1
|
Wang IE, SaTsu HA, Brooks AF, Werner RA, Rowe SP, Scott PJH, Viglianti BL. Molecular imaging of neuroendocrine tumors: Current applications and future trends. Diagn Interv Imaging 2025:S2211-5684(25)00103-2. [PMID: 40404554 DOI: 10.1016/j.diii.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
The prevalence of neuroendocrine neoplasms (NEN), which include neuroendocrine tumors (NET) and neuroendocrine carcinomas (NEC), has increasing during recent years. The approval of diagnostic single-photon emission computed tomography and positron emission tomography imaging agents for NEN is an important factor in pushing the development of additional agents using new targets to develop patient-specific, targeted, radiopharmaceuticals. Numerous NEN-specific targets exist, including somatostatin receptors, norepinephrine transport substrates, amino acid transport substrates, and glucagon-like peptide-1 receptor analogues, as well as non-specific targets, such as glucose metabolism. Additionally, there are targets that can be used in combination with current agents to further personalize NEN imaging. In well-differentiated gastroenteropancreatic NET, [68Ga]DOTATATE is the first line agent. In pheochromocytoma, paraganglioma, and neuroblastomas [131I]MIBG can also be considered for imaging. [18F]FDOPA is mainly used for midgut NETs but is second line if access to [68Ga]DOTATATE is difficult. In insulinomas, glucagon like peptide-1 receptor agents can be considered with [68Ga]DOTATATE. In medullary thyroid carcinomas, [18F]FDOPA is preferred with or without [68Ga]DOTATATE imaging. In poorly-differentiated NEN/NEC, non-specific agents such as [18F]Fluoro-2-deoxy-d-glucose and [68Ga]fibroblast activation protein inhibitor-04 can be used if somatostatin imaging is insufficient. Urokinase plasminogen activator receptor targeting has been used as a method for risk stratification and can be used in combination with [68Ga]DOTATATE. The use of somatostatin receptor antagonists, bombesin receptor 2, C-X-C motif chemokine receptor-4, and glucose-dependent insulinotropic polypeptide receptor agents are currently in development - with all of them requiring further studies to determine their potential utility. This review analyzes the current landscape of NEN imaging and discusses the emerging agents that can potentially contribute to NEN imaging in the future.
Collapse
Affiliation(s)
- Ivan E Wang
- Department of Radiology, University of Michigan, Ann Arbor MI 48109 USA
| | - Helen A SaTsu
- Department of Radiology, University of Michigan, Ann Arbor MI 48109 USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor MI 48109 USA
| | - Rudolf A Werner
- Department of Nuclear Medicine, LMU University Hospital 80336 Munich, Germany
| | - Steven P Rowe
- Department of Radiology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor MI 48109 USA
| | | |
Collapse
|
2
|
Lacroix A, Bourdeau I, Chasseloup F, Kamenický P, Lopez AG, Louiset E, Lefebvre H. Aberrant hormone receptors regulate a wide spectrum of endocrine tumors. Lancet Diabetes Endocrinol 2024; 12:837-855. [PMID: 39326429 DOI: 10.1016/s2213-8587(24)00200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 09/28/2024]
Abstract
Aberrant G-protein coupled receptor (GPCR) expression is highly prevalent in cortisol-secreting primary bilateral macronodular adrenal hyperplasia (PBMAH) and unilateral adenomas. The aberrant expression of diverse GPCRs and their ligands play an important role in the over-function of various endocrine tumours. Examples include aberrant expression of MC2R, 5-HT4R, AVPR1A, LHCGR, and GnRHR in primary aldosteronism; GCGR, LHCGR, and 5-HT4R in phaeochromocytomas and paragangliomas; TRHR, GnRHR, GIPR, and GRP101 in pituitary somatotroph tumours; AVPR2, D2DR, and SSTR5 in pituitary corticotroph tumours; GLP1R, GIPR, and somatostatin receptors in medullary thyroid carcinoma; and SSTRs, GLP1R, and GIPR in other neuroendocrine tumours. The genetic mechanisms causing the ectopic expression of GIPR in cortisol-secreting PBMAHs and unilateral adenomas have been identified, but distinct mechanisms are implicated in other endocrine tumours. Development of functional imaging targeting aberrant GPCRs should be useful for identification and for specific therapies of this wide spectrum of tumours. The aim of this review is to show that the regulation of endocrine tumours by aberrant GPCR is not restricted to cortisol-secreting adrenal lesions, but also occurs in tumours of several other organs.
Collapse
Affiliation(s)
- André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada.
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Antoine-Guy Lopez
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Estelle Louiset
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Hervé Lefebvre
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| |
Collapse
|
3
|
Khalil A, Hakhverdyan S, Cheung P, Bossart M, Wagner M, Eriksson O, Velikyan I. Introduction of a fatty acid chain modification to prolong circulatory half-life of a radioligand towards glucose-dependent insulinotropic polypeptide receptor. Nucl Med Biol 2024; 128-129:108876. [PMID: 38241936 DOI: 10.1016/j.nucmedbio.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. METHOD A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C-terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 μM) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. RESULTS [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 ± 3.7 % and radiochemical purity of 97.8 ± 0.8 %. The molar activity for the radiotracer was 8.1 ± 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 ± 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Pre-incubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga-DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. CONCLUSION [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.
Collapse
Affiliation(s)
- Amina Khalil
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sona Hakhverdyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Martin Bossart
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| | - Michael Wagner
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany; Current address: Dewpoint Therapeutics, Frankfurt, Germany
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden; Antaros Tracer AB, Mölndal, Sweden.
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; Department of Surgical Sciences, Radiology, Uppsala University Uppsala, Sweden.
| |
Collapse
|
4
|
Ceccato F, Vedolin CK, Voltan G, Antonelli G, Barbot M, Basso D, Regazzo D, Scaroni C, Occhi G. Paradoxical GH increase after oral glucose load in subjects with and without acromegaly. J Endocrinol Invest 2024; 47:213-221. [PMID: 37344722 PMCID: PMC10776735 DOI: 10.1007/s40618-023-02138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE A paradoxical GH rise after the glucose load (GH-Par) is described in about one-third of acromegalic patients. Here, we evaluated the GH profile in subjects with and without acromegaly aiming to refine the definition of GH-Par. DESIGN Observational case-control study. METHODS Our cohort consisted of 60 acromegalic patients, and two groups of subjects presenting suppressed GH (< 0.4 µg/L) and high (non-acro↑IGF-1, n = 116) or normal IGF-1 levels (non-acro, n = 55). The distribution of GH peaks ≥ 120% from baseline, insulin, and glucose levels were evaluated over a 180-min time interval after glucose intake. RESULTS A similar proportion of subjects in all three groups shows a GH ratio of ≥ 120% starting from 120 min. Re-considering the definition of paradoxical increase of GH within 90 min, we observed that the prevalence of GH peaks ≥ 120% was higher in acromegaly than in non-acro↑IGF-1 and non-acro (respectively 42%, 16%, and 7%, both p < 0.001). In patients without GH-Par, a late GH rebound was observed in the second part of the curve. Higher glucose peak (p = 0.038), slower decline after load, 20% higher glucose exposure (p = 0.015), and a higher prevalence of diabetes (p = 0.003) characterized acromegalic patients with GH-Par (with respect to those without). CONCLUSIONS GH-Par response may be defined as a 20% increase in the first 90 min after glucose challenge. GH-Par, common in acromegaly and associated with an increased prevalence of glucose metabolism abnormalities, is found also in a subset of non-acromegalic subjects with high IGF-1 levels, suggesting its possible involvement in the early phase of the disease.
Collapse
Affiliation(s)
- F Ceccato
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - C K Vedolin
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - G Voltan
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - G Antonelli
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Laboratory Medicine, University-Hospital of Padova, Padua, Italy
| | - M Barbot
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - D Basso
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Laboratory Medicine, University-Hospital of Padova, Padua, Italy
| | - D Regazzo
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - C Scaroni
- Department of Medicine DIMED, University of Padova, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padova, Padua, Italy
| | - G Occhi
- Department of Biology, University of Padova, Via Via U. Bassi 58B, 35121, Padua, Italy.
| |
Collapse
|
5
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
6
|
Adnan A, Basu S. Somatostatin Receptor Targeted PET-CT and Its Role in the Management and Theranostics of Gastroenteropancreatic Neuroendocrine Neoplasms. Diagnostics (Basel) 2023; 13:2154. [PMID: 37443548 DOI: 10.3390/diagnostics13132154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Somatostatin receptor (SSTR) agonist-based Positron Emission Tomography-Computed Tomography (PET-CT) imaging is nowadays the mainstay for the assessment and diagnostic imaging of neuroendocrine neoplasms (NEN), especially in well-differentiated neuroendocrine tumors (NET) (World Health Organization (WHO) grade I and II). Major clinical indications for SSTR imaging are primary staging and metastatic workup, especially (a) before surgery, (b) detection of unknown primary in metastatic NET, (c) patient selection for theranostics and appropriate therapy, especially peptide receptor radionuclide therapy (PRRT), while less major indications include treatment response evaluation on and disease prognostication. Dual tracer PET-CT imaging using SSTR targeted PET tracers, viz. [68Ga]Ga-DOTA-Tyr3-Octreotate (DOTA-TATE) and [68Ga]Ga-DOTA-NaI3-Octreotide (DOTA-NOC), and fluorodeoxyglucose (FDG), have recently gained widespread acceptance for better assessment of whole-body tumor biology compared to single-site histopathology, in terms of being non-invasive and the ability to assess inter- and intra-tumoral heterogeneity on a global scale. FDG uptake has been identified as independent adverse risk factor in various studies. Recently, somatostatin receptor antagonists have been shown to be more sensitive and specific in detecting the disease. The aim of this review article is to summarize the clinical importance of SSTR-based imaging in the clinical management of neuroendocrine and related tumors.
Collapse
Affiliation(s)
- Aadil Adnan
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
| |
Collapse
|
7
|
Velikyan I, Bossart M, Haack T, Laitinen I, Estrada S, Johansson L, Pierrou S, Wagner M, Eriksson O. Imaging of the Glucose-Dependent Insulinotropic Polypeptide Receptor Using a Novel Radiolabeled Peptide Rationally Designed Based on Endogenous GIP and Synthetic Exendin-4 Sequences. Pharmaceuticals (Basel) 2022; 16:ph16010061. [PMID: 36678558 PMCID: PMC9864903 DOI: 10.3390/ph16010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Imaging and radiotherapy targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) could potentially benefit the management of neuroendocrine neoplasms (NENs), complementing clinically established radiopharmaceuticals. The aim of this study was to evaluate a GIPR-targeting positron emission tomography (PET) radioligand with receptor-specific binding, fast blood clearance, and low liver background uptake. The peptide DOTA-bioconjugate, C803-GIP, was developed based on the sequence of the endogenous GIP(1-30) and synthetic exendin-4 peptides with selective amino acid mutations to combine their specificity for the GIPR and in vivo stability, respectively. The 68Ga-labeled bioconjugate was evaluated in vitro in terms of binding affinity, specificity, and internalization in HEK293 cells transfected with the human GIPR, GLP1, or GCG receptors and in sections of human insulinoma and NENs. In vivo binding specificity, biodistribution, and tissue background were investigated in mice bearing huGIPR-HEK293 xenografts and in a pig. Ex vivo organ distribution, pharmacokinetics, and dosimetry were studied in normal rats. [68Ga]Ga-C803-GIP was stable and demonstrated a high affinity to the huGIPR-HEK293 cells. Binding specificity was demonstrated in vitro in frozen sections of NENs and huGIPR-HEK293 cells. No specific uptake was observed in the negative controls of huGLP1R and huGCGR cells. A novel rationally designed PET radioligand, [68Ga]Ga-C803-GIP, demonstrated promising binding characteristics and specificity towards the GIPR.
Collapse
Affiliation(s)
- Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden
- PET Centre, Centre for Medical Imaging, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
- Correspondence: (I.V.); (M.B.); Tel.: +46-(0)70-4834137 (I.V.)
| | - Martin Bossart
- R&D Research Platform, Integrated Drug Discovery, Sanofi, 65929 Frankfurt, Germany
- Correspondence: (I.V.); (M.B.); Tel.: +46-(0)70-4834137 (I.V.)
| | - Torsten Haack
- R&D Research Platform, Integrated Drug Discovery, Sanofi, 65929 Frankfurt, Germany
| | | | - Sergio Estrada
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden
| | | | | | - Michael Wagner
- R&D Research Platform, Integrated Drug Discovery, Sanofi, 65929 Frankfurt, Germany
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden
- Antaros Medical AB, SE-431 53 Mölndal, Sweden
| |
Collapse
|
8
|
Refardt J, Hofland J, Wild D, Christ E. Molecular Imaging of Neuroendocrine Neoplasms. J Clin Endocrinol Metab 2022; 107:e2662-e2670. [PMID: 35380158 DOI: 10.1210/clinem/dgac207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/17/2022]
Abstract
The key for molecular imaging is the use of a radiotracer with a radioactive and a functional component. While the functional component targets a specific feature of the tumor, the radioactive component makes the target visible. Neuroendocrine neoplasms (NEN) are a diverse group of rare tumors that arise from neuroendocrine cells found mainly in the gastroenteropancreatic system, lung, thyroid, and adrenal glands. They are characterized by the expression of specific hormone receptors on the tumor cell surface, which makes them ideal targets for radiolabeled peptides. The most commonly expressed hormone receptors on NEN cells are the somatostatin receptors. They can be targeted for molecular imaging with various radiolabeled somatostatin analogs, but also with somatostatin antagonists, which have shown improved imaging quality. 18F-DOPA imaging has become a second-line imaging modality in NENs, with the exception of the evaluation of advanced medullary thyroid carcinoma. Alternatives for NENs with insufficient somatostatin receptor expression due to poor differentiation involve targeting glucose metabolism, which can also be used for prognosis. For the localization of the often-small insulinoma, glucagon-like peptide-1 (GLP-1) receptor imaging has become the new standard. Other alternatives involve metaiodobenzylguanidine and the molecular target C-X-C motif chemokine receptor-4. In addition, new radiopeptides targeting the fibroblast activation protein, the glucose-dependent insulinotropic polypeptide receptor and cholecystokinin-2 receptors have been identified in NENs and await further evaluation. This mini-review aims to provide an overview of the major molecular imaging modalities currently used in the field of NENs, and also to provide an outlook on future developments.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Iravani A, Parihar AS, Akhurst T, Hicks RJ. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022; 22:25. [PMID: 35659779 PMCID: PMC9164531 DOI: 10.1186/s40644-022-00465-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroendocrine neoplasia (NEN) is an umbrella term that includes a widely heterogeneous disease group including well-differentiated neuroendocrine tumours (NETs), and aggressive neuroendocrine carcinomas (NECs). The site of origin of the NENs is linked to the intrinsic tumour biology and is predictive of the disease course. It is understood that NENs demonstrate significant biologic heterogeneity which ultimately translates to widely varying clinical presentations, disease course and prognosis. Thus, significant emphasis is laid on the pre-therapy evaluation of markers that can help predict tumour behavior and dynamically monitors the response during and after treatment. Most well-differentiated NENs express somatostatin receptors (SSTRs) which make them appropriate for peptide receptor radionuclide therapy (PRRT). However, the treatment outcomes of PRRT depend heavily on the adequacy of patient selection by molecular imaging phenotyping not only utilizing pre-treatment SSTR PET but 18F-Fluorodeoxyglucose (18F-FDG) PET to provide insights into the intra- or inter-tumoural heterogeneity of the metastatic disease. Molecular imaging phenotyping may go beyond patient selection and provide useful information during and post-treatment for monitoring of temporal heterogeneity of the disease and dynamically risk-stratify patients. In addition, advances in the understanding of genomic-phenotypic classifications of pheochromocytomas and paragangliomas led to an archetypical example in precision medicine by utilizing molecular imaging phenotyping to guide radioligand therapy. Novel non-SSTR based peptide receptors have also been explored diagnostically and therapeutically to overcome the tumour heterogeneity. In this paper, we review the current molecular imaging modalities that are being utilized for the characterization of the NENs with special emphasis on their role in patient selection for radioligand therapy.
Collapse
|
10
|
Christ E, Wild D, Refardt J. Molecular Imaging in neuroendocrine neoplasias. Presse Med 2022; 51:104115. [PMID: 35131317 DOI: 10.1016/j.lpm.2022.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging, which uses molecular targets due to the overexpression of specific peptide hormone receptors on the tumour surface, has become an indispensable diagnostic technique. Neuroendocrine neoplasms (NENs) especially differentiated NENs or neuroendocrine tumours (NETs) are a rare group of heterogeneous tumours, characterized by the expression of hormone receptors on the tumour cell surface. This property makes them receptive to diagnostic and therapeutic approaches (theranostics) using radiolabelled peptides. Amongst the known hormone receptors, somatostatin receptors (SSTR) are expressed on the majority of NETs and are therefore the most relevant receptors for theranostic approaches. Current research aims to medically upregulate their expression, while other focuses are on the use of different radiopeptides (64Cu and 67Cu) or somatostatin-antagonists instead of the established somatostatin agonists. The GLP-1 receptor is another clinically relevant target, as GLP-1-R imaging has become the new standard for the localisation of insulinomas. For staging and prognostic evaluation in dedifferentiated NENs, 18F-FDG-imaging is useful, but lacks a therapeutic counterpart. Further options for patients with insufficient expression of SSTR involve metaiodobenzylguanidine (MIBG) and the molecular target C-X-C motif chemokine receptor-4 (CXCR4). New targets such as the glucose-dependant insulinotropic polypeptide receptor (GIPR) and the fibroblast activation protein (FAP) have been identified in NENs recently and await further evaluation. For medullary thyroid cancer 18-F-DOPA imaging is standard, however this technique is rather second line for other NENs. In this area, the discovery of minigastrin, which targets the cholecystokinin-2 (CCK2) receptors in medullary thyroid carcinoma and foregut NENs, may improve future management. This review aims to provide an overview of the most commonly used functional imaging modalities for theranostics in NENs today and in the possible future.
Collapse
Affiliation(s)
- Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Julie Refardt
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland; Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Angelousi A, Hayes AR, Chatzellis E, Kaltsas GA, Grossman AB. Metastatic medullary thyroid carcinoma: a new way forward. Endocr Relat Cancer 2022; 29:R85-R103. [PMID: 35521769 PMCID: PMC9175549 DOI: 10.1530/erc-21-0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignancy comprising 1-2% of all thyroid cancers in the United States. Approximately 20% of cases are familial, secondary to a germline RET mutation, while the remaining 80% are sporadic and also harbour a somatic RET mutation in more than half of all cases. Up to 15-20% of patients will present with distant metastatic disease, and retrospective series report a 10-year survival of 10-40% from time of first metastasis. Historically, systemic therapies for metastatic MTC have been limited, and cytotoxic chemotherapy has demonstrated poor objective response rates. However, in the last decade, targeted therapies, particularly multitargeted tyrosine kinase inhibitors (TKIs), have demonstrated prolonged progression-free survival in advanced and progressive MTC. Both cabozantinib and vandetanib have been approved as first-line treatment options in many countries; nevertheless, their use is limited by high toxicity rates and dose reductions are often necessary. New generation TKIs, such as selpercatinib or pralsetinib, that exhibit selective activity against RET, have recently been approved as a second-line treatment option, and they exhibit a more favourable side-effect profile. Peptide receptor radionuclide therapy or immune checkpoint inhibitors may also constitute potential therapeutic options in specific clinical settings. In this review, we aim to present all current therapeutic options available for patients with progressive MTC, as well as new or as yet experimental treatments.
Collapse
Affiliation(s)
- Anna Angelousi
- Unit of Endocrinology, First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence should be addressed to A Angelousi or A B Grossman: or
| | - Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Eleftherios Chatzellis
- Endocrinology Diabetes and Metabolism Department, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Gregory A Kaltsas
- First Department of Propaedeutic Internal Medicine, Laiko Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Ashley B Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Correspondence should be addressed to A Angelousi or A B Grossman: or
| |
Collapse
|
12
|
Refardt J, Hofland J, Wild D, Christ E. New Directions in Imaging Neuroendocrine Neoplasms. Curr Oncol Rep 2021; 23:143. [PMID: 34735669 PMCID: PMC8568754 DOI: 10.1007/s11912-021-01139-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Purpose of Review Accurate imaging is crucial for correct diagnosis, staging, and therapy of neuroendocrine neoplasms (NENs). The search for the optimal imaging technique has triggered rapid development in the field. This review aims at giving an overview on contemporary imaging methods and providing an outlook on current progresses. Recent Findings The discovery of molecular targets due to the overexpression of specific peptide hormone receptors on the NEN’s surface has triggered the development of multiple radionuclide imaging modalities. In addition to the established imaging technique of targeting somatostatin receptors, several alternative radioligands have been developed. Targeting the glucagon-like peptide-1 receptor by exendin-4 has a high sensitivity in localizing insulinomas. For dedifferentiated NENs, new molecular targets such as the C-X-C motif chemokine-receptor-4 have been evaluated. Other new targets involve the fibroblast activation protein and the cholecystokinin-2 receptors, where the ligand minigastrin opens new possibilities for the management of medullary thyroid carcinoma. Summary Molecular imaging is an emerging field that improves the management of NENs.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands.,ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
13
|
Refardt J, Hofland J, Kwadwo A, Nicolas GP, Rottenburger C, Fani M, Wild D, Christ E. Theranostics in neuroendocrine tumors: an overview of current approaches and future challenges. Rev Endocr Metab Disord 2021; 22:581-594. [PMID: 32495250 DOI: 10.1007/s11154-020-09552-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of tumors, mainly localized in the gastrointestinal system. What characterizes NENs is the expression of hormone receptors on the tumor cell surface, making them accessible for diagnostic and therapeutic approaches (theranostics) using radiolabelled peptides. Somatostatin receptors subtype-two (SST2) play an important role in NENs since they are overexpressed and homogeneously distributed at the surface of the majority of NENs. Accordingly, targeting SST2 for diagnostic and therapeutic purposes has been established. Current research aims at upregulating its expression by epigenetic treatment or improving its targeting via use of alternative radioligands. In addition, recent data suggest a future role of SST antagonists as a diagnostic tool and a potential therapeutic option. Another promising target is the glucagon-like peptide-1 (GLP-1) receptor. Targeting GLP-1R using exendin-4 (GLP-1 analogue) has a high sensitivity for the localization of the often SST2-negative sporadic insulinomas and insulinomas in the context of multiple endocrine neoplasia type-1. Further options for patients with insufficient expression of SST2 involve metaiodobenzylguanidine (MIBG) and the molecular target C-X-C motif chemokine receptor-4 (CXCR4), which have been evaluated for potential theranostic approach in symptomatic NENs or dedifferentiated tumors. Recently, new targets such as the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the fibroblast activation protein (FAP) have been identified in NENs. Finally, minigastrin - a ligand targeting the cholecystokinin-2 (CCK2) receptors in medullary thyroid carcinoma and foregut neuroendocrine tumors - may improve future management of these diseases with currently limited therapeutic options. This review summarises the current approaches and future challenges of diagnostic and therapeutic evaluations in neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Antwi Kwadwo
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Guillaume P Nicolas
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Christof Rottenburger
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Emanuel Christ
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland.
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Eriksson O, Velikyan I, Haack T, Bossart M, Evers A, Lorenz K, Laitinen I, Larsen PJ, Plettenburg O, Johansson L, Pierrou S, Wagner M. Drug Occupancy Assessment at the Glucose-Dependent Insulinotropic Polypeptide Receptor by Positron Emission Tomography. Diabetes 2021; 70:842-853. [PMID: 33547046 DOI: 10.2337/db20-1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022]
Abstract
Targeting of the glucose-dependent insulinotropic polypeptide receptor (GIPR) is an emerging strategy in antidiabetic drug development. The aim of this study was to develop a positron emission tomography (PET) radioligand for the GIPR to enable the assessment of target distribution and drug target engagement in vivo. The GIPR-selective peptide S02-GIP was radiolabeled with 68Ga. The resulting PET tracer [68Ga]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [68Ga]S02-GIP-T4 as well as the occupancy of a drug candidate with GIPR activity were assessed in nonhuman primates (NHPs) by PET. [68Ga]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo, pancreatic binding in NHPs could be dose-dependently inhibited by coinjection of unlabeled S02-GIP-T4. Finally, subcutaneous pretreatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [68Ga]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [68Ga]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [68Ga]S02-GIP-T4 is a novel PET biomarker for safe, noninvasive, and quantitative assessment of GIPR target distribution and drug occupancy.
Collapse
Affiliation(s)
- Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eriksson O, Långström B, Antoni G. News ways of understanding the complex biology of diabetes using PET. Nucl Med Biol 2021; 92:65-71. [PMID: 32387114 DOI: 10.1016/j.nucmedbio.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
The understanding of metabolic disease and diabetes on a molecular level has increased significantly due to the recent advances in molecular biology and biotechnology. However, in vitro studies and animal models do not always translate to the human disease, perhaps illustrated by the failure of many drug candidates in the clinical phase. Non-invasive biomedical imaging techniques such as Positron Emission Tomography (PET) offer tools for direct visualization and quantification of molecular processes in humans. Developments in this area potentially enable longitudinal in vivo studies of receptors and processes involved in diabetes guiding drug development and diagnosis in the near future. This mini-review focuses on describing the overall perspective of how PET can be used to increase our understanding and improve treatment of diabetes. The methodological aspects and future developments and challenges are highlighted.
Collapse
Affiliation(s)
- O Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden
| | - B Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - G Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells 2020; 9:cells9061380. [PMID: 32498358 PMCID: PMC7349292 DOI: 10.3390/cells9061380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The available evidence suggests a complex relationship between diabetes and cancer. Epidemiological data suggest a positive correlation, however, in certain types of cancer, a more complex picture emerges, such as in some site-specific cancers being specific to type I diabetes but not to type II diabetes. Reports share common and differential mechanisms which affect the relationship between diabetes and cancer. We discuss the use of antidiabetic drugs in a wide range of cancer therapy and cancer therapeutics in the development of hyperglycemia, especially antineoplastic drugs which often induce hyperglycemia by targeting insulin/IGF-1 signaling. Similarly, dipeptidyl peptidase 4 (DPP-4), a well-known target in type II diabetes mellitus, has differential effects on cancer types. Past studies suggest a protective role of DPP-4 inhibitors, but recent studies show that DPP-4 inhibition induces cancer metastasis. Moreover, molecular pathological mechanisms of cancer in diabetes are currently largely unclear. The cancer-causing mechanisms in diabetes have been shown to be complex, including excessive ROS-formation, destruction of essential biomolecules, chronic inflammation, and impaired healing phenomena, collectively leading to carcinogenesis in diabetic conditions. Diabetes-associated epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) contribute to cancer-associated fibroblast (CAF) formation in tumors, allowing the epithelium and endothelium to enable tumor cell extravasation. In this review, we discuss the risk of cancer associated with anti-diabetic therapies, including DPP-4 inhibitors and SGLT2 inhibitors, and the role of catechol-o-methyltransferase (COMT), AMPK, and cell-specific glucocorticoid receptors in cancer biology. We explore possible mechanistic links between diabetes and cancer biology and discuss new therapeutic approaches.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| |
Collapse
|
17
|
Regazzo D, Barbot M, Scaroni C, Albiger N, Occhi G. The pathogenic role of the GIP/GIPR axis in human endocrine tumors: emerging clinical mechanisms beyond diabetes. Rev Endocr Metab Disord 2020; 21:165-183. [PMID: 31933128 DOI: 10.1007/s11154-019-09536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone produced in the gastrointestinal tract in response to nutrients. GIP has a variety of effects on different systems, including the potentiation of insulin secretion from pancreatic β-cells after food intake (i.e. incretin effect), which is probably the most important. GIP effects are mediated by the GIP receptor (GIPR), a G protein-coupled receptor expressed in several tissues, including islet β-cells, adipocytes, bone cells, and brain. As well as its involvement in metabolic disorders (e.g. it contributes to the impaired postprandial insulin secretion in type 2 diabetes (T2DM), and to the pathogenesis of obesity and associated insulin resistance), an inappropriate GIP/GIPR axis activation of potential diagnostic and prognostic value has been reported in several endocrine tumors in recent years. The ectopic GIPR expression seen in patients with overt Cushing syndrome and primary bilateral macronodular adrenal hyperplasia or unilateral cortisol-producing adenoma has been associated with an inverse rhythm of cortisol secretion, with low fasting morning plasma levels that increase after eating. On the other hand, most acromegalic patients with an unusual GH response to oral glucose suppression have GIPR-positive somatotropinomas, and a milder phenotype, and are more responsive to medical treatment. Neuroendocrine tumors are characterized by a strong GIPR expression that may correlate positively or inversely with the proliferative index MIB-1, and that seems an attractive target for developing novel radioligands. The main purpose of this review is to summarize the role of the GIP/GIPR axis in endocrine neoplasia, in the experimental and the clinical settings.
Collapse
Affiliation(s)
- Daniela Regazzo
- Department of Medicine Endocrinology Unit, Padova University Hospital, Padova, Italy
| | - Mattia Barbot
- Department of Medicine Endocrinology Unit, Padova University Hospital, Padova, Italy
| | - Carla Scaroni
- Department of Medicine Endocrinology Unit, Padova University Hospital, Padova, Italy
| | - Nora Albiger
- Endocrinology Service, ULSS 6 Euganea, Padova, Italy
| | - Gianluca Occhi
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Reubi JC, Fourmy D, Cordomi A, Tikhonova IG, Gigoux V. GIP receptor: Expression in neuroendocrine tumours, internalization, signalling from endosomes and structure-function relationship studies. Peptides 2020; 125:170229. [PMID: 31857104 DOI: 10.1016/j.peptides.2019.170229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
GIP is well known as a peptide regulating metabolic functions. In this review paper, we summarize a series of data on GIP receptor (GIPR). First, expression study of GIPR in human neuroendocrine tumours showed a very high incidence (nearly 100%) and a high density in both functional and non functional pancreatic tumours, ileal tumours, bronchial tumours and medullary thyroid carcinomas. Then, data on internalization of GIPR following stimulation by GIP are reported. Rapid and abundant internalization of GIPR also found in tumor pancreatic endocrine cells opens the possibility of tumor imaging and eradication using radiolabeled GIP. Interestingly, internalized GIPR continues to signal in early endosomes stimulating production of cAMP and activation of PKA, thus, supporting the view that GIPR signals from both plasma membrane and vesicles of internalization. At last, we summarize data from studies using in synergy molecular modeling and site-directed mutagenesis, which identified crucial amino acids of transmembrane domains of GIPR involved in GIPR binding site of GIP and/or in its activation and coupling to Gs protein. All together, these last molecular data may help to better understand structure-activity relationship data on GIP and GIPR.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland.
| | - Daniel Fourmy
- LPCNO, ERL 1226 INSERM, Université De Toulouse, CNRS, INSA, UPS, 135 Avenue De RAngueil, 31077 Toulouse, France.
| | - Arnau Cordomi
- Laboratori De Medicina Computacional, Unitat De Bioestadística, Facultat De Medicina, Universitat Autònoma De Barcelona, Barcelona, Spain.
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | - Véronique Gigoux
- LPCNO, ERL 1226 INSERM, Université De Toulouse, CNRS, INSA, UPS, 135 Avenue De RAngueil, 31077 Toulouse, France.
| |
Collapse
|
19
|
Willekens SMA, Joosten L, Boerman OC, Brom M, Gotthardt M. Characterization of 111In-labeled Glucose-Dependent Insulinotropic Polypeptide as a Radiotracer for Neuroendocrine Tumors. Sci Rep 2018; 8:2948. [PMID: 29440684 PMCID: PMC5811606 DOI: 10.1038/s41598-018-21259-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
Somatostatin receptor targeting is considered the standard nuclear medicine technique for visualization of neuroendocrine tumors (NET). Since not all NETs over-express somatostatin receptors, the search for novel targets, visualizing these NETs, is ongoing. Many NETs, expressing low somatostatin receptor levels, express glucose-dependent insulinotropic polypeptide (GIP) receptors (GIPR). Here, we evaluated the performance of [Lys37(DTPA)]N-acetyl-GIP1-42, a newly synthesized GIP analogue to investigate whether NET imaging via GIPR targeting is feasible. Therefore, [Lys37(DTPA)]N-acetyl-GIP1-42 was radiolabeled with 111In with specific activity up to 1.2 TBq/µmol and both in vitro and in vivo receptor targeting properties were examined. In vitro, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 showed receptor-mediated binding to BHK-GIPR positive cells, NES2Y cells and isolated islets. In vivo, both NES2Y and GIPR-transfected BHK tumors were visualized on SPECT/CT. Furthermore, co-administration of an excess unlabeled GIP1-42 lowered tracer uptake from 0.7 ± 0.2%ID/g to 0.6 ± 0.01%ID/g (p = 0.78) in NES2Y tumors and significantly lowered tracer uptake from 3.3 ± 0.8 to 0.8 ± 0.2%ID/g (p = 0.0001) in GIPR-transfected BHK tumors. In conclusion, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 shows receptor-mediated binding in various models. Furthermore, both GIPR-transfected BHK tumors and NES2Y tumors were visible on SPECT/CT using this tracer. Therefore, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 SPECT seems promising for visualization of somatostatin receptor negative NETs.
Collapse
Affiliation(s)
- Stefanie M A Willekens
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands. .,Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals and KU Leuven, Leuven, Belgium.
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Reubi JC, Maecke HR. Approaches to Multireceptor Targeting: Hybrid Radioligands, Radioligand Cocktails, and Sequential Radioligand Applications. J Nucl Med 2017; 58:10S-16S. [DOI: 10.2967/jnumed.116.186882] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023] Open
|
21
|
Fani M, Peitl PK, Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2017; 10:E30. [PMID: 28295000 PMCID: PMC5374434 DOI: 10.3390/ph10010030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.
Collapse
Affiliation(s)
- Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
| | - Petra Kolenc Peitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
22
|
Ito T, Jensen RT. Molecular imaging in neuroendocrine tumors: recent advances, controversies, unresolved issues, and roles in management. Curr Opin Endocrinol Diabetes Obes 2017; 24:15-24. [PMID: 27875420 PMCID: PMC5195891 DOI: 10.1097/med.0000000000000300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The purpose is to review recent advances in molecular imaging of neuroendocrine tumors (NETs), discuss unresolved issues, and review how these advances are affecting clinical management. RECENT FINDINGS Molecular imaging of NETs underwent a number of important changes in the last few years, leading to some controversies, unresolved issues, and significant changes in clinical management. The most recent changes are reviewed in this article. Particularly important is the rapid replacement in somatostatin receptor scintigraphy of In-diethylenetriamine penta-acetic acid-single-photon emission computed tomography/computed tomography (CT) by Ga-fluorodopa(F-D)PA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide-PET/CT imaging, which is now approved in many countries including the USA. Numerous studies in many different types of NETs demonstrate the greater sensitivity of Ga-DOTA-peptide PET/CT, its high specificity, and its impact on management. Other important developments in somatostatin receptor scintigraphy/molecular imaging include demonstrating the prognostic value of both Ga-DOTA-peptide PET/CT and F-fluoro-deoxyglucose PET/CT; how their use can be complementary; comparing the sensitivities and usefulness of Ga-DOTA-peptide PET/CT and F-FDOPA PET/CT; introducing new linkers and radiolabeled ligands such as Cu-DOTA-peptides with a long half-life, enhancing utility; and the introduction of somatostatin receptor antagonists which show enhanced uptake by NETs. In addition, novel ligands which interact with other receptors (GLP-1, bombesin, cholecystokinin, gastric inhibitory polpeptide, integrin, chemokines) are described, which show promise in the imaging of both NETs and other tumors. SUMMARY Molecular imaging is now required for all aspects of the management of patients with NETs. Its results are essential not only for the proper diagnostic management of the patient, but also for assessing whether the patient is a candidate for peptide receptor radionuclide therapy with Lu and also for providing prognostic value.
Collapse
Affiliation(s)
- Tetsuhide Ito
- aDepartment of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan bDigestive Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
23
|
Crabtree JS. Clinical and Preclinical Advances in Gastroenteropancreatic Neuroendocrine Tumor Therapy. Front Endocrinol (Lausanne) 2017; 8:341. [PMID: 29255447 PMCID: PMC5722794 DOI: 10.3389/fendo.2017.00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
The molecular events leading to gastroenteropancreatic neuroendocrine tumor (GEP-NET) formation are largely unknown. Over the past decades, systemic chemotherapies have been replaced by therapies directed at particular molecular targets such as the somatostatin receptors, mTOR complexes or proangiogenic molecules. These approaches have demonstrated some success in subtypes of this heterogeneous tumor group, but responses are still widely varied. This review highlights the clinical trials ongoing for neuroendocrine tumors (NETs) and includes emerging immunotherapy, which holds great promise for NETs based on successes in other tumor types. Current avenues of preclinical research, including Notch and PI3K/AKT, will lead to additional targeted therapies based on genome-wide studies that have cast a wide net in the search for driver mutations. Future preclinical and clinical investigations are required to identify those mutations predictive of therapeutic response or disease progression. Results of current clinical trials outlined here will better inform patient management with respect to agent selection, timing, duration and combination therapy in the treatment of NETs.
Collapse
Affiliation(s)
- Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Judy S. Crabtree,
| |
Collapse
|
24
|
Baumann T, Rottenburger C, Nicolas G, Wild D. Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - Imaging and staging. Best Pract Res Clin Endocrinol Metab 2016; 30:45-57. [PMID: 26971843 DOI: 10.1016/j.beem.2016.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Detection of gastroenteropancreatic neuroendocrine tumours (GEP-NETs) and monitoring of treatment response relies mainly on morphological imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). Molecular imaging techniques also in combination with CT (hybrid imaging) greatly benefit patient management, including better localization of occult tumours and better staging. Somatostatin receptor scintigraphy (SRS) and somatostatin receptor (SSTR) positron emission tomography (PET) play a central role in the diagnostic work-up of patients with well-differentiated GEP-NETs. SSTR PET/CT is superior to SRS and should be used whenever available. (18)F-DOPA and (18)F-FDG PET/CT is inferior to SSTR PET/CT at least in patients with well-differentiated GEP-NETs. Both SSTR PET/CT and SRS have limitations, such as relatively low detection rate of benign insulinomas, poorly differentiated GEP-NETs and liver metastases. New innovations such as SSTR PET/MRI, radiolabelled SSTR antagonists and glucagon-like peptide-1 receptor (GLP-1R) agonists might further improve imaging of GEP-NETs.
Collapse
Affiliation(s)
- Tobias Baumann
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland
| | - Christof Rottenburger
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland; Center of Neuroendocrine and Endocrine Tumors, University of Basel Hospital, Basel, Switzerland
| | - Guillaume Nicolas
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland; Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
| | - Damian Wild
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland; Center of Neuroendocrine and Endocrine Tumors, University of Basel Hospital, Basel, Switzerland.
| |
Collapse
|
25
|
Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, Oukrif D, Mandair D, Pericleous M, Mohmaduvesh M, Serra S, Ogunbiyi O, Novelli M, Luong T, Asa SL, Kulke M, Toumpanakis C, Meyer T, Caplin M, Meyerson M, Beck S, Thirlwell C. Prognostic Impact of Novel Molecular Subtypes of Small Intestinal Neuroendocrine Tumor. Clin Cancer Res 2016; 22:250-8. [PMID: 26169971 DOI: 10.1158/1078-0432.ccr-15-0373] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Small intestinal neuroendocrine tumors (SINET) are the commonest malignancy of the small intestine; however, underlying pathogenic mechanisms remain poorly characterized. Whole-genome and -exome sequencing has demonstrated that SINETs are mutationally quiet, with the most frequent known mutation in the cyclin-dependent kinase inhibitor 1B gene (CDKN1B) occurring in only ∼8% of tumors, suggesting that alternative mechanisms may drive tumorigenesis. The aim of this study is to perform genome-wide molecular profiling of SINETs in order to identify pathogenic drivers based on molecular profiling. This study represents the largest unbiased integrated genomic, epigenomic, and transcriptomic analysis undertaken in this tumor type. EXPERIMENTAL DESIGN Here, we present data from integrated molecular analysis of SINETs (n = 97), including whole-exome or targeted CDKN1B sequencing (n = 29), HumanMethylation450 BeadChip (Illumina) array profiling (n = 69), methylated DNA immunoprecipitation sequencing (n = 16), copy-number variance analysis (n = 47), and Whole-Genome DASL (Illumina) expression array profiling (n = 43). RESULTS Based on molecular profiling, SINETs can be classified into three groups, which demonstrate significantly different progression-free survival after resection of primary tumor (not reached at 10 years vs. 56 months vs. 21 months, P = 0.04). Epimutations were found at a recurrence rate of up to 85%, and 21 epigenetically dysregulated genes were identified, including CDX1 (86%), CELSR3 (84%), FBP1 (84%), and GIPR (74%). CONCLUSIONS This is the first comprehensive integrated molecular analysis of SINETs. We have demonstrated that these tumors are highly epigenetically dysregulated. Furthermore, we have identified novel molecular subtypes with significant impact on progression-free survival.
Collapse
Affiliation(s)
- Anna Karpathakis
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom
| | | | | | - Andrew Feber
- University College London, London, United Kingdom
| | | | - Joshua Francis
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Dalvinder Mandair
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom
| | | | | | - Stefano Serra
- UHN Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | | | - Sylvia L Asa
- UHN Princess Margaret Cancer Centre, Toronto, Canada
| | - Matthew Kulke
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Tim Meyer
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom
| | | | - Matthew Meyerson
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Stephan Beck
- University College London, London, United Kingdom
| | - Christina Thirlwell
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom.
| |
Collapse
|
26
|
Abstract
Neuroendocrine tumors (NET) are characterized by a high over-expression of many different peptide hormone receptors. These receptors represent important molecular targets for imaging and therapy, using either radiolabeled or cold peptide analogs. The clinically best established example is somatostatin receptor targeting. A relatively new application is glucagon-like peptide 1 (GLP-1) receptor-targeted imaging of insulinomas, which is highly sensitive. A potential future candidate for peptide receptor targeting is the gastric inhibitory peptide (GIP) receptor. It was recently found to exhibit a very wide expression in NET and may be a particularly suitable target in somatostatin and GLP-1 receptor negative tumors. With increasing use of peptide receptor targeting, reliable morphologic in vitro tools to assess peptide receptors in tissues are mandatory, such as in vitro receptor autoradiography or thoroughly established immunohistochemical procedures.
Collapse
Affiliation(s)
- Meike Körner
- Pathologie Länggasse, CH-3001 Bern, Switzerland.
| |
Collapse
|
27
|
Ismail S, Dubois-Vedrenne I, Laval M, Tikhonova IG, D'Angelo R, Sanchez C, Clerc P, Gherardi MJ, Gigoux V, Magnan R, Fourmy D. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist. Mol Cell Endocrinol 2015. [PMID: 26225752 DOI: 10.1016/j.mce.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.
Collapse
Affiliation(s)
- Sadek Ismail
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France
| | | | - Marie Laval
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France
| | - Irina G Tikhonova
- Molecular Therapeutics, School of Pharmacy, Queen's University of Belfast, North Ireland, UK
| | - Romina D'Angelo
- Cellular Imaging Facility Rangueil, Inserm U1048/I2MC, Toulouse, France
| | - Claire Sanchez
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France
| | - Pascal Clerc
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France
| | | | - Véronique Gigoux
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France
| | - Remi Magnan
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France
| | - Daniel Fourmy
- Université de Toulouse 3, EA 4552, Inserm U1048/I2MC, Toulouse, France.
| |
Collapse
|
28
|
Reubi JC, Waser B. Triple-Peptide Receptor Targeting In Vitro Allows Detection of All Tested Gut and Bronchial NETs. J Nucl Med 2015; 56:613-5. [DOI: 10.2967/jnumed.114.153189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023] Open
|
29
|
Körner M, Waser B, Reubi JC. Does somatostatin or gastric inhibitory peptide receptor expression correlate with tumor grade and stage in gut neuroendocrine tumors? Neuroendocrinology 2015; 101:45-57. [PMID: 25591947 DOI: 10.1159/000371804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Important characteristics of neuroendocrine neoplasms (NEN) for prognosis and therapeutic decisions are the MIB-1 proliferative index (tumor grade) and tumor stage. Moreover, these tumors express peptide hormone receptors like somatostatin and gastric inhibitory peptide (GIP) receptors which represent important established and potential future targets, respectively, for molecular imaging and radiotherapy. However, the interrelation between tumor proliferation, stage, and peptide receptor amounts has never been assessed. METHODS In 114 gastrointestinal and bronchopulmonary NEN, the proliferative rate assessed with MIB-1 immunohistochemistry and tumor stage were compared with the somatostatin type 2 receptor (sst2) and GIP receptor expression measured quantitatively with in vitro receptor autoradiography. RESULTS NEN generally showed high sst2 and GIP receptor expression. GIP receptor but not sst2 expression correlated with the MIB-1 index. GIP receptor levels gradually increased in a subset of insulinomas and nonfunctioning pancreatic NEN, and decreased in ileal and bronchopulmonary NEN with increasing MIB-1 rate. MIB-1 levels were identified, above which GIP receptor levels were consistently high or low. These MIB-1 levels were clearly different from those defining tumor grade. In grade 3 NEN, GIP receptor levels were always low, while sst2 levels were variable and sometimes extremely high. Conversely, sst2 expression correlated more frequently with tumor stage than GIP receptor expression, with metastasized NEN showing higher sst2 levels than localized tumors. CONCLUSIONS sst2, a clinically crucial molecular target, shows variable and unpredictable expression in NEN irrespective of tumor grade. Therefore, each NEN should be tested for sst2 if clinical applications with somatostatin analogs are considered. Conversely, the potential future role of GIP receptors as molecular targets in NEN may be dependent on the MIB-1 level.
Collapse
Affiliation(s)
- Meike Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
30
|
Morgat C, Mishra AK, Varshney R, Allard M, Fernandez P, Hindié E. Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med 2014; 55:1650-7. [PMID: 25189338 DOI: 10.2967/jnumed.114.142000] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Receptors for some regulatory peptides are highly expressed in tumors. Selective radiolabeled peptides can bind with high affinity and specificity to these receptors and exhibit favorable pharmacologic and pharmacokinetic properties, making them suitable agents for imaging or targeted therapy. The success encountered with radiolabeled somatostatin analogs is probably the first of a long list, as multiple peptide receptors are now recognized as potential targets. This review focuses on 3 neuropeptide receptor systems (bombesin, neurotensin, and neuropeptide-Y) that offer high potential in the field of nuclear oncology. The underlying biology of these peptide/receptor systems, their physiologic and pathologic roles, and their differential distribution in normal and tumoral tissues are described with emphasis on breast, prostate, and lung cancers. Radiolabeled analogs that selectively target these receptors are highlighted.
Collapse
Affiliation(s)
- Clément Morgat
- CHU de Bordeaux, Service de Médecine Nucléaire, Bordeaux, France University of Bordeaux, INCIA, UMR 5287, Talence, France CNRS, INCIA, UMR 5287, Talence, France
| | - Anil Kumar Mishra
- University of Bordeaux, INCIA, UMR 5287, Talence, France CNRS, INCIA, UMR 5287, Talence, France Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India; and
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India; and
| | - Michèle Allard
- CHU de Bordeaux, Service de Médecine Nucléaire, Bordeaux, France University of Bordeaux, INCIA, UMR 5287, Talence, France EPHE, Bordeaux, France
| | - Philippe Fernandez
- CHU de Bordeaux, Service de Médecine Nucléaire, Bordeaux, France University of Bordeaux, INCIA, UMR 5287, Talence, France CNRS, INCIA, UMR 5287, Talence, France
| | - Elif Hindié
- CHU de Bordeaux, Service de Médecine Nucléaire, Bordeaux, France University of Bordeaux, INCIA, UMR 5287, Talence, France CNRS, INCIA, UMR 5287, Talence, France
| |
Collapse
|