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Bo Zhang
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Li Q, Yang X, Xia X, Xia XX, Yan D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024; 25:6474-6484. [PMID: 39235966 DOI: 10.1021/acs.biomac.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.
Collapse
Affiliation(s)
- Qingrong Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Lee KK, Chakraborty M, Hu A, Kanagasundaram T, Thorek DLJ, Wilson JJ. Chelation of [ 111In]In 3+ with the dual-size-selective macrocycles py-macrodipa and py 2-macrodipa. Dalton Trans 2024; 53:14634-14647. [PMID: 39163366 PMCID: PMC11663299 DOI: 10.1039/d4dt02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Indium-111 (111In) is a diagnostic radiometal that is important in nuclear medicine for single-photon emission computed tomography (SPECT). In order to apply this radiometal, it needs to be stably chelated and conjugated to a targeting vector that delivers it to diseased tissue. Identifying effective chelators that are capable of binding and retaining [111In]In3+in vivo is an important research area. In this study, two 18-membered macrocyclic chelators, py-macrodipa and py2-macrodipa, were investigated for their ability to form stable coordination complexes with In3+ and to be effectively radiolabeled with [111In]In3+. The In3+ complexes of these two chelators were characterized by NMR spectroscopy, X-ray crystallography, and density functional theory calculations. These studies show that both py-macrodipa and py2-macrodipa form 8-coordinate In3+ complexes and attain an asymmetric conformation, consistent with prior studies on this ligand class with small rare earth metal ions. Spectrophotometric titrations were carried out to determine the thermodynamic stability constants (log KML) of [In(py-macrodipa)]+ and [In(py2-macrodipa)]+, which were found to be 18.96(6) and 19.53(5), respectively, where the values in parentheses are the errors of the last significant figures obtained from the standard deviation from three independent replicates. Radiolabeling studies showed that py-macrodipa and py2-macrodipa can quantitatively be radiolabeled with [111In]In3+ at 25 °C within 5 min, even at ligand concentrations as low as 1 μM. The in vitro stability of the radiolabeled complexes was investigated in human serum at 37 °C, revealing that ∼90% of [111In][In(py-macrodipa)]+ and [111In][In(py2-macrodipa)]+ remained intact after 7 days. The biodistribution of these radiolabeled complexes in mice was investigated, showing lower uptake in the kidneys, liver, and blood at the 24 h mark compared to [111In]InCl3. These results demonstrate the potential of py-macrodipa and py2-macrodipa as chelators for [111In]In3+, suggesting their value for SPECT radiopharmaceuticals.
Collapse
Affiliation(s)
- Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Mou Chakraborty
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63110, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
10
|
Garaulet G, Báez BB, Medrano G, Rivas-Sánchez M, Sánchez-Alonso D, Martinez-Torrecuadrada JL, Mulero F. Radioimmunotheragnosis in Cancer Research. Cancers (Basel) 2024; 16:2896. [PMID: 39199666 PMCID: PMC11352548 DOI: 10.3390/cancers16162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The combination of immunoPET-where an antibody (Ab) is labeled with an isotope for PET imaging-and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use.
Collapse
Affiliation(s)
- Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Bárbara Beatriz Báez
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Guillermo Medrano
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - María Rivas-Sánchez
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | - David Sánchez-Alonso
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | | | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| |
Collapse
|
11
|
Guo X, Zhou N, Liu J, Ding J, Liu T, Song G, Zhu H, Yang Z. Comparison of an Affibody-based Molecular Probe and 18F-FDG for Detecting HER2-Positive Breast Cancer at PET/CT. Radiology 2024; 311:e232209. [PMID: 38888484 DOI: 10.1148/radiol.232209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background Human epidermal growth factor receptor 2 (HER2) affibody-based tracers could be an alternative to nonspecific radiotracers for noninvasive detection of HER2 expression in breast cancer lesions at PET/CT. Purpose To compare an affibody-based tracer, Al18F-NOTA-HER2-BCH, and fluorine 18 (18F) fluorodeoxyglucose (FDG) for detecting HER2-positive breast cancer lesions on PET/CT images. Materials and Methods In this prospective study conducted from June 2020 to July 2023, participants with HER2-positive breast cancer underwent both Al18F-NOTA-HER2-BCH and 18F-FDG PET/CT. HER2 positivity was confirmed with pathologic assessment (immunohistochemistry test results of 3+, or 2+ followed by fluorescence in situ hybridization, indicated HER2 amplification). Two independent readers visually assessed the uptake of tracers on images. Lesion uptake was quantified using the maximum standardized uptake value (SUVmax) and target to background ratio (TBR) and compared using a general linear mixed model. Results A total of 42 participants (mean age, 56.3 years ± 10.1 [SD]; 41 female) with HER2-positive breast cancer were included; 42 (100%) had tumors that were detected with Al18F-NOTA-HER2-BCH PET/CT and 40 (95.2%) had tumors detected with 18F-FDG PET/CT. Primary tumors in two of 21 participants, lymph node metastases in four of 21 participants, bone metastases in four of 15 participants, and liver metastases in three of nine participants were visualized only with Al18F-NOTA-HER2-BCH. Lung metastasis in one of nine participants was visualized only with 18F-FDG. Al18F-NOTA-HER2-BCH enabled depiction of more suspected HER2-positive primary tumors (26 vs 21) and lymph node (170 vs 130), bone (92 vs 66), and liver (55 vs 27) metastases than 18F-FDG. The SUVmax and TBR values of primary tumors and lymph node, bone, and liver metastases were all higher on Al18F-NOTA-HER2-BCH images than on 18F-FDG images (median SUVmax range, 10.4-13.5 vs 3.4-6.2; P value range, <.001 to .02; median TBR range, 2.7-17.6 vs 1.2-7.8; P value range, <.001 to .001). No evidence of differences in the SUVmax and TBR for chest wall or lung metastases was observed between Al18F-NOTA-HER2-BCH and 18F-FDG (P value range, .06 to .53). Conclusion PET/CT with the affibody-based tracer Al18F-NOTA-HER2-BCH enabled detection of more primary lesions and lymph node, bone, and liver metastases than PET/CT using 18F-FDG. ClinicalTrials.gov Identifier: NCT04547309 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ulaner in this issue.
Collapse
Affiliation(s)
- Xiaoyi Guo
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nina Zhou
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiayue Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guohong Song
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine (X.G., N.Z., J.L., J.D., T.L., H.Z., Z.Y.), and Department of Breast Oncology (G.S.), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
12
|
Zhang J, Bodenko V, Larkina M, Bezverkhniaia E, Xu T, Liao Y, Abouzayed A, Plotnikov E, Tretyakova M, Yuldasheva F, Belousov MV, Orlova A, Tolmachev V, Gräslund T, Vorobyeva A. Half-life extension via ABD-fusion leads to higher tumor uptake of an affibody-drug conjugate compared to PAS- and XTENylation. J Control Release 2024; 370:468-478. [PMID: 38697314 DOI: 10.1016/j.jconrel.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
A critical parameter during the development of protein therapeutics is to endow them with suitable pharmacokinetic and pharmacodynamic properties. Small protein drugs are quickly eliminated by kidney filtration, and in vivo half-life extension is therefore often desired. Here, different half-life extension technologies were studied where PAS polypeptides (PAS300, PAS600), XTEN polypeptides (XTEN288, XTEN576), and an albumin binding domain (ABD) were compared for half-life extension of an anti-human epidermal growth factor receptor 2 (HER2) affibody-drug conjugate. The results showed that extension with the PAS or XTEN polypeptides or the addition of the ABD lowered the affinity for HER2 to some extent but did not negatively affect the cytotoxic potential. The half-lives in mice ranged from 7.3 h for the construct including PAS300 to 11.6 h for the construct including PAS600. The highest absolute tumor uptake was found for the construct including the ABD, which was 60 to 160% higher than the PASylated or XTENylated constructs, even though it did not have the longest half-life (9.0 h). A comparison of the tumor-to-normal-organ ratios showed the best overall performance of the ABD-fused construct. In conclusion, PASylation, XTENylation, and the addition of an ABD are viable strategies for half-life extension of affibody-drug conjugates, with the best performance observed for the construct including the ABD.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Vitalina Bodenko
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Scientific and Educational Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk 634050, Russia
| | - Maria Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk 634050, Russia
| | - Ekaterina Bezverkhniaia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Tianqi Xu
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Yunqi Liao
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Evgenii Plotnikov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Maria Tretyakova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Feruza Yuldasheva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Mikhail V Belousov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk 634050, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden.
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
13
|
Santos L, Moreira JN, Abrunhosa A, Gomes C. Brain metastasis: An insight into novel molecular targets for theranostic approaches. Crit Rev Oncol Hematol 2024; 198:104377. [PMID: 38710296 DOI: 10.1016/j.critrevonc.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.
Collapse
Affiliation(s)
- Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal
| | - Antero Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal
| | - Célia Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-075, Portugal.
| |
Collapse
|
14
|
Eissler N, Altena R, Alhuseinalkhudhur A, Bragina O, Feldwisch J, Wuerth G, Loftenius A, Brun N, Axelsson R, Tolmachev V, Sörensen J, Frejd FY. Affibody PET Imaging of HER2-Expressing Cancers as a Key to Guide HER2-Targeted Therapy. Biomedicines 2024; 12:1088. [PMID: 38791050 PMCID: PMC11118066 DOI: 10.3390/biomedicines12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
Collapse
Affiliation(s)
| | - Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 17164 Solna, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
| | - Ali Alhuseinalkhudhur
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634055 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | | | | | | | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, 17165 Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| |
Collapse
|
15
|
Oroujeni M, Carlqvist M, Ryer E, Orlova A, Tolmachev V, Frejd FY. Comparison of approaches for increasing affinity of affibody molecules for imaging of B7-H3: dimerization and affinity maturation. EJNMMI Radiopharm Chem 2024; 9:30. [PMID: 38625607 PMCID: PMC11021382 DOI: 10.1186/s41181-024-00261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Radionuclide molecular imaging can be used to visualize the expression levels of molecular targets. Affibody molecules, small and high affinity non-immunoglobulin scaffold-based proteins, have demonstrated promising properties as targeting vectors for radionuclide tumour imaging of different molecular targets. B7-H3 (CD276), an immune checkpoint protein belonging to the B7 family, is overexpressed in different types of human malignancies. Visualization of overexpression of B7-H3 in malignancies enables stratification of patients for personalized therapies. Affinity maturation of anti-B7-H3 Affibody molecules as an approach to improve the binding affinity and targeting properties was recently investigated. In this study, we tested the hypothesis that a dimeric format may be an alternative option to increase the apparent affinity of Affibody molecules to B7-H3 and accordingly improve imaging contrast. RESULTS Two dimeric variants of anti-B7-H3 Affibody molecules were produced (designated ZAC12*-ZAC12*-GGGC and ZAC12*-ZTaq_3-GGGC). Both variants were labelled with Tc-99m (99mTc) and demonstrated specific binding to B7-H3-expressing cells in vitro. [99mTc]Tc-ZAC12*-ZAC12*-GGGC showed subnanomolar affinity (KD1=0.28 ± 0.10 nM, weight = 68%), which was 7.6-fold higher than for [99mTc]Tc-ZAC12*-ZTaq_3-GGGC (KD=2.1 ± 0.9 nM). Head-to-head biodistribution of both dimeric variants of Affibody molecules compared with monomeric affinity matured SYNT-179 (all labelled with 99mTc) in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrates that both dimers have lower tumour uptake and lower tumour-to-organ ratios compared to the SYNT-179 Affibody molecule. CONCLUSION The improved functional affinity by dimerization does not compensate the disadvantage of increased molecular size for imaging purposes.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden.
- Affibody AB, Solna, 171 65, Sweden.
| | | | - Eva Ryer
- Affibody AB, Solna, 171 65, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 83, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 85, Sweden
- Affibody AB, Solna, 171 65, Sweden
| |
Collapse
|
16
|
Gao F, Liu F, Wang J, Bi J, Zhai L, Li D. Molecular probes targeting HER2 PET/CT and their application in advanced breast cancer. J Cancer Res Clin Oncol 2024; 150:118. [PMID: 38466436 PMCID: PMC10927773 DOI: 10.1007/s00432-023-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-positive breast cancer cases are among the most aggressive breast tumor subtypes. Accurately assessing HER2 expression status is vital to determining whether patients will benefit from targeted anti-HER2 treatment. HER2-targeted positron emission tomography (PET/CT) is noninvasive, enabling the real-time evaluation of breast cancer patient HER2 status with accuracy. METHODS We summarize the research progress of PET/CT targeting HER2 in breast cancer, focusing on PET/CT molecular probes targeting HER2 and their clinical application in the management of advanced breast cancer. RESULTS At present, a variety of different HER2 targeted molecular probes for PET/CT imaging have been developed, including nucleolin-labeled antibodies, antibody fragments, nanobodies, and peptides of various affinities, among others. HER2-targeted PET/CT can relatively accurately evaluate HER2 expression status in advanced breast cancer patients. It has good performance in the early detection of small HER2-positive lesions, evaluation of HER2 status in lesions that cannot be readily biopsied, evaluation of the heterogeneity of multiple metastases, identification of lesions with altered HER2 status, and evaluation of the efficacy of anti-HER2 drugs. CONCLUSION HER2-targeted PET/CT offers a promising noninvasive approach for real-time assessment of HER2 status,which can be guide targeted treatment for HER2-positive breast cancer patients. Future prospective clinical studies will be invaluable for fully evaluating the importance of HER2-targeted molecular imaging in the management of breast cancer.
Collapse
Affiliation(s)
- Fang Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Fengxu Liu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Anesthesia, Armed Police Corps Hospital in Shanxi Province, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Junfang Bi
- Department of Combined Traditional Chinese Medicine and West Medicine, Traditional Chinese Medicine Hospital of Shijiazhuang City, 233 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Luoping Zhai
- Department of Nuclear Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Dong Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
17
|
Zhang S, Wu L, Dang M. Antibody mimetics: The next generation antibody engineering, a retrospective and prospective analysis. Biotechnol J 2024; 19:e2300532. [PMID: 38059436 DOI: 10.1002/biot.202300532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Antibody mimetics represent the fourth generation of antibody engineering, following polyclonal antibodies, monoclonal antibodies, and genetically engineered antibody fragments. Despite cumulative studies highlighting the advantages of antibody mimetics, including enhanced recognition properties, superior affinity, stability, penetrability, and cost-effectiveness, a comprehensive review of this evolving field is notably absent. In this study, spanning 1986-2023 and analyzing 24,318 publications, we undertake a retrospective and prospective analysis to elucidate the evolution roadmap of antibody mimetics, providing insights into the current landscape, global contributions, and future trajectories. Concurrently, our aim is to establish standardized terminology and delineate the research scope within the realm of antibody mimetics. These endeavors not only chart the trajectory and scope of antibody mimetics research but also underscore its potential to revolutionize medicine, technology, and science.
Collapse
Affiliation(s)
- Siran Zhang
- Xi'an Middle School of Shaanxi Province, Weiyang, Xi'an, China
- Department of Genetics, Stanford University, Palo Alto, California, USA
- HSS, Stanford University, Stanford, Palo Alto, California, USA
| | - Longjiang Wu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Mei Dang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Jeong S, Koh D, Gwak E, Srambickal CV, Seo D, Widengren J, Lee JC. Pushing the Resolution Limit of Stimulated Emission Depletion Optical Nanoscopy. Int J Mol Sci 2023; 25:26. [PMID: 38203197 PMCID: PMC10779414 DOI: 10.3390/ijms25010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Optical nanoscopy, also known as super-resolution optical microscopy, has provided scientists with the means to surpass the diffraction limit of light microscopy and attain new insights into nanoscopic structures and processes that were previously inaccessible. In recent decades, numerous studies have endeavored to enhance super-resolution microscopy in terms of its spatial (lateral) resolution, axial resolution, and temporal resolution. In this review, we discuss recent efforts to push the resolution limit of stimulated emission depletion (STED) optical nanoscopy across multiple dimensions, including lateral resolution, axial resolution, temporal resolution, and labeling precision. We introduce promising techniques and methodologies building on the STED concept that have emerged in the field, such as MINSTED, isotropic STED, and event-triggered STED, and evaluate their respective strengths and limitations. Moreover, we discuss trade-off relationships that exist in far-field optical microscopy and how they come about in STED optical nanoscopy. By examining the latest developments addressing these aspects, we aim to provide an updated overview of the current state of STED nanoscopy and its potential for future research.
Collapse
Affiliation(s)
- Sejoo Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Dongbin Koh
- School of Undergraduate Studies, DGIST, Daegu 42988, Republic of Korea
| | - Eunha Gwak
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Chinmaya V. Srambickal
- Exp. Biomol. Physics, Dept. Applied Physics, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Jerker Widengren
- Exp. Biomol. Physics, Dept. Applied Physics, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Jong-Chan Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
- New Biology Research Center, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
19
|
Giang KA, Boxaspen T, Diao Y, Nilvebrant J, Kosugi-Kanaya M, Kanaya M, Krokeide SZ, Lehmann F, Svensson Gelius S, Malmberg KJ, Nygren PÅ. Affibody-based hBCMA x CD16 dual engagers for NK cell-mediated killing of multiple myeloma cells. N Biotechnol 2023; 77:139-148. [PMID: 37673373 DOI: 10.1016/j.nbt.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
We describe the development and characterization of the (to date) smallest Natural Killer (NK) cell re-directing human B Cell Maturation Antigen (hBCMA) x CD16 dual engagers for potential treatment of multiple myeloma, based on combinations of small 58 amino acid, non-immunoglobulin, affibody affinity proteins. Affibody molecules to human CD16a were selected from a combinatorial library by phage display resulting in the identification of three unique binders with affinities (KD) for CD16a in the range of 100 nM-3 µM. The affibody exhibiting the highest affinity demonstrated insensitivity towards the CD16a allotype (158F/V) and did not interfere with IgG (Fc) binding to CD16a. For the construction of hBCMA x CD16 dual engagers, different CD16a binding arms, including bi-paratopic affibody combinations, were genetically fused to a high-affinity hBCMA-specific affibody. Such 15-23 kDa dual engager constructs showed simultaneous hBCMA and CD16a binding ability and could efficiently activate resting primary NK cells and trigger specific lysis of a panel of hBCMA-positive multiple myeloma cell lines. Hence, we report a novel class of uniquely small NK cell engagers with specific binding properties and potent functional profiles.
Collapse
Affiliation(s)
- Kim Anh Giang
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden
| | - Thorstein Boxaspen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Yumei Diao
- Oncopeptides AB, S-171 48 Stockholm, Sweden
| | - Johan Nilvebrant
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden
| | - Mizuha Kosugi-Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Minoru Kanaya
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | - Silje Zandstra Krokeide
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway
| | | | | | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, N-0313 Oslo, Norway.
| | - Per-Åke Nygren
- Department of Protein Science, Div. Protein Engineering, AlbaNova University Center, KTH Royal Institute of Technology, S-114 21 Stockholm, Sweden; Science For Life Laboratory, S-171 65 Solna, Sweden.
| |
Collapse
|
20
|
Jussing E, Ferrat M, Moein MM, Alfredéen H, Tegnebratt T, Bratteby K, Samén E, Feldwisch J, Altena R, Axelsson R, Tran TA. Optimized, automated and cGMP-compliant synthesis of the HER2 targeting [ 68Ga]Ga-ABY-025 tracer. EJNMMI Radiopharm Chem 2023; 8:41. [PMID: 37991639 PMCID: PMC10665286 DOI: 10.1186/s41181-023-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The Affibody molecule, ABY-025, has demonstrated utility to detect human epidermal growth factor receptor 2 (HER2) in vivo, either radiolabelled with indium-111 (111In) or gallium-68 (68Ga). Using the latter, 68Ga, is preferred due to its use in positron emission tomography with superior resolution and quantifying capabilities in the clinical setting compared to 111In. For an ongoing phase II study (NCT05619016) evaluating ABY-025 for detecting HER2-low lesions and selection of patients for HER2-targeted treatment, the aim was to optimize an automated and cGMP-compliant radiosynthesis of [68Ga]Ga-ABY-025. [68Ga]Ga-ABY-025 was produced on a synthesis module, Modular-Lab PharmTracer (Eckert & Ziegler), commonly used for 68Ga-labelings. The radiotracer has previously been radiolabeled on this module, but to streamline the production, the method was optimized. Steps requiring manual interactions to the radiolabeling procedure were minimized including a convenient and automated pre-concentration of the 68Ga-eluate and a simplified automated final formulation procedure. Every part of the radiopharmaceutical production was carefully developed to gain robustness and to avoid any operator bound variations to the manufacturing. The optimized production method was successfully applied for 68Ga-labeling of another radiotracer, verifying its versatility as a universal and robust method for radiosynthesis of Affibody-based peptides. RESULTS A simplified and optimized automated cGMP-compliant radiosynthesis method of [68Ga]Ga-ABY-025 was developed. With a decay corrected radiochemical yield of 44 ± 2%, a radiochemical purity (RCP) of 98 ± 1%, and with an RCP stability of 98 ± 1% at 2 h after production, the method was found highly reproducible. The production method also showed comparable results when implemented for radiolabeling another similar peptide. CONCLUSION The improvements made for the radiosynthesis of [68Ga]Ga-ABY-025, including introducing a pre-concentration of the 68Ga-eluate, aimed to utilize the full potential of the 68Ge/68Ga generator radioactivity output, thereby reducing radioactivity wastage. Furthermore, reducing the number of manually performed preparative steps prior to the radiosynthesis, not only minimized the risk of potential human/operator errors but also enhanced the process' robustness. The successful application of this optimized radiosynthesis method to another similar peptide underscores its versatility, suggesting that our method can be adopted for 68Ga-labeling radiotracers based on Affibody molecules in general. TRIAL REGISTRATION NCT, NCT05619016, Registered 7 November 2022, https://clinicaltrials.gov/study/NCT05619016?term=HER2&cond=ABY025&rank=1.
Collapse
Affiliation(s)
- Emma Jussing
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Mélodie Ferrat
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mohammad M Moein
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Henrik Alfredéen
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tetyana Tegnebratt
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Klas Bratteby
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Erik Samén
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Renske Altena
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
- Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 171 77, Stockholm, Sweden
| | - Rimma Axelsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Thuy A Tran
- Department of Radiopharmacy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
21
|
Novak A, Kersaudy F, Berger S, Morisset-Lopez S, Lefoulon F, Pifferi C, Aucagne V. An efficient site-selective, dual bioconjugation approach exploiting N-terminal cysteines as minimalistic handles to engineer tailored anti-HER2 affibody conjugates. Eur J Med Chem 2023; 260:115747. [PMID: 37657270 DOI: 10.1016/j.ejmech.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Site-selective, dual-conjugation approaches for the incorporation of distinct payloads are key for the development of molecularly targeted biomolecules, such as antibody conjugates, endowed with better properties. Combinations of cytotoxic drugs, imaging probes, or pharmacokinetics modulators enabled for improved outcomes in both molecular imaging, and therapeutic settings. We have developed an efficacious dual-bioconjugation strategy to target the N-terminal cysteine of a chemically-synthesized, third-generation anti-HER2 affibody. Such two-step, one-purification approach can be carried out under mild conditions (without chaotropic agents, neutral pH) by means of a slight excess of commercially available N-hydroxysuccinimidyl esters and maleimido-functionalized payloads, to generate dual conjugates displaying drugs (DM1/MMAE) or probes (sulfo-Cy5/biotin) in high yields and purity. Remarkably, the double drug conjugate exhibited an exacerbated cytoxicity against HER2-expressing cell lines as compared to a combination of two monoconjugates, demonstrating a potent synergistic effect. Consistently, affibody-drug conjugates did not decrease the viability of HER2-negative cells, confirming their specificity for the target.
Collapse
Affiliation(s)
- Ana Novak
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Florian Kersaudy
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Sylvie Berger
- Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | | | - Carlo Pifferi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
22
|
Cai Y, Ren J, Jin J, Shao H, Wang P, Cheng K, Jiang P, Jiang P, Zhu S, Zhu G, Zhang L. Novel affibody molecules as potential agents in molecular imaging for MAGE-A3-positive tumor diagnosis. ENVIRONMENTAL RESEARCH 2023; 237:116895. [PMID: 37586454 DOI: 10.1016/j.envres.2023.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The cancer-testis protein melanoma antigen A3 (MAGE-A3) is highly expressed in a broad range of malignant tumor forms. It has been confirmed that affibody molecules, a novel family of small (∼6.5 kDa) targeting proteins, are useful agents for molecular imaging and targeted tumor treatment. As a novel agent for in vivo molecular imaging detection of MAGE-A3-positive tumors, the efficacy of affibody molecules was assessed in this research. METHODS In this study, three cycles of phage display library screening resulted in the isolation of two new affibody molecules (ZMAGE-A3:172 and ZMAGE-A3:770) that attach to MAGE-A3. These molecules were then expressed in bacteria and purified. The affibody molecules with high affinity and specificity were evaluated using western blotting, immunohistochemistry, indirect immunofluorescence, surface plasmon resonance, and near-infrared optical imaging of tumor-bearing nude mice. RESULTS The selected ZMAGE-A3 affibodies can precisely bind to the MAGE-A3 protein in living cells and display high-affinity binding to the MAGE-A3 protein at the molecular level. Furthermore, the accumulation of DyLight755-labeled ZMAGE-A3:172 or ZMAGE-A3:770 in MAGE-A3-positive tumors was achieved as early as 30 min and disappeared at 48 h post-injection. CONCLUSION Our findings support the potential of the two MAGE-A3 protein-binding affibody molecules for their use as molecular imaging agents.
Collapse
Affiliation(s)
- Yiqi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jiahuan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jinji Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Huanyi Shao
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Kai Cheng
- Department of Dermatology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Peipei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Guanbao Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
23
|
Alhuseinalkhudhur A, Lindman H, Liss P, Sundin T, Frejd FY, Hartman J, Iyer V, Feldwisch J, Lubberink M, Rönnlund C, Tolmachev V, Velikyan I, Sörensen J. Human Epidermal Growth Factor Receptor 2-Targeting [ 68Ga]Ga-ABY-025 PET/CT Predicts Early Metabolic Response in Metastatic Breast Cancer. J Nucl Med 2023; 64:1364-1370. [PMID: 37442602 PMCID: PMC10478820 DOI: 10.2967/jnumed.122.265364] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Indexed: 07/15/2023] Open
Abstract
Imaging using the human epidermal growth factor receptor 2 (HER2)-binding tracer 68Ga-labeled ZHER2:2891-Cys-MMA-DOTA ([68Ga]Ga-ABY-025) was shown to reflect HER2 status determined by immunohistochemistry and in situ hybridization in metastatic breast cancer (MBC). This single-center open-label phase II study investigated how [68Ga]Ga-ABY-025 uptake corresponds to biopsy results and early treatment response in both primary breast cancer (PBC) planned for neoadjuvant chemotherapy and MBC. Methods: Forty patients with known positive HER2 status were included: 19 with PBC and 21 with MBC (median, 3 previous treatments). [68Ga]Ga-ABY-025 PET/CT, [18F]F-FDG PET/CT, and core-needle biopsies from targeted lesions were performed at baseline. [18F]F-FDG PET/CT was repeated after 2 cycles of therapy to calculate the directional change in tumor lesion glycolysis (Δ-TLG). The largest lesions (up to 5) were evaluated in all 3 scans per patient. SUVs from [68Ga]Ga-ABY-025 PET/CT were compared with the biopsied HER2 status and Δ-TLG by receiver operating characteristic analyses. Results: Trial biopsies were HER2-positive in 31 patients, HER2-negative in 6 patients, and borderline HER2-positive in 3 patients. The [68Ga]Ga-ABY-025 PET/CT cutoff SUVmax of 6.0 predicted a Δ-TLG lower than -25% with 86% sensitivity and 67% specificity in soft-tissue lesions (area under the curve, 0.74 [95% CI, 0.67-0.82]; P = 0.01). Compared with the HER2 status, this cutoff resulted in clinically relevant discordant findings in 12 of 40 patients. Metabolic response (Δ-TLG) was more pronounced in PBC (-71% [95% CI, -58% to -83%]; P < 0.0001) than in MBC (-27% [95% CI, -16% to -38%]; P < 0.0001), but [68Ga]Ga-ABY-025 SUVmax was similar in both with a mean SUVmax of 9.8 (95% CI, 6.3-13.3) and 13.9 (95% CI, 10.5-17.2), respectively (P = 0.10). In multivariate analysis, global Δ-TLG was positively associated with the number of previous treatments (P = 0.0004) and negatively associated with [68Ga]Ga-ABY-025 PET/CT SUVmax (P = 0.018) but not with HER2 status (P = 0.09). Conclusion: [68Ga]Ga-ABY-025 PET/CT predicted early metabolic response to HER2-targeted therapy in HER2-positive breast cancer. Metabolic response was attenuated in recurrent disease. [68Ga]Ga-ABY-025 PET/CT appears to provide an estimate of the HER2 expression required to induce tumor metabolic remission by targeted therapies and might be useful as an adjunct diagnostic tool.
Collapse
Affiliation(s)
- Ali Alhuseinalkhudhur
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Per Liss
- Division of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tora Sundin
- Clinical Research and Development Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden; and
| | - Victor Iyer
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Mark Lubberink
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Caroline Rönnlund
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden; and
| | - Vladimir Tolmachev
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Oroujeni M, Bezverkhniaia EA, Xu T, Liu Y, Plotnikov EV, Klint S, Ryer E, Karlberg I, Orlova A, Frejd FY, Tolmachev V. Evaluation of affinity matured Affibody molecules for imaging of the immune checkpoint protein B7-H3. Nucl Med Biol 2023; 124-125:108384. [PMID: 37699299 DOI: 10.1016/j.nucmedbio.2023.108384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
B7-H3 (CD276), an immune checkpoint protein, is a promising molecular target for immune therapy of malignant tumours. Sufficient B7-H3 expression level is a precondition for successful therapy. Radionuclide molecular imaging is a powerful technique for visualization of expression levels of molecular targets in vivo. Use of small radiolabelled targeting proteins would enable high-contrast radionuclide imaging of molecular targets if adequate binding affinity and specificity of an imaging probe could be provided. Affibody molecules, small engineered affinity proteins based on a non-immunoglobulin scaffold, have demonstrated an appreciable potential in radionuclide imaging. Proof-of principle of radionuclide visualization of expression levels of B7-H3 in vivo was demonstrated using the [99mTc]Tc-AC12-GGGC Affibody molecule. We performed an affinity maturation of AC12, enabling selection of clones with higher affinity. Three most promising clones were expressed with a -GGGC (triglycine-cysteine) chelating sequence at the C-terminus and labelled with technetium-99m (99mTc). 99mTc-labelled conjugates bound to B7-H3-expressing cells specifically in vitro and in vivo. Biodistribution in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrated improved imaging properties of the new conjugates compared with the parental variant [99mTc]Tc-AC12-GGGC. [99mTc]Tc-SYNT-179 provided the strongest improvement of tumour-to-organ ratios. Thus, affinity maturation of B7-H3 Affibody molecules could improve biodistribution and targeting properties for imaging of B7-H3-expressing tumours.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Affibody AB, 171 65 Solna, Sweden.
| | - Ekaterina A Bezverkhniaia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk 634050, Russia; Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden.
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden.
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Evgenii V Plotnikov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | - Eva Ryer
- Affibody AB, 171 65 Solna, Sweden.
| | | | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden.
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Affibody AB, 171 65 Solna, Sweden.
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| |
Collapse
|
25
|
Chen Y, Guo Y, Liu Z, Hu X, Hu M. An overview of current advances of PD-L1 targeting immuno-imaging in cancers. J Cancer Res Ther 2023; 19:866-875. [PMID: 37675710 DOI: 10.4103/jcrt.jcrt_88_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The programmed death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a significant role in immune evasion. PD-1 or PD-L1 immune checkpoint inhibitors (ICIs) have become a standard treatment for multiple types of cancer. To date, PD-L1 has served as a biomarker for predicting the efficacy of ICIs in several cancers. The need to establish an effective detection method that could visualize PD-L1 expression and predict the efficacy of PD-1/PD-L1 ICIs has promoted a search for new imaging strategies. PD-L1-targeting immuno-imaging could provide a noninvasive, real-time, repeatable, dynamic, and quantitative assessment of the characteristics of all tumor lesions in individual patients. This study analyzed the existing evidence in the literature on PD-L1-based immuno-imaging (2015-2022). Original English-language articles were searched using PubMed and Google Scholar. Keywords, such as "PD-L1," "PET," "SPECT," "PET/CT," and "SPECT/CT," were used in various combinations. A total of nearly 50 preclinical and clinical studies of PD-L1-targeting immuno-imaging were selected, reviewed, and included in this study. Therefore, in this review, we conducted a study of the advances in PD-L1-targeting immuno-imaging for detecting the expression of PD-L1 and the efficacy of ICIs. We focused on the different types of PD-L1-targeting agents, including antibodies and small PD-L1-binding agents, and illustrated the strength and weakness of these probes. Furthermore, we summarized the trends in the development of PD-L1-targeting immuno-imaging, as well as the current challenges and future directions for clinical workflow.
Collapse
Affiliation(s)
- Yunhao Chen
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yujiao Guo
- Department of Oncology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Man Hu
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
26
|
Cai H, Li Z, Shi Q, Yang H, Xiao L, Li M, Lin H, Wu X, She T, Chen L, Li L, Lu X. Preclinical evaluation of 68Ga-radiolabeled trimeric affibody for PDGFRβ-targeting PET imaging of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:2952-2961. [PMID: 37256321 PMCID: PMC10382327 DOI: 10.1007/s00259-023-06260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a highly vascularized solid carcinoma and tumor vessel-targeted molecular imaging might be effective for early diagnosis of HCC. Herein, we developed a novel trimeric affibody (ZTRI) with highly specific binding to the platelet-derived growth factor receptor beta (PDGFRβ). The aim of this study is to evaluate the feasibility of 68Ga-radiolabeled ZTRI ([68Ga]Ga-DOTA-ZTRI) as PET tracer for diagnosis of HCC. METHODS The bioinformatics analysis of clinical database and immunoblotting of clinical specimens were performed to validate the potential of PDGFRβ as HCC biomarker. The trimeric affibody ZTRI was conjugated with DOTA-NHS-ester and radiolabeled with 68Ga to produce [68Ga]Ga-DOTA-ZTRI conjugate. Immunoreactivity and specific uptake of [68Ga]Ga-DOTA-ZTRI were assessed by dose-dependent cell binding, autoradiography, and biodistribution analysis. [68Ga]Ga-DOTA-ZTRI PET/CT scanning of diethylnitrosamine (DEN)-induced primary HCC rats and a rare case of idiopathical HCC rhesus monkey was performed to evaluate the imaging capability and radiation dosimetry of [68Ga]Ga-DOTA-ZTRI in vivo. RESULTS Excessive PDGFRβ was validated as a representative biomarker of HCC neovascularization. The radiolabeling of [68Ga]Ga-DOTA-ZTRI was achieved at more than 95% radiochemical yield. In vitro assays showed specific uptake of [68Ga]Ga-DOTA-ZTRI in HCC tumor vessels by autoradiography. Animal PET/CT imaging with [68Ga]Ga-DOTA-ZTRI successfully visualized the tumor lesions in primary HCC rats and rhesus monkey, and indicated radiation absorbed dose of 2.03E-02 mSv/MBq for each scanning. CONCLUSIONS Our results demonstrated that [68Ga]Ga-DOTA-ZTRI conjugate could be applied as a promising PET tracer for early diagnosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huawei Cai
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhao Li
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuxiao Shi
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liu Xiao
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mufeng Li
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Lin
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianshan She
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lin Li
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaofeng Lu
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
McGale J, Khurana S, Huang A, Roa T, Yeh R, Shirini D, Doshi P, Nakhla A, Bebawy M, Khalil D, Lotfalla A, Higgins H, Gulati A, Girard A, Bidard FC, Champion L, Duong P, Dercle L, Seban RD. PET/CT and SPECT/CT Imaging of HER2-Positive Breast Cancer. J Clin Med 2023; 12:4882. [PMID: 37568284 PMCID: PMC10419459 DOI: 10.3390/jcm12154882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
HER2 (Human Epidermal Growth Factor Receptor 2)-positive breast cancer is characterized by amplification of the HER2 gene and is associated with more aggressive tumor growth, increased risk of metastasis, and poorer prognosis when compared to other subtypes of breast cancer. HER2 expression is therefore a critical tumor feature that can be used to diagnose and treat breast cancer. Moving forward, advances in HER2 in vivo imaging, involving the use of techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), may allow for a greater role for HER2 status in guiding the management of breast cancer patients. This will apply both to patients who are HER2-positive and those who have limited-to-minimal immunohistochemical HER2 expression (HER2-low), with imaging ultimately helping clinicians determine the size and location of tumors. Additionally, PET and SPECT could help evaluate effectiveness of HER2-targeted therapies, such as trastuzumab or pertuzumab for HER2-positive cancers, and specially modified antibody drug conjugates (ADC), such as trastuzumab-deruxtecan, for HER2-low variants. This review will explore the current and future role of HER2 imaging in personalizing the care of patients diagnosed with breast cancer.
Collapse
Affiliation(s)
- Jeremy McGale
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sakshi Khurana
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Alice Huang
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tina Roa
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Parth Doshi
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Abanoub Nakhla
- American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | - Maria Bebawy
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - David Khalil
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Andrew Lotfalla
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - Hayley Higgins
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - Amit Gulati
- Department of Internal Medicine, Maimonides Medical Center, New York, NY 11219, USA
| | - Antoine Girard
- Department of Nuclear Medicine, CHU Amiens-Picardie, 80054 Amiens, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Inserm CIC-BT 1428, Curie Institute, Paris Saclay University, UVSQ, 78035 Paris, France
| | - Laurence Champion
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, 91401 Orsay, France
| | - Phuong Duong
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, 91401 Orsay, France
| |
Collapse
|
28
|
Seban RD, Champion L, Bellesoeur A, Vincent-Salomon A, Bidard FC. Clinical Potential of HER2 PET as a Predictive Biomarker to Guide the Use of Trastuzumab Deruxtecan in Breast Cancer Patients. J Nucl Med 2023; 64:1164-1165. [PMID: 37230529 DOI: 10.2967/jnumed.123.265434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 05/27/2023] Open
|
29
|
Liu J, Guo X, Wen L, Wang L, Liu F, Song G, Zhu H, Zhou N, Yang Z. Comparison of renal clearance of [ 18F]AlF-RESCA-HER2-BCH and [ 18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients. Eur J Nucl Med Mol Imaging 2023; 50:2775-2786. [PMID: 37093312 DOI: 10.1007/s00259-023-06232-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A novel HER2 affibody-based molecular probe, [18F]AlF-RESCA-HER2-BCH, was developed for reducing renal uptake, evaluated, and compared with [18F]AlF-NOTA-HER2-BCH. METHODS In preclinical studies, micro-PET/CT was performed using HER2-positive gastric cancer patient-derived xenografts (PDX) model at 0.5-1 (dynamic), 2, 4, and 6 h post-injection. For blocking experiment, 0.5 mg cold affibody was co-injected with probes. Biodistribution were performed on HER2-positive PDX models at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of 231.29 ± 17.77 MBq [18F]AlF-NOTA-HER2-BCH or [18F]AlF-RESCA-HER2-BCH in five breast cancer patients (4 HER2-positive and 1 HER2-low). Standardized uptake values (SUVs) were measured in tumors and source-organs for semi-quantitative analysis. The OLINDA/EXM software (version 1.2) was used to calculate the radiation doses. RESULTS [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH were stably labeled with [18F]F, with high binding specificity and affinity to HER2. Micro-PET/CT of both tracers could clearly visualize HER2-positive PDX tumors with high uptake of 16.24 ± 1.74% ID/g and 14.39 ± 2.45% ID/g at 2 h post-injection. The renal accumulation of [18F]AlF-RESCA-HER2-BCH was significantly lower than that of [18F]AlF-NOTA-HER2-BCH (5.16 ± 0.22% ID/g vs. 158.73 ± 5.44% ID/g at 2 h, p < 0.0001). In the clinical study, both [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH demonstrated favorable tumor targeting and image contrast. [18F]AlF-RESCA-HER2-BCH showed a higher SUVmax in both primary tumor and metastases, and a significantly higher target-to-nontarget ratio in metastases than [18F]AlF-NOTA-HER2-BCH. Moreover, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation (43.56 ± 7.88 vs. 79.81 ± 3.81 at 2 h, p < 0.0001; 33.23 ± 6.89 vs. 78.63 ± 4.00 at 4 h, p < 0.0001) as well as a significantly lower renal absorbed dose than [18F]AlF-NOTA-HER2-BCH (0.4450 ± 0.1117 mGy/MBq vs. 0.8030 ± 0.1604 mGy/MBq, p < 0.01). CONCLUSIONS [18F]AlF-RESCA-HER2-BCH tended to provide better image contrast than [18F]AlF-NOTA-HER2-BCH with a higher target-to-nontarget ratio in detection of metastases. Notably, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation than [18F]AlF-NOTA-HER2-BCH.
Collapse
Affiliation(s)
- Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Wen
- Guizhou University School of Medicine, Guizhou University, Guiyang, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
30
|
Bragina O, Chernov V, Schulga A, Konovalova E, Hober S, Deyev S, Sörensen J, Tolmachev V. Direct Intra-Patient Comparison of Scaffold Protein-Based Tracers, [ 99mTc]Tc-ADAPT6 and [ 99mTc]Tc-(HE) 3-G3, for Imaging of HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:3149. [PMID: 37370758 PMCID: PMC10296685 DOI: 10.3390/cancers15123149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Previous Phase I clinical evaluations of the radiolabelled scaffold proteins [99mTc]Tc-ADAPT6 and DARPin [99mTc]Tc-(HE)3-G3 in breast cancer patients have demonstrated their safety and indicated their capability to discriminate between HER2-positive and HER2-negative tumours. The objective of this study was to compare the imaging of HER2-positive tumours in the same patients using [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3. Eleven treatment-naïve female patients (26-65 years) with HER2-positive primary and metastatic breast cancer were included in the study. Each patient was intravenously injected with [99mTc]Tc-ADAPT6, followed by an [99mTc]Tc-(HE)3-G3 injection 3-4 days later and chest SPECT/CT was performed. All primary tumours were clearly visualized using both tracers. The uptake of [99mTc]Tc-ADAPT6 in primary tumours (SUVmax = 4.7 ± 2.1) was significantly higher (p < 0.005) than the uptake of [99mTc]Tc-(HE)3-G3 (SUVmax = 3.5 ± 1.7). There was no significant difference in primary tumour-to-contralateral site values for [99mTc]Tc-ADAPT6 (15.2 ± 7.4) and [99mTc]Tc-(HE)3-G3 (19.6 ± 12.4). All known lymph node metastases were visualized using both tracers. The uptake of [99mTc]Tc-ADAPT6 in all extrahepatic soft tissue lesions was significantly (p < 0.0004) higher than the uptake of [99mTc]Tc-(HE)3-G3. In conclusion, [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3 are suitable for the visualization of HER2-positive breast cancer. At the selected time points, [99mTc]Tc-ADAPT6 has a significantly higher uptake in soft tissue lesions, which might be an advantage for the visualization of small metastases.
Collapse
Affiliation(s)
- Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (O.B.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (E.K.); (S.D.)
| | - Vladimir Chernov
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (O.B.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (E.K.); (S.D.)
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (E.K.); (S.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena Konovalova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (E.K.); (S.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (E.K.); (S.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Jens Sörensen
- Department of Surgical Sciences, Nuclear Medicine & PET, Uppsala University, 751 85 Uppsala, Sweden;
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (A.S.); (E.K.); (S.D.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
31
|
Radiosynthesis, optimization and pharmacokinetic study of the 99m Tc-labeled human epidermal growth factor receptor 2 affibody molecule probe 99m Tc-(HE) 3 Z HER2:V2. Nucl Med Commun 2023; 44:244-251. [PMID: 36598155 PMCID: PMC9994805 DOI: 10.1097/mnm.0000000000001660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To prepare a single-photon molecular probe easily labeled with 99m Tc for evaluating the expression status of the human epidermal growth factor receptor 2 (HER2) receptor in ovarian cancer. MATERIALS AND METHODS The HEHEHE tag was added to the amino terminus of the affibody Z HER2:V2 by the method of gene recombinant expression, and a new affibody was synthesized which was easy to be labeled with 99m Tc. The newly prepared affibody was labeled with 99m Tc, and pharmacokinetic studies were carried out. RESULTS A new affibody (HE) 3 Z HER2:V2 was prepared by the method of gene recombination and expression, which is easy to be labeled with 99m Tc. The 99m Tc labeling of the affibody can reach about 95% at 90°C. The pharmacokinetic study has shown that the 99m Tc-labeled molecular probe has a fast clearance time in the blood and little side effect, which may be a promising single-photon emission computed tomography (SPECT) imaging agent. CONCLUSION The affibody (HE) 3 Z HER2:V2 is easy to be labeled with 99m Tc, has a high yield and has a suitable half-life in vivo, which is suitable for the next step in ovarian cancer model imaging research.
Collapse
|
32
|
Comparison of HER2-targeted affibody conjugates loaded with auristatin- and maytansine-derived drugs. J Control Release 2023; 355:515-527. [PMID: 36773960 DOI: 10.1016/j.jconrel.2023.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Treatment with antibody drug conjugates targeting receptors over-expressed on cancer cells is well established for clinical use in several types of cancer, however, resistance often occurs motivating the development of novel drugs. We have recently investigated a drug conjugate consisting of an affibody molecule targeting the human epidermal growth factor receptor 2 (HER2), fused to an albumin-binding domain (ABD) for half-life extension, loaded with the cytotoxic maytansine derivative DM1. In this study, we investigated the impact of the cytotoxic payload on binding properties, cytotoxicity and biodistribution by comparing DM1 with the auristatins MMAE and MMAF, as part of the drug conjugate. All constructs had specific and high affinity binding to HER2, human and mouse albumins with values in the low- to sub-nM range. ZHER2-ABD-mcMMAF demonstrated the most potent cytotoxic effect on several HER2-over-expressing cell lines. In an experimental therapy study, the MMAF-based conjugate provided complete tumor regression in 50% of BALB/c nu/nu mice bearing HER2-over-expressing SKOV3 tumors at a 2.9 mg/kg dose, while the same dose of ZHER2-ABD-mcDM1 provided only a moderate anti-tumor effect. A comparison with the non-targeting ZTaq-ABD-mcMMAF control demonstrated HER2-targeting specificity. In conclusion, a combination of potent cytotoxicity in vitro, with minimal uptake in normal organs in vivo, and efficient delivery to tumors provided a superior anti-tumor effect of ZHER2-ABD-mcMMAF, while maintaining a favorable toxicity profile with no observed adverse effects.
Collapse
|
33
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
34
|
Wu Q, Yang S, Liu J, Jiang D, Wei W. Antibody theranostics in precision medicine. MED 2023; 4:69-74. [PMID: 36724783 DOI: 10.1016/j.medj.2023.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
With the increasing use of antibody therapeutics, clinicians are faced with challenges of precisely stratifying patients and promptly assessing response to treatment. Antibody theranostics combines the advantages of radionuclides and antibodies (or antibody derivatives) to systematically integrate targeted diagnostics and therapeutics and will play important roles in precision medicine.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
35
|
Biabani Ardakani J, Abedi SM, Mardanshahi A, Shojaee L, Zaboli E, Khorramimoghaddam A, Nosrati A, Sabahno H, Banimostafavi ES, Hosseinimehr SJ. Molecular Imaging of HER2 Expression in Breast Cancer patients Using the [ 99mTc] Tc-Labeled Small Peptide. Clin Breast Cancer 2023; 23:219-230. [PMID: 36581518 DOI: 10.1016/j.clbc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The accurate determination of human epidermal growth factor receptor 2 (HER2) status can predict response to treatment with HER2-targeted therapy for HER2-positive breast cancer patients. [99mTc]Tc-HYNIC-(Ser)3-LTVPWY ([99mTc]Tc-HYNIC-LY) is a small synthetic peptide molecule targeting of the HER2 receptor. This clinical study evaluated the pharmacokinetic, dosimetry, and efficacy of [99mTc]Tc-HYNIC-LY for determining the HER2 status in primary breast cancer patients. MATERIALS AND METHODS In total, 24 women with suspected primary breast cancer received an intravenous injection of approximately 20 µg (∼740 MBq) of [99mTc]Tc-HYNIC-LY. In the first 3 patients, blood levels of radioactivity were analyzed for pharmacokinetic evaluation and planar gamma camera imaging was conducted at 30 min and 1, 2, 4, and 24 hour after injection for dosimetry assessment. In the last 21 patients, planar imaging was performed at the baseline, as well as 1, 2, 3, and 4 hour, followed by single-photon emission computed tomography (SPECT) imaging after 4 hour to evaluate the tumor-targeting potential in primary lesions. RESULTS Injection of [99mTc]Tc-HYNIC-LY was safe and well tolerated. Fast blood clearance provided high-contrast HER2 imaging within 1 to 4 hour. The highest absorbed radiation dose was found for kidneys (6.78E-03 ± 2.62E-04 mSv/MBq), followed by the heart (3.73E-03 ± 1.98E-04 mSv/MBq). The [99mTc]Tc-HYNIC-LY peptide was able to detect HER2 status in primary tumors at an acceptable level. CONCLUSION The findings of this study indicated that [99mTc]Tc-HYNIC-LY SPECT is safe and feasible for the identification of HER2-positive lesions in primary breast cancer patients, and may provide an accurate and non-invasive modality for guiding HER2 targeted therapy.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leyla Shojaee
- Department of Surgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Department of Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khorramimoghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anahita Nosrati
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamideh Sabahno
- Parsisotope Laboratory, Radioisotope Institute, Tehran, Iran
| | - Elahm Sadat Banimostafavi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
36
|
Khalil D, Lotfalla A, Girard A, Ha R, Dercle L, Seban RD. Advances in PET/CT Imaging for Breast Cancer Patients and Beyond. J Clin Med 2023; 12:jcm12020651. [PMID: 36675588 PMCID: PMC9861174 DOI: 10.3390/jcm12020651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Breast cancer is the most common cancer in women around the world and the fifth leading cause of cancer-related death [...].
Collapse
Affiliation(s)
- David Khalil
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Andrew Lotfalla
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - Antoine Girard
- Department of Nuclear Medicine, CHU Amiens-Picardie, 80000 Amiens, France
| | - Richard Ha
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
- Correspondence:
| |
Collapse
|
37
|
Shi J, Du S, Wang R, Gao H, Luo Q, Hou G, Zhou Y, Zhu Z, Wang F. Molecular imaging of HER2 expression in breast cancer patients using a novel peptide-based tracer 99mTc-HP-Ark2: a pilot study. J Transl Med 2023; 21:19. [PMID: 36631812 PMCID: PMC9835228 DOI: 10.1186/s12967-022-03865-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the temporal and spatial heterogeneity of human epidermal growth factor receptor 2 (HER2) expression in breast tumors, immunohistochemistry (IHC) cannot accurately reflect the HER2 status in real time, which may cause misguided treatment decisions. HER2-specific imaging can noninvasively determine HER2 status in primary and metastatic tumors. In this study, HER2 expression in breast cancer patients was determined in vivo by SPECT/CT of 99mTc-HP-Ark2, comparing with PET/CT of 18F-FDG lesion by lesion. METHODS A novel HER2-targeted peptide probe 99mTc-HP-Ark2 was constructed. Biodistribution and nanoScan SPECT/CT imaging were performed in mice models. The correlation between the quantified tumor uptake and HER2 expression in tumor cells was analyzed. In the pilot clinical study, a total of 34 breast cancer patients (mean age ± SD: 49 ± 10 y) suspected of having breast cancer according to mammography or ultrasonography were recruited at Peking Union Medical College Hospital, and 99mTc-HP-Ark2 SPECT/CT and 18F-FDG PET/CT were carried out with IHC and fluorescence in situ hybridization as validation. RESULTS Small animal SPECT/CT of 99mTc-HP-Ark2 clearly identified tumors with different HER2 expression. The quantified tumor uptake and tumor HER2 expression showed a significant linear correlation (r = 0.932, P < 0.01). Among the 36 primary lesions in the 34 patients, when IHC (2 +) or IHC (3 +) was used as the positive evaluation criterion, 99mTc-HP-Ark2 SPECT/CT imaging with a tumor-to-background ratio of 1.44 as the cutoff value reflected the HER2 status with sensitivity of 89.5% (17/19), specificity of 88.2% (15/17) and accuracy of 88.9% (32/36), while the 18F-FDG PET/CT showed sensitivity of 78.9% (15/19), specificity of 70.6% (12/17) and accuracy of 75.0% (27/36). In particular, 100% of IHC (3 +) tumors were all identified by 99mTc-HP-Ark2 SPECT/CT imaging. CONCLUSION 99mTc-HP-Ark2 SPECT/CT can provide a specific, noninvasive evaluation of HER2 expression in breast cancer, showing great potential to guide HER2-targeted therapies in clinical practice. CLINICALTRIALS gov Trial registration: NCT04267900. Registered 11th February 2020. Retrospectively registered, https://www. CLINICALTRIALS gov/ct2/results?pg=1&load=cart&id=NCT04267900 .
Collapse
Affiliation(s)
- Jiyun Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Luo
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Guozhu Hou
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China.
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
38
|
Nandy S, Maranholkar VM, Crum M, Wasden K, Patil U, Goyal A, Vu B, Kourentzi K, Mo W, Henrickson A, Demeler B, Sen M, Willson RC. Expression and Characterization of Intein-Cyclized Trimer of Staphylococcus aureus Protein A Domain Z. Int J Mol Sci 2023; 24:1281. [PMID: 36674796 PMCID: PMC9865183 DOI: 10.3390/ijms24021281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.
Collapse
Affiliation(s)
- Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vijay M. Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Mary Crum
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Atul Goyal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - William Mo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
39
|
Jia D, Liu H, Zheng S, Yuan D, Sun R, Wang F, Li Y, Li H, Yuan F, Fan Q, Zhao Z. ICG-Dimeric Her2-Specific Affibody Conjugates for Tumor Imaging and Photothermal Therapy for Her2-Positive Tumors. Mol Pharm 2023; 20:427-437. [PMID: 36315025 DOI: 10.1021/acs.molpharmaceut.2c00708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human epidermal growth factor receptor 2 (Her2) is abundantly expressed in various solid tumors. The Her2-specific Affibody (ZHer2:2891) has been clinically tested in patients with Her2-positive breast cancer and is regarded as an ideal drug carrier for tumor diagnosis and targeted treatment. Indocyanine green (ICG) can be used as a photosensitizer for photothermal therapy (PTT), in addition to fluorescent dyes for tumor imaging. In this study, a dimeric Her2-specific Affibody (ZHer2) based on ZHer2:2891 was prepared using the E. coli expression system and then coupled to ICG through an N-hydroxysuccinimide (NHS) ester reactive group to construct a novel bifunctional protein drug (named ICG-ZHer2) for tumor diagnosis and PTT. In vitro, ICG-ZHer2-mediated PTT selectively and efficiently killed Her2-positive BT-474 and SKOV-3 tumor cells rather than Her2-negative HeLa tumor cells. In vivo, ICG-ZHer2 specifically accumulated in Her2-positive SKOV-3 tumor grafts rather than Her2-negative HeLa tumor grafts; high-contrast tumor optical images were obtained. However, Her2-negative HeLa tumor grafts were not detected. More importantly, ICG-ZHer2-mediated PTT exhibited a significantly enhanced antitumor effect in mice bearing SKOV-3 tumor grafts owing to the good photothermal properties of ICG-ZHer2. Of note, ICG-ZHer2 did not exhibit acute toxicity in mice during short-term treatment. Overall, our findings indicate that ICG-ZHer2 is a promising bifunctional drug for Her2-positive tumor diagnosis and PTT.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huimin Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shuhui Zheng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Dandan Yuan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruohan Sun
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Fei Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yang Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, China
| |
Collapse
|
40
|
Miladinova D. Molecular imaging of HER2 receptor: Targeting HER2 for imaging and therapy in nuclear medicine. Front Mol Biosci 2023; 10:1144817. [PMID: 36936995 PMCID: PMC10018203 DOI: 10.3389/fmolb.2023.1144817] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Targeting HER 2 for imaging and therapy in nuclear medicine has been used with a special emphasis on developing more powerful radiopharmaceuticals. Zirconium-89 plays an essential role in immune PET imaging so was used labeled with anti-HER2 antibody (Trastuzumab and Pertuzumab). Also there were attempts with other PET tracers as Cuprum-64 and Galium-68, as well as SPECT radiopharmaceuticals Indium-111 and Technetium- 99m. Regarding antibody pharmacokinetic that is not quite appropriate for imaging acquisition, several smaller molecules with shorter residence times have been developed. These molecules called nanobody, affibody, minibody do not compromize HER2 receptor affinity and specificity. Excess of Trastuzumab do not block the affinity of labeled affibodies. Silica nanoparticles have been conjugated to anti-HER2 antibodies to enable targeting of HER2 expressing cells with potential of drug delivery carry for antitumor agents and b(beta) or a(alfa) emitting radioisotopes commonly used for radionuclide therapy, as Iodine-131, Lutetium-177, Yttrium-90, Rhenium-188 and Thorium-277.
Collapse
|
41
|
Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, Meng X, Liu J, Zhu H, Jia B, Yang Z. High in-vivo stability in preclinical and first-in-human experiments with [ 18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur J Nucl Med Mol Imaging 2023; 50:302-313. [PMID: 36129493 DOI: 10.1007/s00259-022-05967-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/11/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE [18F]AlF-RESCA was introduced as a core particularly useful for 18F-labeling of heat-sensitive biomolecules. However, no translational studies have been reported up to now. Herein, we reported the first-in-human evaluation of an 18F-labeled anti-HER2 nanobody MIRC213 as a PET radiotracer for imaging HER2-positive cancers. METHODS MIRC213 was produced by E. coli and conjugated with ( ±)-H3RESCA-Mal. [18F]AlF-RESCA-MIRC213 was prepared at room temperature. Its radiochemical purity and stability of were determined by radio-HPLC with the size-exclusion chromatographic column. Cell uptake was performed in NCI-N87 (HER2 +) and MCF-7 (HER2-) cells and the cell-binding affinity was verified in SK-OV-3 (HER2 +) cells. Small-animal PET/CT was performed using SK-OV-3, NCI-N87, and MCF-7 tumor-bearing mice at 30 min, 1 h, and 2 h post-injection. For blocking experiment, excess MIRC213 was co-injected with radiotracer. Biodistribution were performed on SKOV-3 and MCF-7 tumor-bearing mice at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of [18F]AlF-RESCA-MIRC213 (1.85-3.7 MBq/kg) in six breast cancer patients (3 HER2-positive and 3 HER2-negative). All patients underwent [18F]-FDG PET/CT within a week for tissue selection purpose. Distribution and dosimetry were calculated. Standardized uptake values (SUV) were measured in tumors and normal organs. RESULTS MIRC213 was produced with > 95% purity and modified with RESCA to obtain RESCA-MIRC213. [18F]AlF-RESCA-MIRC213 was prepared within 20 min at room temperature with the radiochemical yield of 50.48 ± 7.6% and radiochemical purity of > 98% (n > 10), and remained stable in both PBS (88%) and 5% HSA (92%) after 6 h. The 2 h cellular uptake of [18F]AlF-RESCA-MIRC213 in NCI-N87 cells was 11.22 ± 0.60 AD%/105 cells. Its binding affinity Kd value was determined to be 1.23 ± 0.58 nM. Small-animal PET/CT with [18F]AlF-RESCA-MIRC213 can clearly differentiate SK-OV-3 and NCI-N87 tumors from MCF-7 tumors and background with a high uptake of 4.73 ± 1.18 ID%/g and substantially reduced to 1.70 ± 0.13 ID%/g for the blocking group (p < 0.05) in SK-OV-3 tumors at 2 h post-injection. No significant bone radioactivity was seen in the tumor-bearing animals. In all six breast cancer patients, there was no adverse reaction during study. The uptake of [18F]AlF-RESCA-MIRC213 was mainly in lacrimal gland, parotid gland, submandibular gland, thyroid gland, gallbladder, kidneys, liver, and intestines. There was no significant bone radioactivity accumulation in cancer patients. [18F]AlF-RESCA-MIRC213 had significantly higher tumor uptake in lesions from HER2-positive patients than that lesions from HER2-negative patients (SUVmax of 3.62 ± 1.56 vs. 1.41 ± 0.41, p = 0.0012) at 2 h post-injection. The kidneys received the highest radiation dose of 2.42 × 10-1 mGy/MBq, and the effective dose was 1.56 × 10-2 mSv/MBq. CONCLUSIONS [18F]AlF-RESCA-MIRC213 could be prepared with high radiolabeling yield under mild conditions. [18F]AlF-RESCA-MIRC213 has relatively high stability both in vitro and in vivo. The results from clinical transformation suggest that [18F]AlF-RESCA-MIRC213 PET/CT is a safe procedure with favorable pharmacokinetics and dosimetry profile, and it is a promising new PET radiotracer for noninvasive diagnosis of HER2-positive cancers.
Collapse
Affiliation(s)
- Xue Qin
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaopan Ma
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Zhu
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhi Yang
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
42
|
Direct In Vivo Comparison of 99mTc-Labeled Scaffold Proteins, DARPin G3 and ADAPT6, for Visualization of HER2 Expression and Monitoring of Early Response for Trastuzumab Therapy. Int J Mol Sci 2022; 23:ijms232315181. [PMID: 36499504 PMCID: PMC9740058 DOI: 10.3390/ijms232315181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Non-invasive radionuclide molecular visualization of human epidermal growth factor receptor type 2 (HER2) can provide stratification of patients for HER2-targeting therapy. This method can also enable monitoring of the response to such therapies, thereby making treatment personalized and more efficient. Clinical evaluation in a phase I study demonstrated that injections of two scaffold protein-based imaging probes, [99mTc]Tc-(HE)3-G3 and [99mTc]Tc-ADAPT6, are safe, well-tolerated and cause a low level of radioactivity in healthy tissue. The goal of this preclinical study was to select the best probe for stratification of patients and response monitoring. Biodistribution of both tracers was compared in mice bearing SKOV-3 xenografts with high HER2 expression or MDA-MB-468 xenografts with very low expression. Changes in accumulation of the probes in SKOV-3 tumors 24 h after injection of trastuzumab were evaluated. Both [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3 permitted high contrast imaging of HER2-expressing tumors and a clear discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-ADAPT6 has better preconditions for higher sensitivity and specificity of stratification. On the other hand, [99mTc]Tc-(HE)3-G3 is capable of detecting the decrease of HER2 expression on response to trastuzumab therapy only 24 h after injection of the loading dose. This indicates that the [99mTc]Tc-(HE)3-G3 tracer would be better for monitoring early response to such treatment. The results of this study should be considered in planning of further clinical development of HER2 imaging probes.
Collapse
|
43
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
|
45
|
Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res 2022; 55:32. [PMID: 36274167 PMCID: PMC9590205 DOI: 10.1186/s40659-022-00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. Results The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. Conclusion The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.
Collapse
|
46
|
Bragina OD, Chernov VI, Deyev SM, Tolmachev VM. Clinical possibilities of HER2-positive breast cancer diagnosis using alternative scaffold proteins. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-132-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HER2-positive breast cancer occurs in 15–20% of breast cancer patients and is associated primarily with a poor prognosis of the disease and the need for highly specific targeted therapy. Despite the clinical importance of determining HER2/neu, traditional diagnostic methods have their disadvantages and require the study of new additional research techniques.The information presented in this review makes it possible to consider current trends in the radionuclide diagnosis of HER2-positive breast cancer using the latest class of alternative scaffold proteins and to consider various aspects of their use in clinical practice.
Collapse
Affiliation(s)
- O. D. Bragina
- Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; National Research Tomsk Polytechnic University
| | - V. I. Chernov
- Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; National Research Tomsk Polytechnic University
| | - S. M. Deyev
- National Research Tomsk Polytechnic University; Shemyakin – Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - V. M. Tolmachev
- National Research Tomsk Polytechnic University; Uppsala University
| |
Collapse
|
47
|
Ebrahimi F, Noaparast Z, Abedi SM, Hosseinimehr SJ. Homodimer 99mTc-HYNIC-E(SSSLTVPWY) 2 peptide improved HER2-overexpressed tumor targeting and imaging. Med Oncol 2022; 39:204. [PMID: 36175805 DOI: 10.1007/s12032-022-01798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
We hypothesized that a novel design of the LTVPWY (LY) peptide might exhibit a great potential for improving binding affinity and targeting HER2-overexpressed tumors. Hence, new dimer construction of 99mTc-labeled LY [99mTc-HYNIC-E(SSSLTVPWY)2] (99mTc-DLY) was introduced. Afterward, a head-to-head comparison of in vitro and in vivo experiments was performed between 99mTc-DLY and 99mTc-HYNIC-SSSLTVPWY as the monomer analog. The blocking dosage of trastuzumab reduced the uptake of the dimer about 20% more efficiently than the monomer in the SKOV-3 cell line. A twofold increase in competitive binding affinity and biological half-life was observed for 99mTc-DLY. The ovarian-tumor-bearing mice were detected with high contrast where the tumor-to-muscle ratio of 99mTc-DLY was notably increased about 40% using a gamma camera. The biodistribution experiment revealed an approximately 10% enhancement in tumor/blood, tumor/muscle, and tumor/bone ratios for the dimer. More rapid blood clearance was another achievement of the homodimer design. Overall, 99mTc-DLY successfully affected the pharmacokinetics and consequently the visualization of HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
48
|
Albumin-Mediated Size Exclusion Chromatography: The Apparent Molecular Weight of PSMA Radioligands as Novel Parameter to Estimate Their Blood Clearance Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15091161. [PMID: 36145382 PMCID: PMC9500755 DOI: 10.3390/ph15091161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.
Collapse
|
49
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 PMCID: PMC12079710 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
50
|
Evaluation of an Affibody-Based Binder for Imaging of Immune Check-Point Molecule B7-H3. Pharmaceutics 2022; 14:pharmaceutics14091780. [PMID: 36145529 PMCID: PMC9506244 DOI: 10.3390/pharmaceutics14091780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radionuclide molecular imaging could provide an accurate assessment of the expression of molecular targets in disseminated cancers enabling stratification of patients for specific therapies. B7-H3 (CD276) is a transmembrane protein belonging to the B7 superfamily. This protein is overexpressed in different types of human malignancies and such upregulation is generally associated with a poor clinical prognosis. In this study, targeting properties of an Affibody-based probe, AC12, containing a -GGGC amino acid sequence as a chelator (designated as AC12-GGGC) labelled with technetium-99m (99mTc) were evaluated for imaging of B7-H3-expressing tumours. AC12-GGGC was efficiently labelled with 99mTc. [99mTc]Tc-AC12-GGGC bound specifically to B7-H3 expressing cells in vitro with affinities in nanomolar range. In mice bearing B7-H3-expressing xenografts, [99mTc]Tc-AC12-GGGC showed tumour uptake of 2.1 ± 0.5 %ID/g at 2 h after injection. Its clearance from blood, normal organs and tissues was very rapid. This new targeting agent, [99mTc]Tc-AC12-GGGC, provided high tumour-to-blood ratio already at 2 h (8.2 ± 1.9), which increased to 11.0 ± 0.5 at 4 h after injection. Significantly (p < 0.05) higher tumour-to-liver and higher tumour-to-bone ratios at 2 h in comparison with 4 h after injection were observed. Thus, [99mTc]Tc-AC12-GGGC could be a promising candidate for further development.
Collapse
|