1
|
Temme S, Kleimann P, Tiren ZB, Bouvain P, Zielinski A, Dollmeyer W, Poth S, Görges J, Flögel U. Imaging of Thromboinflammation by Multispectral 19F MRI. Int J Mol Sci 2025; 26:2462. [PMID: 40141106 PMCID: PMC11942564 DOI: 10.3390/ijms26062462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The close interplay between thrombotic and immunologic processes plays an important physiological role in the immune defence after tissue injury and has the aim to reduce damage and to prevent the spread of invading pathogens. However, the uncontrolled or exaggerated activation of these processes can lead to pathological thromboinflammation. Thromboinflammation has been shown to worsen the outcome of cardiovascular, autoinflammatory, or even infectious diseases. Imaging of thromboinflammation is difficult because many clinically relevant imaging techniques can only visualize either inflammatory or thrombotic processes. One interesting option for the noninvasive imaging of thromboinflammation is multispectral 19F magnetic resonance imaging (MRI). Due to the large chemical shift range of the 19F atoms, it is possible to simultaneously visualize immune cells as well as thrombus components with specific 19F tracer that have individual spectral 19F signatures. Of note, the 19F signal can be easily quantified and a merging of the 19F datasets with the anatomical 1H MRI images enables precise anatomical localization. In this review, we briefly summarize the background of 19F MRI for inflammation imaging, active targeting approaches to visualize thrombi and specific immune cells, introduce studies about multispectral 19F MRI, and summarize one study that imaged thromboinflammation by multispectral 19F MRI.
Collapse
Affiliation(s)
- Sebastian Temme
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Zeynep-Büsra Tiren
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Arthur Zielinski
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - William Dollmeyer
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Sarah Poth
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Juliana Görges
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| |
Collapse
|
2
|
Izquierdo-Garcia D, Désogère P, Philip AL, Sosnovik DE, Catana C, Caravan P. First-in-human Evaluation of Safety and Dosimetry of [ 64Cu]FBP8: A fibrin-binding PET Probe. Mol Imaging Biol 2025; 27:99-108. [PMID: 39633070 DOI: 10.1007/s11307-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE This study presents for the first time in humans the biodistribution, clearance and dosimetry estimates of [64Cu]Fibrin Binding Probe #8 ([64Cu]FBP8) in healthy subjects. [64Cu]FBP8-PET previously demonstrated its potential in two recent applications: thrombus imaging and pulmonary fibrosis. PROCEDURES This prospective study included 8 healthy subjects to evaluate biodistribution, safety and dosimetry estimates of [64Cu]FBP8, a fibrin-binding positron emission tomography (PET) probe. All subjects underwent up to 3 sessions of PET/Magnetic Resonance Imaging (PET/MRI) 0-2 h, 4 h and 24 h post injection. Dosimetry estimates were obtained using OLINDA 2.2 software. RESULTS Subjects were injected with 400 MBq of [64Cu]FBP8. Subjects did not experience adverse effects due to the injection of the probe. [64Cu]FBP8 PET images demonstrated fast blood clearance (half-life = 67 min) and renal excretion of the probe, showing low background signal across the body. The organs with the higher doses were: the urinary bladder (0.075 vs. 0.091 mGy/MBq for males and females, respectively); the kidneys (0.050 vs. 0.056 mGy/MBq respectively); and the liver (0.027 vs. 0.035 mGy/MBq respectively). The combined mean effective dose for males and females was 0.016 ± 0.0029 mSv/MBq, lower than the widely used [18F]fluorodeoxyglucose ([18F]FDG, 0.020mSv/MBq). CONCLUSIONS This study demonstrates the following properties of the [64Cu]FBP8 probe: low dosimetry estimates; fast blood clearance and renal excretion; low background signal; and whole-body acquisition within 20 min in a single session. These properties provide the basis for [64Cu]FBP8 to be an excellent candidate for whole-body non-invasive imaging of fibrin, an important driver/feature in many cardiovascular, oncological and neurological conditions.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteen St. Suite 2301, Boston, MA, 02129, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Bioengineering Department, Universidad Carlos III, Madrid, Spain.
| | - Pauline Désogère
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteen St. Suite 2301, Boston, MA, 02129, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Anne L Philip
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteen St. Suite 2301, Boston, MA, 02129, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteen St. Suite 2301, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteen St. Suite 2301, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Izquierdo-Garcia D, Désogère P, Philip AL, Sosnovik DE, Catana C, Caravan P. Dosimetry of [ 64Cu]FBP8: a fibrin-binding PET probe. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309589. [PMID: 38978675 PMCID: PMC11230308 DOI: 10.1101/2024.06.27.24309589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Purpose This study presents the biodistribution, clearance and dosimetry estimates of [64Cu]Fibrin Binding Probe #8 ([64Cu]FBP8) in healthy subjects. Procedures This prospective study included 8 healthy subjects to evaluate biodistribution, safety and dosimetry estimates of [64Cu]FBP8, a fibrin-binding positron emission tomography (PET) probe. All subjects underwent up to 3 sessions of PET/Magnetic Resonance Imaging (PET/MRI) 0-2 hours, 4h and 24h post injection. Dosimetry estimates were obtained using OLINDA 2.2 software. Results Subjects were injected with ~400 MBq of [64Cu]FBP8. Subjects did not experience adverse effects due to the injection of the probe. [64Cu]FBP8 PET images demonstrated fast blood clearance (half-life = 67 min) and renal excretion of the probe, showing low background signal across the body. The organs with the higher doses were: the urinary bladder (0.075 vs. 0.091 mGy/MBq for males and females, respectively); the kidneys (0.050 vs. 0.056 mGy/MBq respectively); and the liver (0.027 vs. 0.035 mGy/MBq respectively). The combined mean effective dose for males and females was 0.016 ± 0.0029 mSv/MBq, lower than the widely used [18F]fluorodeoxyglucose ([18F]FDG, 0.020mSv/MBq). Conclusions This study demonstrates the following properties of the [64Cu]FBP8 probe: low dosimetry estimates; fast blood clearance and renal excretion; low background signal; and whole-body acquisition within 20 minutes in a single session. These properties provide the basis for [64Cu]FBP8 to be an excellent candidate for whole-body non-invasive imaging of fibrin, an important driver/feature in many cardiovascular, oncological and neurological conditions.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
- Bioengineering Department, Universidad Carlos III, Madrid, Spain
| | - Pauline Désogère
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| | - Anne L. Philip
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - David E. Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Cardiology Division, Dept. of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
4
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Alashi A, Vermillion BC, Sinusas AJ. The Potential Role of PET in the Management of Peripheral Artery Disease. Curr Cardiol Rep 2023; 25:831-839. [PMID: 37314651 PMCID: PMC11542486 DOI: 10.1007/s11886-023-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE OF REVIEW Current non-invasive tests for evaluating patients with peripheral artery disease (PAD) have significant limitations for early detection and management of patients with PAD and are generally focused on the evaluation of large vessel disease. PAD often involves disease of microcirculation and altered metabolism. Therefore, there is a critical need for reliable quantitative non-invasive tools that can assess limb microvascular perfusion and function in the setting of PAD. RECENT FINDINGS Recent developments in positron emission tomography (PET) imaging have enabled the quantification of blood flow to the lower extremities, the assessment of the viability of skeletal muscles, and the evaluation of vascular inflammation and microcalcification and angiogenesis in the lower extremities. These unique capabilities differentiate PET imaging from current routine screening and imaging methods. The purpose of this review is to highlight the promising role of PET in the early detection and management of PAD providing a summary of the current preclinical and clinical research related to PET imaging in patients with PAD and related advancement of PET scanner technology.
Collapse
Affiliation(s)
- Alaa Alashi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, DANA 3, New Haven, CT, 06520-8017, USA
| | - Billy C Vermillion
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, DANA 3, New Haven, CT, 06520-8017, USA
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, DANA 3, New Haven, CT, 06520-8017, USA.
| |
Collapse
|
6
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Wang X, Ziegler M, McFadyen JD, Peter K. Molecular Imaging of Arterial and Venous Thrombosis. Br J Pharmacol 2021; 178:4246-4269. [PMID: 34296431 DOI: 10.1111/bph.15635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Thrombosis contributes to one in four deaths worldwide and is the cause of a large proportion of mortality and morbidity. A reliable and rapid diagnosis of thrombosis will allow for immediate therapy, thereby providing significant benefits to patients. Molecular imaging is a fast-growing and captivating area of research, in both preclinical and clinical applications. Major advances have been achieved by improvements in three central areas of molecular imaging: 1) Better markers for diseases, with increased sensitivity and selectivity; 2) Optimised contrast agents with improved signal to noise ratio; 3) Progress in scanner technologies with higher sensitivity and resolution. Clinically available imaging modalities used for molecular imaging include, magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, as well as nuclear imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). In the preclinical imaging field, optical (fluorescence and bioluminescent) molecular imaging has provided new mechanistic insights in the pathology of thromboembolic diseases. Overall, the advances in molecular imaging, driven by the collaboration of various scientific disciplines, have substantially contributed to an improved understanding of thrombotic disease, and raises the exciting prospect of earlier diagnosis and individualised therapy for cardiovascular diseases. As such, these advances hold significant promise to be translated to clinical practice and ultimately to reduce mortality and morbidity in patients with thromboembolic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute
| | - James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Cardiometabolic Health, University of Melbourne.,Clinical Hematology Department, Alfred Hospital
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute.,Department of Medicine, Monash University.,Department of Cardiometabolic Health, University of Melbourne.,Department of Cardiology, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
8
|
Guo B, Li Z, Tu P, Tang H, Tu Y. Molecular Imaging and Non-molecular Imaging of Atherosclerotic Plaque Thrombosis. Front Cardiovasc Med 2021; 8:692915. [PMID: 34291095 PMCID: PMC8286992 DOI: 10.3389/fcvm.2021.692915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis in the context of atherosclerosis typically results in life-threatening consequences, including acute coronary events and ischemic stroke. As such, early detection and treatment of thrombosis in atherosclerosis patients is essential. Clinical diagnosis of thrombosis in these patients is typically based upon a combination of imaging approaches. However, conventional imaging modalities primarily focus on assessing the anatomical structure and physiological function, severely constraining their ability to detect early thrombus formation or the processes underlying such pathology. Recently, however, novel molecular and non-molecular imaging strategies have been developed to assess thrombus composition and activity at the molecular and cellular levels more accurately. These approaches have been successfully used to markedly reduce rates of atherothrombotic events in patients suffering from acute coronary syndrome (ACS) by facilitating simultaneous diagnosis and personalized treatment of thrombosis. Moreover, these modalities allow monitoring of plaque condition for preventing plaque rupture and associated adverse cardiovascular events in such patients. Sustained developments in molecular and non-molecular imaging technologies have enabled the increasingly specific and sensitive diagnosis of atherothrombosis in animal studies and clinical settings, making these technologies invaluable to patients' health in the future. In the present review, we discuss current progress regarding the non-molecular and molecular imaging of thrombosis in different animal studies and atherosclerotic patients.
Collapse
Affiliation(s)
- Bingchen Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiyang Tu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hao Tang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Ezeani M, Hagemeyer CE, Lal S, Niego B. Molecular imaging of atrial myopathy: Towards early AF detection and non-invasive disease management. Trends Cardiovasc Med 2020; 32:20-31. [DOI: 10.1016/j.tcm.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
|
10
|
Andrews JPM, Portal C, Walton T, Macaskill MG, Hadoke PWF, Alcaide Corral C, Lucatelli C, Wilson S, Wilson I, MacNaught G, Dweck MR, Newby DE, Tavares AAS. Non-invasive in vivo imaging of acute thrombosis: development of a novel factor XIIIa radiotracer. Eur Heart J Cardiovasc Imaging 2020; 21:673-682. [PMID: 31408105 PMCID: PMC7237957 DOI: 10.1093/ehjci/jez207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 08/07/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS Cardiovascular thrombosis is responsible a quarter of deaths annually worldwide. Current imaging methods for cardiovascular thrombosis focus on anatomical identification of thrombus but cannot determine thrombus age or activity. Molecular imaging techniques hold promise for identification and quantification of thrombosis in vivo. Our objective was to assess a novel optical and positron-emitting probe targeting Factor XIIIa (ENC2015) as biomarker of active thrombus formation. METHODS AND RESULTS Optical and positron-emitting ENC2015 probes were assessed ex vivo using blood drawn from human volunteers and passed through perfusion chambers containing denuded porcine aorta as a model of arterial injury. Specificity of ENC2015 was established with co-infusion of a factor XIIIa inhibitor. In vivo18F-ENC2015 biodistribution, kinetics, radiometabolism, and thrombus binding were characterized in rats. Both Cy5 and fluorine-18 labelled ENC2015 rapidly and specifically bound to thrombi. Thrombus uptake was inhibited by a factor XIIIa inhibitor. 18F-ENC2015 remained unmetabolized over 8 h when incubated in ex vivo human blood. In vivo, 42% of parent radiotracer remained in blood 60 min post-administration. Biodistribution studies demonstrated rapid clearance from tissues with elimination via the urinary system. In vivo,18F-ENC2015 uptake was markedly increased in the thrombosed carotid artery compared to the contralateral patent artery (mean standard uptake value ratio of 2.40 vs. 0.74, P < 0.0001). CONCLUSION ENC2015 rapidly and selectively binds to acute thrombus in both an ex vivo human translational model and an in vivo rodent model of arterial thrombosis. This probe holds promise for the non-invasive identification of thrombus formation in cardiovascular disease.
Collapse
Affiliation(s)
- Jack P M Andrews
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK, Corresponding author. Tel: +44 (77) 6688 5010; Fax: +131 242 6379. E-mail:
| | - Christophe Portal
- Edinburgh Molecular Imaging Ltd., 9 Little France Road, Edinburgh, UK
| | - Tashfeen Walton
- Edinburgh Imaging facility QMRI, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Mark G Macaskill
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| | - Patrick W F Hadoke
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| | - Carlos Alcaide Corral
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| | - Christophe Lucatelli
- Edinburgh Imaging facility QMRI, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Simon Wilson
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| | - Ian Wilson
- ImaginAb, Inc. U.S. 43 Hindry Avenue, Suite D, Inglewood, California, USA
| | - Gillian MacNaught
- Edinburgh Imaging facility QMRI, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| | - Adriana A S Tavares
- BHF Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh, UK
| |
Collapse
|
11
|
Xu J, Zhou J, Zhong Y, Zhang Y, Ye M, Hou J, Wang Z, Ran H, Liu J, Guo D. EWVDV-Mediated Platelet-Targeting Nanoparticles for the Multimodal Imaging of Thrombi at Different Blood Flow Velocities. Int J Nanomedicine 2020; 15:1759-1770. [PMID: 32214809 PMCID: PMC7083630 DOI: 10.2147/ijn.s233968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background There have been many recent reports of molecular probes for thrombi but with unsatisfactory in vivo targeting effects, which could be related to the blood flow velocity in vivo. Therefore, it is worth explaining the relationship between the targeting effect and the blood flow velocity. Methods and Materials In this study, we constructed a platelet-targeting nanoparticle (NP) based on EWVDV for targeting P-selectin combined with the phase transition material perfluorohexane and India ink to achieve the multimodal imaging of thrombi. We studied the targeting effect of the NPs for rabbit blood thrombi under different flow velocities simulating blood flow velocities in vivo. Results The results show the successful fabrication of NPs with the ability to undergo a phase transition via low-intensity focused ultrasound irradiation to achieve ultrasound imaging and with a high binding affinity for activated platelets. In vitro, low flow velocities (20 cm/s) hardly affected the targeting effect of the NPs, while moderate flow velocities (40 cm/s) reduced the number of NPs that target thrombi by 52.6% comparing to static fluid (0 cm/s). High flow velocities (60 cm/s) greatly reduced the targeting effect of the NPs by 83.5%. Conclusion These results can serve as a reference for the design of NPs targeting thrombi at different sites and in different blood vessel types according to the blood flow velocity, thereby establishing a foundation for in vivo experiments.
Collapse
Affiliation(s)
- Jie Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Zhong
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Man Ye
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingxin Hou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haitao Ran
- Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jia Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Synthesis and Preclinical Evaluation of the Fibrin-Binding Cyclic Peptide 18F-iCREKA: Comparison with Its Contrasted Linear Peptide. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:6315954. [PMID: 31346326 PMCID: PMC6620859 DOI: 10.1155/2019/6315954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Purpose Cys-Arg-Glu-Lys-Ala (CREKA) is a pentapeptide which can target fibrin-fibronectin complexes. Our previous study has built a probe called iCREKA which was based on CREKA and has proved the feasibility and specificity of iCREKA by the fluorescence experiment. The purpose of this study is to achieve the 18F-labeled iCREKA and make preclinical evaluation of the 18F-iCREKA with comparison of its contrasted linear peptide (LP). Methods CREKA, LP, and iCREKA were labeled by the Al18F labeling method, respectively. These 18F-labeled peptides were evaluated by the radiochemistry, binding affinity, in vitro stability, in vivo stability, micro-PET imaging, and biodistribution tests. Results 18F-NOTA-iCREKA was stable both in vitro and in vivo. However, 18F-NOTA-CREKA and 18F-NOTA-LP were both unstable. The FITC or 18F-labeled iCREKA could be abundantly discovered only in matrix metalloproteinases- (MMPs-) 2/9 highly expressed U87MG cells, while the FITC or 18F-labeled LP could also be abundantly discovered in MMP-2/9 lowly expressed Caov3 cells. Biodistribution and micropositron emission tomography (PET) imaging revealed that the U87MG xenografts showed a higher uptake of 18F-NOTA-iCREKA than 18F-NOTA-LP while the Caov3 xenografts showed very low uptake of both 18F-NOTA-iCREKA and 18F-NOTA-LP. The tumor-to-muscle (T/M) ratio of 18F-NOTA-iCREKA (9.93 ± 0.42) was obviously higher than 18F-NOTA-LP (2.69 ± 0.35) in U87MG xenografts. Conclusions The novel CREKA-based probe 18F-NOTA-iCREKA could get a high uptake in U87MG cells and high T/M ratio in U87MG mice. It was more stable and specific than the 18F-NOTA-LP.
Collapse
|
13
|
Abstract
Purpose of Review A variety of approaches and molecular targets have emerged in recent years for radionuclide-based imaging of atherosclerosis and vulnerable plaque using single photon emission computed tomography (SPECT) and positron emission tomography (PET), with numerous methods focused on characterizing the mechanisms underlying plaque progression and rupture. This review highlights the ongoing developments in both the preclinical and clinical environment for radionuclide imaging of atherosclerosis and atherothrombosis. Recent Findings Numerous physiological processes responsible for the evolution of high-risk atherosclerotic plaque, such as inflammation, thrombosis, angiogenesis, and microcalcification, have been shown to be feasible targets for SPECT and PET imaging. For each physiological process, specific molecular markers have been identified that allow for sensitive non-invasive detection and characterization of atherosclerotic plaque. Summary The capabilities of SPECT and PET imaging continue to evolve for physiological evaluation of atherosclerosis. This review summarizes the latest developments related to radionuclide imaging of atherothrombotic diseases.
Collapse
|
14
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Knight JC, Mosley MJ, Kersemans V, Dias GM, Allen PD, Smart S, Cornelissen B. Dual-isotope imaging allows in vivo immunohistochemistry using radiolabelled antibodies in tumours. Nucl Med Biol 2019; 70:14-22. [PMID: 30825614 PMCID: PMC6599172 DOI: 10.1016/j.nucmedbio.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
Abstract
While radiolabelled antibodies have found great utility as PET and SPECT imaging agents in oncological investigations, a notable shortcoming of these agents is their propensity to accumulate non-specifically within tumour tissue. The degree of this non-specific contribution to overall tumour uptake is highly variable and can ultimately lead to false conclusions. Therefore, in an effort to obtain a reliable measure of inter-individual differences in non-specific tumour uptake of radiolabelled antibodies, we demonstrate that the use of dual-isotope imaging overcomes this issue, enables true quantification of epitope expression levels, and allows non-invasive in vivo immunohistochemistry. The approach involves co-administration of (i) an antigen-targeting antibody labelled with zirconium-89 (89Zr), and (ii) an isotype-matched non-specific control IgG antibody labelled with indium-111 (111In). As an example, the anti-HER2 antibody trastuzumab was radiolabelled with 89Zr, and co-administered intravenously together with its 111In-labelled non-specific counterpart to mice bearing human breast cancer xenografts with differing HER2 expression levels (MDA-MB-468 [HER2-negative], MDA-MB-231 [low-HER2], MDA-MB-231/H2N [medium-HER2], and SKBR3 [high-HER2]). Simultaneous PET/SPECT imaging using a MILabs Vector4 small animal scanner revealed stark differences in the intratumoural distribution of [89Zr]Zr-trastuzumab and [111In]In-IgG, highlighting regions of HER2-mediated uptake and non-specific uptake, respectively. Normalisation of the tumour uptake values and tumour-to-blood ratios obtained with [89Zr]Zr-trastuzumab against those obtained with [111In]In-IgG yielded values which were most strongly correlated (R = 0.94; P = 0.02) with HER2 expression levels for each breast cancer type determined by Western blot and in vitro saturation binding assays, but not non-normalised uptake values. Normalised intratumoural distribution of [89Zr]Zr-trastuzumab correlated well with intratumoural heterogeneity HER2 expression.
Collapse
Affiliation(s)
- James C Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael J Mosley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gemma M Dias
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - P Danny Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Boros E, Pinkhasov OR, Caravan P. Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes. EJNMMI Radiopharm Chem 2018; 3:2. [PMID: 29503859 PMCID: PMC5824709 DOI: 10.1186/s41181-017-0037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Methods Two known peptide-DOTA conjugates were chelated with natGa and natIn. Limit of detection of HPLC-ICP-MS for 69Ga and 115In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. Results The limits of detection were 0.16 pmol for 115In and 0.53 pmol for 69Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. Conclusions HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.
Collapse
Affiliation(s)
- Eszter Boros
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129 USA.,3Present address: Department of Chemistry, Stony Brook University, 100 Nicolls road, Stony Brook, New York, NY 11790 USA
| | - Omar R Pinkhasov
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129 USA
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129 USA.,2Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Building 149, Room 2301, 13th Street, Charlestown, Boston, MA 02129 USA
| |
Collapse
|
17
|
Abstract
The development of new methods to image the onset and progression of thrombosis is an unmet need. Non-invasive molecular imaging techniques targeting specific key structures involved in the formation of thrombosis have demonstrated the ability to detect thrombus in different disease state models and in patients. Due to its high concentration in the thrombus and its essential role in thrombus formation, the detection of fibrin is an attractive strategy for identification of thrombosis. Herein we provide an overview of recent and selected fibrin-targeted probes for molecular imaging of thrombosis by magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical techniques. Emphasis is placed on work that our lab has explored over the last 15 years that has resulted in the progression of the fibrin-binding PET probe [64Cu]FBP8 from preclinical studies into human trials.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | |
Collapse
|
18
|
van Mourik TR, Claesener M, Nicolay K, Grüll H. Development of a novel, fibrin-specific PET tracer. J Labelled Comp Radiopharm 2017; 60:286-293. [DOI: 10.1002/jlcr.3501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tiemen R. van Mourik
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
| | - Michael Claesener
- Department of Nuclear Medicine; University of Münster; Münster Germany
| | - Klaas Nicolay
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
- Department of Oncology Solutions; Philips Research; Eindhoven The Netherlands
| |
Collapse
|
19
|
Wang X, Peter K. Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arterioscler Thromb Vasc Biol 2017; 37:1029-1040. [PMID: 28450298 DOI: 10.1161/atvbaha.116.306483] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Abstract
Thromboembolic disorders are a major cause of morbidity and mortality worldwide. The progress in noninvasive imaging techniques has led to the development of radionuclide imaging based on SPECT and PET approaches to observe molecular and cellular processes that may underlie the onset and progression of disease. The advantages of using normal and genetically modified small animal research have spurred the development of dedicated small animal imaging systems. Animal models of venous and arterial thrombosis are largely used and have improved our understanding of the etiology and pathogenesis of thrombosis. Here, we review the literature regarding nuclear imaging of thrombosis in mice and rats.
Collapse
Affiliation(s)
- Marie-Cécile Valéra
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,b Faculté de Chirurgie Dentaire, Université de Toulouse III , Toulouse , France
| | - Bernard Payrastre
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,c Laboratoire d'Hématologie CHU de Toulouse , Toulouse , France
| | - Olivier Lairez
- a Inserm, U1048 and Université Toulouse III , I2MC, Toulouse , France.,d Fédération des services de cardiologie, Département de Médecine Nucléaire Centre d'imagerie cardiaque, CHU de Toulouse , Toulouse , France
| |
Collapse
|