1
|
Jaakkola MK, Rivera Pineda MX, Díaz R, Rantala M, Jalo A, Kärpijoki H, Saari T, Maaniitty T, Keller T, Louhi H, Wahlroos S, Haaparanta-Solin M, Solin O, Hentilä J, Helin JS, Nissinen TA, Eskola O, Rajander J, Knuuti J, Virtanen KA, Hannukainen JC, López-Picón F, Klén R. Comparison of Automatic Segmentation and Preprocessing Approaches for Dynamic Total-Body 3D Pet Images with Different Pet Tracers. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01540-4. [PMID: 40425962 DOI: 10.1007/s10278-025-01540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/11/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
Segmentation is a routine step in PET image analysis, and few automatic tools have been developed for it. However, excluding supervised methods with their own limitations, they are typically designed for older, small images and the implementations are no longer publicly available. Here, we test if different commonly used building blocks of the automatic methods work with large modern total-body PET images. Dynamic total-body images from five different datasets are used for evaluation purposes, and the tested algorithms cover wide range of different preprocessing approaches and unsupervised segmentation methods. The validation is done by comparing the obtained segments to manually drawn ones using Jaccard index, Dice score, precision, and recall as measures of match. Out of the 17 considered segmentation methods, only 6 were computationally usable and provided enough segments for the needs of this study. Among these six feasible methods, hierarchical clustering and HDBSCAN had systematically the lowest Jaccard indices with the manual segmentations, whereas both GMM and k-means had median Jaccards of 0.58 over different organ segments and data sets. GMM outperformed k-means in human data, but with rat images, the two methods had equally good performance k-means having slightly stronger precision and GMM recall. We conclude that most of the commonly used unsupervised segmentation methods are computationally infeasible with the modern PET images, classical clustering algorithms k-means and especially Gaussian mixture model being the most promising candidates for further method development. Even though preprocessing, particularly denoising, improved the results, small organs remained difficult to segment.
Collapse
Affiliation(s)
- Maria K Jaakkola
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland.
| | | | - Rafael Díaz
- Biomedical Imaging, Åbo Akademi University, Turku, Finland
| | - Maria Rantala
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Anna Jalo
- MediCity Research Laboratory, University of Turku, Turku, Finland
- PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Henri Kärpijoki
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Teemu Saari
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Heli Louhi
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Saara Wahlroos
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- MediCity Research Laboratory, University of Turku, Turku, Finland
- PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Jaakko Hentilä
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Jatta S Helin
- MediCity Research Laboratory, University of Turku, Turku, Finland
- PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Tuuli A Nissinen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylän, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
| | - Francisco López-Picón
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku, Åbo Akademi University, and Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Balayeva T, Asch RH, Tan PW, Mennie W, Tong J, Chen B, Zhuang Z, Zheng C, Zheng M, Toyonaga T, Cai Z. Evaluation of radio-thin-layer chromatography as an alternative to radio-HPLC for [ 18F]SynVesT-1 metabolism analysis in rats. Nucl Med Biol 2025; 146-147:109029. [PMID: 40383020 DOI: 10.1016/j.nucmedbio.2025.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Alterations in synaptic vesicle glycoprotein 2A (SV2A) are linked to various neurodegenerative and neuropsychiatric disorders. Positron emission tomography (PET) imaging with radiotracers targeting SV2A, such as [18F]SynVesT-1, has proven effective for monitoring these changes. However, SV2A PET quantification using kinetic modeling requires radiometabolite analysis, which presents challenges, particularly in preclinical longitudinal studies due to the relatively large sample volume required by the standard radio-high-performance liquid chromatography (radio-HPLC) method. This study aimed to evaluate radio-thin layer chromatography combined with autoradiography (radio-TLC/AR) as an alternative to radio-HPLC in rat plasma radiometabolite analysis. METHODS All rats received intravenous infusions of [18F]SynVesT-1. Arterial blood samples were collected at predetermined time points for up to 60 min post injection. [18F]SynVesT-1 radiometabolites in plasma and brain were assessed using both radio-HPLC and radio-TLC/AR. RESULTS We observed a decline in [18F]SynVesT-1 plasma concentrations within the first 5 min post-injection. The parent fractions obtained by the radio-HPLC method significantly correlated with those obtained using radio-TLC/AR (R2 = 0.99, p < 0.0001). While radio-HPLC detected minimal radiometabolites in the brain (1.34 % ± 0.83 %, n = 4), these radiometabolites were not identifiable in selected brain regions using the radio-TLC/AR method (n = 1). CONCLUSION We were able to reliably evaluate the parent fractions of [18F]SynVesT-1 in plasma over a 60-min period using normal-phase radio-TLC/AR as an alternative to radio-HPLC. This approach requires less plasma and is less time-consuming with high reproducibility. Future studies will focus on applying this radio-TLC/AR method for metabolism correction of input functions, in the quantitative analysis of PET imaging data using kinetic modeling.
Collapse
Affiliation(s)
- Tutukhanim Balayeva
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Faculty of Medicine, Eberhard Karls Universität Tübingen, Baden-Württemberg, Germany
| | - Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Peng Wen Tan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - William Mennie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Jie Tong
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Baosheng Chen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Zhenwu Zhuang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Cardiovascular Medicine, Yale University, New Haven, CT, USA
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - MingQiang Zheng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Salardini E, O'Dell RS, Tchorz E, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of the relationship between synaptic density and metabotropic glutamate receptors in early Alzheimer's disease: a multi-tracer PET study. Alzheimers Res Ther 2025; 17:98. [PMID: 40329311 PMCID: PMC12054321 DOI: 10.1186/s13195-025-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND The pathological effects of amyloid β oligomers (Aβo) may be mediated through the metabotropic glutamate receptor subtype 5 (mGluR5), leading to synaptic loss in Alzheimer's disease (AD). Positron emission tomography (PET) studies of mGluR5 using [18F]FPEB indicate a reduction of receptor binding that is focused in the medial temporal lobe in AD. Synaptic loss due to AD measured through synaptic vesicle glycoprotein 2A (SV2A) quantification with [11C]UCB-J PET is also focused in the medial temporal lobe, but with clear widespread reductions is commonly AD-affected neocortical regions. In this study, we used [18F]FPEB and [11C]UCB-J PET to investigate the relationship between mGluR5 and synaptic density in early AD. METHODS Fifteen amyloid positive participants with early AD and 12 amyloid negative, cognitively normal (CN) participants underwent PET scans with both [18F]FPEB to measure mGluR5 and [11C]UCB-J to measure synaptic density. Parametric distribution volume ratio (DVR) images using equilibrium methods were generated from dynamic images. For [18F]FPEB PET, DVR was calculated using equilibrium methods and a cerebellum reference region. For [11C]UCB-J PET, DVR was calculated with a simplified reference tissue model - 2 and a whole cerebellum reference region. RESULTS A strong positive correlation between mGluR5 and synaptic density was present in the hippocampus for participants with AD (r = 0.81, p < 0.001) and in the CN group (r = 0.74, p = 0.005). In the entorhinal cortex, there was a strong positive correlation between mGluR5 and synaptic density in the AD group (r = 0.85, p < 0.001), but a weaker non-significant correlation in the CN group (r = 0.36, p = 0.245). Exploratory analyses indicated more widespread significant positive correlations between synaptic density and mGluR5 within regions, as well as significant positive correlations between synaptic density in the temporal lobe and mGluR5 across a broader set of regions commonly affected by AD. CONCLUSIONS Our findings suggest that mGluR5 reduction in AD is closely linked to synaptic loss. Longitudinal studies are needed to clarify causality, deepen understanding of AD pathogenesis, and aid in developing novel biomarkers and treatments.
Collapse
Affiliation(s)
- Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8 Floor, New Haven, CT, 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8 Floor, New Haven, CT, 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Em Tchorz
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8 Floor, New Haven, CT, 06510, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8 Floor, New Haven, CT, 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8 Floor, New Haven, CT, 06510, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Everix L, Elvas F, Miranda Menchaca A, Khetarpal V, Liu L, Bard J, Staelens S, Bertoglio D. Preclinical validation and kinetic modelling of the SV2A PET ligand [ 18F]UCB-J in mice. J Cereb Blood Flow Metab 2025; 45:920-931. [PMID: 39628318 PMCID: PMC11615906 DOI: 10.1177/0271678x241304923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Synaptic vesicle protein 2A (SV2A) is ubiquitously expressed in presynaptic terminals where it functions as a neurotransmission regulator protein. Synaptopathy has been reported during healthy ageing and in a variety of neurodegenerative diseases. Positron emission tomography (PET) imaging of SV2A can be used to evaluate synaptic density. The PET ligand [11C]UCB-J has high binding affinity and selectivity for SV2A but has a short physical half-life due to the 11C isotope. Here we report the characterization and validation of its 18F-labeled equivalent, [18F]UCB-J, in terms of specificity, reproducibility and stability in C57BL/6J mice. Plasma analysis revealed at least one polar radiometabolite. Kinetic modelling was performed using a population-based metabolite corrected image-derived input function (IDIF). [18F]UCB-J showed relatively fast kinetics and a reliable measure of the IDIF-based volume of distribution (VT(IDIF)). [18F]UCB-J specificity for SV2A was confirmed through a levetiracetam blocking assay (50 to 200 mg/kg). Reproducibility of the VT(IDIF) was determined through test-retest analysis, revealing significant correlation (r2 = 0.773, p < 0.0001). Time-stability analyses indicate a scan duration of 60 min to be sufficient to obtain a reliable VT(IDIF). In conclusion, [18F]UCB-J is a selective SV2A ligand with optimal kinetics in mice. Further investigation is warranted for (pre)clinical applicability of [18F]UCB-J in synaptopathies.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), Wilrijk, Belgium
| | | | - Vinod Khetarpal
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Jonathan Bard
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation, Inc., Princeton, NJ, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Agnorelli C, Spriggs M, Godfrey K, Sawicka G, Bohl B, Douglass H, Fagiolini A, Parastoo H, Carhart-Harris R, Nutt D, Erritzoe D. Neuroplasticity and psychedelics: A comprehensive examination of classic and non-classic compounds in pre and clinical models. Neurosci Biobehav Rev 2025; 172:106132. [PMID: 40185376 DOI: 10.1016/j.neubiorev.2025.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Neuroplasticity, the ability of the nervous system to adapt throughout an organism's lifespan, offers potential as both a biomarker and treatment target for neuropsychiatric conditions. Psychedelics, a burgeoning category of drugs, are increasingly prominent in psychiatric research, prompting inquiries into their mechanisms of action. Distinguishing themselves from traditional medications, psychedelics demonstrate rapid and enduring therapeutic effects after a single or few administrations, believed to stem from their neuroplasticity-enhancing properties. This review examines how classic psychedelics (e.g., LSD, psilocybin, N,N-DMT) and non-classic psychedelics (e.g., ketamine, MDMA) influence neuroplasticity. Drawing from preclinical and clinical studies, we explore the molecular, structural, and functional changes triggered by these agents. Animal studies suggest psychedelics induce heightened sensitivity of the nervous system to environmental stimuli (meta-plasticity), re-opening developmental windows for long-term structural changes (hyper-plasticity), with implications for mood and behavior. Translating these findings to humans faces challenges due to limitations in current imaging techniques. Nonetheless, promising new directions for human research are emerging, including the employment of novel positron-emission tomography (PET) radioligands, non-invasive brain stimulation methods, and multimodal approaches. By elucidating the interplay between psychedelics and neuroplasticity, this review informs the development of targeted interventions for neuropsychiatric disorders and advances understanding of psychedelics' therapeutic potential.
Collapse
Affiliation(s)
- Claudio Agnorelli
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK; Unit of Psychiatry, Department of Molecular and Developmental Medicine, University of Siena, Italy.
| | - Meg Spriggs
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Gabriela Sawicka
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Bettina Bohl
- Department of Bioengineering, Imperial College of London, UK
| | - Hannah Douglass
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Andrea Fagiolini
- Unit of Psychiatry, Department of Molecular and Developmental Medicine, University of Siena, Italy
| | | | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK; Departments of Neurology and Psychiatry, Carhart-Harris Lab, University of California San Francisco, San Francisco, CA, USA
| | - David Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| |
Collapse
|
6
|
Vanderlinden G, Radwan A, Christiaens D, Blommaert J, Sunaert S, Vandenbulcke M, Koole M, Van Laere K. Fibre density and cross-section associate with hallmark pathology in early Alzheimer's disease. Alzheimers Res Ther 2025; 17:73. [PMID: 40188035 PMCID: PMC11971806 DOI: 10.1186/s13195-025-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Tau pathology in Alzheimer's disease (AD) propagates trans-synaptically along structurally connected brain networks and in synergy with amyloid pathology it induces synaptic damage. However, the in vivo relationship of amyloid, tau and synaptic density with white matter (WM) structural changes has been studied rather limitedly. Recent advances in diffusion MRI processing allow quantification of apparent fibre density and fibre cross-section on the fixel level, i.e., individual fibre populations within one voxel. The aim of this study was to investigate the hypothesis of axonal loss due to tau propagation and amyloid pathology and its association with synaptic density in early disease stages. METHODS Twenty-four patients with amnestic mild cognitive impairment (aMCI) and 23 healthy controls (HC) underwent baseline amyloid (11C-PiB/18F-NAV4694), tau (18F-MK-6240) and synaptic density (11C-UCB-J binding to SV2A) PET/MR in combination with diffusion MRI and cognitive assessments. A subset of 14 aMCI patients underwent follow-up visits after 2 years. First, a whole-brain fixel-based analysis was performed to identify differences in fibre density and fibre cross-section between HC and aMCI and longitudinally in the aMCI group. Next, a tract-of-interest analysis was performed, focusing on the temporal-cingulum bundle where most alterations have been shown in early AD. Tau and SV2A PET were quantified in the connected regions, i.e., hippocampus and posterior cingulate/precuneus (PCC-P). Amyloid PET centiloids were measured in the commonly used cortical composite volume-of-interest. RESULTS At baseline, multiple WM tracts showed lower fibre density and lower fibre cross-section in aMCI compared to HC, and these parameters further decreased longitudinally in the aMCI group. In the temporal cingulum bundle, reduced fibre density was significantly associated with reduced hippocampal synaptic density while increased hippocampal and PCC-P tau specifically correlated with reduced fibre cross-section. Increased global amyloid burden was associated with reduced fibre density and fibre cross-section in the temporal cingulum bundle. CONCLUSIONS Our results suggest that WM degeneration already occurs in the aMCI stage of AD and alterations in apparent fibre density and fibre cross-section of the temporal cingulum bundle are associated with AD hallmark pathology.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Daan Christiaens
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals UZ Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Leuven Brain Institute, Leuven, Belgium
- Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
- Neuropsychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Vermeulen I, Vandenbosch M, Viot D, Mercier J, Cabañas DAW, Martinez-Martinez P, Barton P, Heeren RM, Cillero-Pastor B. Spatial Distribution of Brain PET Tracers by MALDI Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:688-698. [PMID: 40073292 PMCID: PMC11969657 DOI: 10.1021/jasms.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for ex vivo visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates ex vivo with a focus on two compounds: UCB-J and UCB2400. We tested different matrices and introduced washing steps to improve PET tracer detection. Tissue homogenates were prepared to construct calibration curves for quantification. The incorporation of a washing step into the MSI sample preparation protocol enhanced the signal of both PET tracers. Our findings highlight MSI's potential as a cost-effective and efficient method for the evaluation of PET tracer distribution. The optimized approach offered here can provide a protocol that enhances the signal and minimizes ion suppression effect, which can be valuable for future evaluation of PET tracers in MSI studies.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Delphine Viot
- Translational
Science, DMPK, UCB Biopharma SRL, Chemin du Foriest, B1420 Braine-l’Alleud, Belgium
| | - Joel Mercier
- Discovery
Chemistry BE, UCB Biopharma SRL, Chemin du Foriest, B1420 Braine-l’Alleud, Belgium
| | - Diego Asensio-Wandosell Cabañas
- Department
of Psychiatry and Neuropsychology, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department
of Psychiatry and Neuropsychology, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Patrick Barton
- Translational
Science, DMPK, UCB Celltech, Branch of UCB Pharma S.A., 208 Bath
Road, Slough, Berkshire SL1 3WE, United
Kingdom
| | - Ron M.A. Heeren
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging
Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Cell Biology-Inspired
Tissue Engineering (cBITE), MERLN, Maastricht
University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Giorgio J, Soleimani-Meigooni DN, Janabi M, Baker SL, Chen X, Toueg TN, Weimer R, Zinnhardt B, Green A, Rabinovici GD, Jagust WJ. Imaging Synaptic Density in Aging and Alzheimer Disease with [ 18F]SynVesT-1. J Nucl Med 2025; 66:620-625. [PMID: 40049743 PMCID: PMC11960604 DOI: 10.2967/jnumed.124.269005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 04/03/2025] Open
Abstract
Synaptic density imaging with PET is a relatively new approach to monitoring synaptic injury in neurodegenerative diseases. However, there are remaining technical and clinical questions, including questions on reference region selection and on how specific phenotypic presentations and symptoms of Alzheimer disease (AD) are reflected in alterations in synaptic density. Methods: Using a synaptic vesicle glycoprotein 2A (SV2A) PET ligand radiolabeled with the 18F isotope ([18F]SynVesT-1), we performed sensitivity analyses to determine the optimal reference tissue modeling approach to derive whole-brain ratio images. Using these whole-brain images from a sample of young adults, older adults, and patients with varied phenotypic presentations of AD, we then contrasted regional SV2A density and in vivo AD biomarkers. Results: Reference tissue optimization concluded that a cerebellar gray matter reference region is best for deriving whole-brain ratio images. Using these images, we found a strong inverse association between [18F]SynVesT-1 PET uptake and amyloid β and tau PET deposition. Finally, we found that individuals with a lower temporal gray matter volume but higher temporal [18F]SynVesT-1 PET uptake show preserved performance on the mini-mental state examination. Conclusion: [18F]SynVesT-1 PET shows a close association with in vivo AD pathology, and preserved SV2A density may be a possible marker for resilience to neurodegeneration.
Collapse
Affiliation(s)
- Joseph Giorgio
- Department of Neuroscience, University of California Berkeley, Berkeley, California;
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, New South Wales, Australia
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Xi Chen
- Department of Neuroscience, University of California Berkeley, Berkeley, California
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Tyler N Toueg
- Department of Neuroscience, University of California Berkeley, Berkeley, California
| | | | | | - Ari Green
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - William J Jagust
- Department of Neuroscience, University of California Berkeley, Berkeley, California
- Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
9
|
Berckmans L, Schrauwen C, Miranda A, Staelens S, Bertoglio D. Assessing non-invasive quantitative methods for [ 18F]SynVesT-1 PET imaging of synaptic vesicle glycoprotein 2A in the rat brain. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07170-w. [PMID: 40032689 DOI: 10.1007/s00259-025-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE Synaptic vesicle glycoprotein 2A (SV2A) is a critical biomarker for evaluating synaptic density in neurological research. Among available radioligands, [18F]SynVesT-1 is increasingly used in PET research because of its extended half-life, while having comparable pharmacokinetic properties to the widely used [11C]UCB-J. However, quantitative application in rat models remains unexplored for [18F]SynVesT-1. This study aims to validate quantitative kinetic modelling methods for [18F]SynVesT-1 and develop non-invasive quantification methods for synaptic density in rats. METHODS First, blood analysis of [18F]SynVesT-1 was performed to generate metabolite-corrected plasma input functions. Then, kinetic modelling was evaluated using compartmental analysis approaches, as well as Logan plot. Furthermore, non-invasive image-derived input functions (IDIF), with and without non-negative matrix factorization (NMF) were compared against the arterial input function (AIF). RESULTS Blood analysis showed that the parent fraction of the tracer decreased over time following a sigmoid curve, while the plasma-to-whole blood ratio remained stable over time (0.89 ± 0.02). The two-tissue compartmental model (2TCM) and Logan plot were determined to be the most accurate methods for quantification of [18F]SynVesT-1 kinetics in rats. Additionally, the results demonstrated strong agreement between AIF-derived and image-derived volume of distribution (VT) values, with both image-derived input approaches (IDIF and IDIF-NMF) performing equally well. CONCLUSION These findings validate kinetic modelling methods for [18F]SynVesT-1 PET, enabling their application in further rat studies for preclinical neuroscience research and prove that image-derived input functions are reliable non-invasive alternatives to AIF.
Collapse
Affiliation(s)
- Lori Berckmans
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium.
| | - Claudia Schrauwen
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
- URPhyM-NARILIS, University of Namur, Namur, Belgium
| | - Alan Miranda
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Steven Staelens
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
- µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Asch RH, Naganawa M, Moisieienko K, Weed M, Kapinos M, Zheng MQ, Hillmer AT, Carson RE, Pietrzak RH, Esterlis I. Venous blood sampling for less invasive in vivo quantification of synaptic density with constant infusion of [ 18F]SynVesT-1 and PET. EJNMMI Res 2025; 15:8. [PMID: 39900828 PMCID: PMC11790547 DOI: 10.1186/s13550-025-01200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/19/2025] [Indexed: 02/05/2025] Open
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Mika Naganawa
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Karina Moisieienko
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mia Weed
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Michael Kapinos
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| |
Collapse
|
11
|
Lu X, Ji B, Huang G, Ding H. Advances in synaptic PET imaging and intervention with synapse-targeted small-molecular drugs for dementia diagnosis and therapy. FUNDAMENTAL RESEARCH 2025; 5:63-71. [PMID: 40166112 PMCID: PMC11955051 DOI: 10.1016/j.fmre.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/02/2025] Open
Abstract
Dementia is characterized by synaptic and neuronal dysfunction in disease-specific brain regions. Repeated failure of dementia clinical trials with therapeutic drugs targeting abnormal protein aggregates has caused researchers to shift their focus to synaptic functions and increased the importance of clinically available imaging for synaptic density and the development of synapse-targeted intervention. Synaptic density imaging with positron emission tomography (PET) tracer enables non-invasive detection of synaptic loss and hence investigates the association with other neuropathological events exemplified by disease-specific abnormal protein accumulation. Many studies have reviewed the progress of synaptic density imaging; however, to our knowledge, there is no article yet that summarizes the research progress of multimodal imaging of synaptic density tracers combined with other dementia biomarkers. Moreover, synaptic function intervention for dementia therapy has not yet been summarized. In this review, first we detail the progress of synaptic density imaging including tracer development and preclinical/clinical application, followed by a discussion of multimodal imaging of synaptic density tracers combined with classic dementia biomarkers in the clinical research stage. Finally, we briefly summarize the synapse-targeted drugs for dementia therapy.
Collapse
Affiliation(s)
- Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hong Ding
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
12
|
Binda KH, Real CC, Simonsen MT, Grove EK, Bender D, Gjedde A, Brooks DJ, Landau AM. Acute transcutaneous auricular vagus nerve stimulation modulates presynaptic SV2A density in healthy rat brain: An in vivo microPET study. Psychophysiology 2025; 62:e14709. [PMID: 39428713 PMCID: PMC11775880 DOI: 10.1111/psyp.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Vagus nerve stimulation (VNS) is the subject of exploration as an adjunct treatment for neurological disorders such as epilepsy, chronic migraine, pain, and depression. A non-invasive form of VNS is transcutaneous auricular VNS (taVNS). Combining animal models and positron emission tomography (PET) may lead to a better understanding of the elusive mechanisms of taVNS. We evaluated the acute effect of electrical stimulation of the left vagus nerve via the ear on brain synaptic vesicle glycoprotein 2A (SV2A) as a measure of presynaptic density and glucose metabolism in naïve rats. Female Sprague-Dawley rats were imaged with [11C]UCB-J (n = 11) or [18F]fluorodeoxyglucose ([18F]FDG) PET (n = 13) on two separate days, (1) at baseline, and (2) after acute unilateral left taVNS or sham stimulation (30 min). We calculated the regional volume of distribution (VT) for [11C]UCB-J and standard uptake values (SUV) for [18F]FDG. We observed regional reductions of [11C]UCB-J binding in response to taVNS ranging from 36% to 59%. The changes in taVNS compared to baseline were significantly larger than those induced by sham stimulation. The differences were observed bilaterally in the frontal cortex, striatum, and midbrain. The [18F]FDG PET uptake remained unchanged following acute taVNS or sham stimulation compared to baseline values. This proof-of-concept study shows for the first time that acute taVNS for 30 min can modulate in vivo synaptic SV2A density in cortical and subcortical regions of healthy rats. Preclinical disease models and PET ligands of different targets can be a powerful combination to assess the therapeutic potential of taVNS.
Collapse
Affiliation(s)
- Karina H. Binda
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Caroline C. Real
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Mette T. Simonsen
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Ebbe K. Grove
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - David J. Brooks
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Institute of Translational and Clinical Research, University of Newcastle upon TyneNewcastle Upon TyneUK
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
13
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Zasedateleva T, Schaller S, de Lange ECM, de Witte WEA. Local depletion of large molecule drugs due to target binding in tissue interstitial space. CPT Pharmacometrics Syst Pharmacol 2024; 13:2068-2086. [PMID: 39530200 PMCID: PMC11646940 DOI: 10.1002/psp4.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Drug-target binding determines a drug's pharmacodynamics but can also have a profound impact on a drug's pharmacokinetics, known as target-mediated drug disposition (TMDD). TMDD models describe the influence of drug-target binding and target turnover on unbound drug concentrations and are frequently used for biologics and drugs with nonlinear plasma pharmacokinetics. For drug targets expressed in tissues, the effect of TMDD may not be detected when analyzing plasma concentration curves, but it might still affect tissue concentrations and occupancy. This review aimed to investigate the likeliness of such a scenario by reviewing the literature for a typical range of TMDD parameter values and their impact on local drug concentrations and target occupancy in a whole-body PBPK model with TMDD. Our analysis demonstrated that tissue drug concentrations are impacted and significantly depleted in many physiological scenarios. In contrast, the effect on plasma concentrations is much lower, specifically for smaller organs with lower perfusion. Moreover, in scenarios with fast internalization of the drug-target complex, the distribution of large molecules from plasma to tissue interstitial space emerges as a rate-limiting step for the drug-target interaction. These factors may lead to overpredicting local drug concentrations when considering only plasma pharmacokinetics. A sensitivity analysis revealed the high and not always intuitive impact of drug-specific parameters, including the drug molecule hydrodynamic radius, dissociation constant (Kd), drug-target complex internalization rate constant (kint), and target dissociation rate constant (koff), on the drug's pharmacokinetics. Our analysis demonstrated that tissue TMDD needs to be considered even if plasma pharmacokinetics are linear.
Collapse
Affiliation(s)
| | | | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
15
|
Snellman A, Tuisku J, Koivumäki M, Wahlroos S, Aarnio R, Rajander J, Karrasch M, Ekblad LL, Rinne JO. SV2A PET shows hippocampal synaptic loss in cognitively unimpaired APOE ε4/ε4 homozygotes. Alzheimers Dement 2024; 20:8802-8813. [PMID: 39475191 DOI: 10.1002/alz.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION We investigated hippocampal synaptic density using synaptic vesicle 2A positron emission tomography (PET), and its association with amyloid beta (Aβ) and cognitive performance in healthy apolipoprotein E (APOE) ε4 carriers. METHODS Synaptic density was assessed in 46 individuals (APOE ε4/ε4 n = 14; APOE ε3/ε4 n = 16; APOE ε3/ε3 n = 16) with [11C]UCB-J-PET standardized uptake value ratios (SUVRs), by using the centrum semiovale as a reference region. Differences in hippocampal [11C]UCB-J SUVRs were analyzed with analysis of variance (ANOVA) and linear models. Associations among [11C]UCB-J SUVR, Aβ, hippocampal volume, and cognitive variables were analyzed with Spearman correlation. RESULTS Hippocampal synaptic density was different among the APOE groups (PANOVA = 0.016): APOE ε4/ε4 carriers had lower [11C]UCB-J SUVRs compared to APOE ε3/ε3 (p = 0.013). Hippocampal synaptic density did not correlate with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) total score (rho = -0.052, p = 0.74), Alzheimer's Prevention Initiative Preclinical Cognitive Composite (APCC) score (rho = 0.17, p = 0.28), or [11C]PiB uptake (rho = -0.10, p = 0.50). DISCUSSION Hippocampal synaptic loss emerges early in the AD continuum and is measurable in vivo in cognitively unimpaired high-risk individuals. HIGHLIGHTS Synaptic density was studied in vivo in healthy older adults using [11C]UCB-J positron emission tomography. Apolipoprotein E (APOE) ε4/ε4 carriers had lower hippocampal synaptic density compared to APOE ε3/ε3. Synaptic density was not associated with cognitive performance in this population. Hippocampal synaptic alterations occur before clinical symptoms in APOE ε4/ε4 carriers.
Collapse
Affiliation(s)
- Anniina Snellman
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Geriatric Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
19
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
20
|
Salardini E, O'Dell RS, Tchorz E, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of the relationship between synaptic density and metabotropic glutamate receptors in early Alzheimer's disease: a multi-tracer PET study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614277. [PMID: 39386453 PMCID: PMC11463661 DOI: 10.1101/2024.09.21.614277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background The pathological effects of amyloid β oligomers (Aβo) may be mediated through the metabotropic glutamate receptor subtype 5 (mGluR5), leading to synaptic loss in Alzheimer's disease (AD). Positron emission tomography (PET) studies of mGluR5 using [18F]FPEB indicate a reduction of receptor binding that is focused in the medial temporal lobe in AD. Synaptic loss due to AD measured through synaptic vesicle glycoprotein 2A (SV2A) quantification with [11C]UCB-J PET is also focused in the medial temporal lobe, but with clear widespread reductions is commonly AD-affected neocortical regions. In this study, we used [18F]FPEB and [11C]UCB-J PET to investigate the relationship between mGluR5 and synaptic density in early AD. Methods Fifteen amyloid positive participants with early AD and 12 amyloid negative, cognitively normal (CN) participants underwent PET scans with both [18F]FPEB to measure mGluR5 and [11C]UCB-J to measure synaptic density. Parametric DVR images using equilibrium methods were generated from dynamic. For [18F]FPEB PET, DVR was calculated using equilibrium methods and a cerebellum reference region. For [11C]UCB-J PET, DVR was calculated with a simplified reference tissue model - 2 and a whole cerebellum reference region.. Result A strong positive correlation between mGluR5 and synaptic density was present in the hippocampus for participants with AD (r = 0.81, p < 0.001) and in the CN group (r = 0.74, p = 0.005). In the entorhinal cortex, there was a strong positive correlation between mGluR5 and synaptic in the AD group (r = 0.85, p <0.001), but a weaker non-significant correlation in the CN group (r = 0.36, p = 0.245). Exploratory analyses within and between other brain regions suggested significant positive correlations between mGluR5 in the medial temporal lobe and synaptic density in a broader set of commonly AD-affected regions. Conclusion Medial temporal loss of mGluR5 in AD is associated with synaptic loss in both medial temporal regions and more broadly in association cortical regions, indicating that mGluR5 mediated Aβo toxicity may lead to early synaptic loss more broadly in AD-affected networks. In CN individuals, an isolated strong association between lower mGluR5 and lower synaptic density may indicate non-AD related synaptic loss.
Collapse
Affiliation(s)
- Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Em Tchorz
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Marstrand-Joergensen MR, Laurell GL, Herrmann S, Nasser A, Johansen A, Lund A, Andersen TL, Knudsen GM, Pinborg LH. Assessment of cerebral drug occupancy in humans using a single PET-scan: A [ 11C]UCB-J PET study. Eur J Nucl Med Mol Imaging 2024; 51:3292-3304. [PMID: 38758370 PMCID: PMC11369007 DOI: 10.1007/s00259-024-06759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Here, we evaluate a PET displacement model with a Single-step and Numerical solution in healthy individuals using the synaptic vesicle glycoprotein (SV2A) PET-tracer [11C]UCB-J and the anti-seizure medication levetiracetam (LEV). We aimed to (1) validate the displacement model by comparing the brain LEV-SV2A occupancy from a single PET scan with the occupancy derived from two PET scans and the Lassen plot and (2) determine the plasma LEV concentration-SV2A occupancy curve in healthy individuals. METHODS Eleven healthy individuals (five females, mean age 35.5 [range: 25-47] years) underwent two 120-min [11C]UCB-J PET scans where an LEV dose (5-30 mg/kg) was administered intravenously halfway through the first PET scan to partially displace radioligand binding to SV2A. Five individuals were scanned twice on the same day; the remaining six were scanned once on two separate days, receiving two identical LEV doses. Arterial blood samples were acquired to determine the arterial input function and plasma LEV concentrations. Using the displacement model, the SV2A-LEV target engagement was calculated and compared with the Lassen plot method. The resulting data were fitted with a single-site binding model. RESULTS SV2A occupancies and VND estimates derived from the displacement model were not significantly different from the Lassen plot (p = 0.55 and 0.13, respectively). The coefficient of variation was 14.6% vs. 17.3% for the Numerical and the Single-step solution in Bland-Altman comparisons with the Lassen plot. The average half maximal inhibitory concentration (IC50), as estimated from the area under the curve of the plasma LEV concentration, was 12.5 µg/mL (95% CI: 5-25) for the Single-Step solution, 11.8 µg/mL (95% CI: 4-25) for the Numerical solution, and 6.3 µg/mL (95% CI: 0.08-21) for the Lassen plot. Constraining Emax to 100% did not significantly improve model fits. CONCLUSION Plasma LEV concentration vs. SV2A occupancy can be determined in humans using a single PET scan displacement model. The average concentration of the three computed IC50 values ranges between 6.3 and 12.5 µg/mL. The next step is to use the displacement model to evaluate LEV occupancy and corresponding plasma concentrations in relation to treatment efficacy. CLINICAL TRIAL REGISTRATION NCT05450822. Retrospectively registered 5 July 2022 https://clinicaltrials.gov/ct2/results? term=NCT05450822&Search=Search.
Collapse
Affiliation(s)
- Maja R Marstrand-Joergensen
- Epilepsy Clinic, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen O, 2100, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gjertrud L Laurell
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Susan Herrmann
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
| | - Anton Lund
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
| | - Thomas L Andersen
- Department of Clinical Physiology & Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen O, 2100, Denmark.
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark.
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Johansen A, Beliveau V, Colliander E, Raval NR, Dam VH, Gillings N, Aznar S, Svarer C, Plavén-Sigray P, Knudsen GM. An In Vivo High-Resolution Human Brain Atlas of Synaptic Density. J Neurosci 2024; 44:e1750232024. [PMID: 38997157 PMCID: PMC11326867 DOI: 10.1523/jneurosci.1750-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Emil Colliander
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520
- Yale PET Center, Yale University, New Haven, Connecticut 06520
| | - Vibeke Høyrup Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
23
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
24
|
Li J, Huang Q, Qi N, He K, Li S, Huang L, Pan F, Ren S, Hua F, Huang Y, Guan Y, Guo Q, Zhao J, Xie F. The associations between synaptic density and "A/T/N" biomarkers in Alzheimer's disease: An 18F-SynVesT-1 PET/MR study. J Cereb Blood Flow Metab 2024; 44:1199-1207. [PMID: 38295871 PMCID: PMC11179616 DOI: 10.1177/0271678x241230733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 06/13/2024]
Abstract
A newly developed SV2A radiotracer, 18F-SynVesT-1, was used in this study to investigate synaptic density and its association with Alzheimer's disease (AD) "A/T/N" biomarkers. The study included a cohort of 97 subjects, consisting of 64 patients with cognitive impairment (CI) and 33 individuals with normal cognition (CU). All subjects underwent 18F-SynVesT-1 PET/MR and 18F-florbetapir PET/CT scans. Additionally, a subgroup of individuals also underwent 18F-MK-6240, 18F-FDG PET/CT, plasma Aβ42/Aβ40 and p-tau181 tests. The differences in synaptic density between the groups and the correlations between synaptic density and AD "A/T/N" biomarkers were analyzed. The results showed that compared to the CU group, the CI with Aβ+ (CI+) group exhibited the most pronounced synapse loss in the hippocampus, with some loss also observed in the neocortex. Furthermore, synaptic density in the hippocampus and parahippocampal gyrus showed associations with AD biomarkers detected by both imaging and plasma tests in the CI group. The associations between synaptic density and FDG uptake and hippocampal volume were also observed in the CI+ group. In conclusion, the study demonstrated significant synaptic density loss, as measured by the promising tracer 18F-SynVesT-1, and its close correlation with "A/T/N" biomarkers in patients with both Alzheimer's clinical syndrome and pathological changes.
Collapse
Affiliation(s)
- Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Qi
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Huang
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Husain MO, Jones B, Arshad U, Ameis SH, Mirfallah G, Schifani C, Rodak T, Aiken M, Shafique M, Ahmed F, Voineskos A, Husain MI, Foussias G. A systematic review and meta-analysis of neuroimaging studies examining synaptic density in individuals with psychotic spectrum disorders. BMC Psychiatry 2024; 24:460. [PMID: 38898401 PMCID: PMC11188231 DOI: 10.1186/s12888-024-05788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Psychotic disorders have long been considered neurodevelopmental disorders where excessive synaptic pruning and cortical volume loss are central to disease pathology. We conducted a systematic review of the literature to identify neuroimaging studies specifically examining synaptic density across the psychosis spectrum. METHODS PRISMA guidelines on reporting were followed. We systematically searched MEDLINE, Embase, APA PsycINFO, Web of Science and The Cochrane Library from inception to December 8, 2023, and included all original peer-reviewed articles or completed clinical neuroimaging studies of any modality measuring synaptic density in participants with a diagnosis of psychosis spectrum disorder as well as individuals with psychosis-risk states. The NIH quality assessment tool for observational cohort and cross-sectional studies was used for the risk of bias assessment. RESULTS Five studies (k = 5) met inclusion criteria, comprising n = 128 adults (psychotic disorder; n = 61 and healthy volunteers; n = 67 and specifically measuring synaptic density via positron emission tomography (PET) imaging of the synaptic vesicle glycoprotein 2 A (SV2A). Three studies were included in our primary meta-analysis sharing the same outcome measure of SV2A binding, volume of distribution (VT). Regional SV2A VT was reduced in psychotic disorder participants in comparison to healthy volunteers, including the occipital lobe (Mean Difference (MD)= -2.17; 95% CI: -3.36 to -0.98; P < 0.001 ), temporal lobe (MD: -2.03; 95% CI: -3.19 to -0.88; P < 0.001 ), parietal lobe (MD:-1.61; 95% CI: -2.85 to -0.37; P = 0.01), anterior cingulate cortex (MD= -1.47; 95% CI: -2.45 to -0.49; P = 0.003), frontal cortex (MD: -1.16; 95% CI: -2.18 to -0.15; P = 0.02), amygdala (MD: -1.36; 95% CI: -2.20 to -0.52, p = 0.002), thalamus (MD:-1.46; 95% CI:-2.46 to -0.46, p = 0.004) and hippocampus (MD= -0.96; 95% CI: -1.59 to -0.33; P = 0.003). CONCLUSIONS Preliminary studies provide in vivo evidence for reduced synaptic density in psychotic disorders. However, replication of findings in larger samples is required prior to definitive conclusions being drawn. PROSPERO CRD42022359018.
Collapse
Affiliation(s)
- Muhammad Omair Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Brett Jones
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Usman Arshad
- Pakistan Institute of Living and Learning, Karachi, Pakistan
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Giselle Mirfallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Christin Schifani
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Terri Rodak
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Madina Aiken
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Mudassar Shafique
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Fatima Ahmed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Xiong M, Lubberink M, Appel L, Fang XT, Danfors T, Kumlien E, Antoni G. Evaluation of [ 11C]UCB-A positron emission tomography in human brains. EJNMMI Res 2024; 14:56. [PMID: 38884834 PMCID: PMC11183037 DOI: 10.1186/s13550-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND In preclinical studies, the positron emission tomography (PET) imaging with [11C]UCB-A provided promising results for imaging synaptic vesicle protein 2A (SV2A) as a proxy for synaptic density. This paper reports the first-in-human [11C]UCB-A PET study to characterise its kinetics in healthy subjects and further evaluate SV2A-specific binding. RESULTS Twelve healthy subjects underwent 90-min baseline [11C]UCB-A scans with PET/MRI, with two subjects participating in an additional blocking scan with the same scanning procedure after a single dose of levetiracetam (1500 mg). Our results indicated abundant [11C]UCB-A brain uptake across all cortical regions, with slow elimination. Kinetic modelling of [11C]UCB-A PET using various compartment models suggested that the irreversible two-tissue compartment model best describes the kinetics of the radioactive tracer. Accordingly, the Patlak graphical analysis was used to simplify the analysis. The estimated SV2A occupancy determined by the Lassen plot was around 66%. Significant specific binding at baseline and comparable binding reduction as grey matter precludes the use of centrum semiovale as reference tissue. CONCLUSIONS [11C]UCB-A PET imaging enables quantifying SV2A in vivo. However, its slow kinetics require a long scan duration, which is impractical with the short half-life of carbon-11. Consequently, the slow kinetics and complicated quantification methods may restrict its use in humans.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden.
| | - Mark Lubberink
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
| | - Lieuwe Appel
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
| | - Xiaotian Tsong Fang
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
- Julius Clinical BV, Zeist, The Netherlands
| | - Torsten Danfors
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
28
|
Li J, Zou R, Varrone A, Nag S, Halldin C, Ågren H. Exploring the Interactions between two Ligands, UCB-J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms. ACS Chem Neurosci 2024; 15:2018-2027. [PMID: 38701380 PMCID: PMC11099911 DOI: 10.1021/acschemneuro.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π-π, and cation-π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation-π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π-π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department
of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Rongfeng Zou
- Department
of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Andrea Varrone
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Sangram Nag
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Christer Halldin
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| |
Collapse
|
29
|
Laroy M, Vande Casteele T, Van Cauwenberge M, Koole M, Dupont P, Sunaert S, Van den Stock J, Sienaert P, Van Laere K, Vandenbulcke M, Emsell L, Bouckaert F. Synaptic density changes following electroconvulsive therapy: A longitudinal pilot study with PET-MR 11C-UCB-J imaging in late-life depression. Brain Stimul 2024; 17:588-590. [PMID: 38701916 DOI: 10.1016/j.brs.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium.
| | - Thomas Vande Casteele
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
| | - Margot Van Cauwenberge
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Michel Koole
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Nuclear Medicine, B-3000, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium; Department of Radiology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| | - Pascal Sienaert
- KU Leuven, Department of Neurosciences, Academic Centre for ECT and Neuromodulation, B-3000, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
30
|
Yamagata A, Ito K, Suzuki T, Dohmae N, Terada T, Shirouzu M. Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A. Nat Commun 2024; 15:3027. [PMID: 38637505 PMCID: PMC11026379 DOI: 10.1038/s41467-024-47322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Kaori Ito
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
31
|
Bavarsad MS, Grinberg LT. SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 2024; 16:1380561. [PMID: 38699560 PMCID: PMC11064927 DOI: 10.3389/fnagi.2024.1380561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
Collapse
Affiliation(s)
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
32
|
Onwordi EC, Whitehurst T, Shatalina E, Mansur A, Arumuham A, Osugo M, Marques TR, Jauhar S, Gupta S, Mehrotra R, Rabiner EA, Gunn RN, Natesan S, Howes OD. Synaptic Terminal Density Early in the Course of Schizophrenia: An In Vivo UCB-J Positron Emission Tomographic Imaging Study of SV2A. Biol Psychiatry 2024; 95:639-646. [PMID: 37330164 PMCID: PMC10923626 DOI: 10.1016/j.biopsych.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The synaptic hypothesis is an influential theory of the pathoetiology of schizophrenia (SCZ), which is supported by the finding that there is lower uptake of the synaptic terminal density marker [11C]UCB-J in patients with chronic SCZ than in control participants. However, it is unclear whether these differences are present early in the illness. To address this, we investigated [11C]UCB-J volume of distribution (VT) in antipsychotic-naïve/free patients with SCZ who were recruited from first-episode services compared with healthy volunteers. METHODS Forty-two volunteers (SCZ n = 21, healthy volunteers n = 21) underwent [11C]UCB-J positron emission tomography to index [11C]UCB-J VT and distribution volume ratio in the anterior cingulate, frontal, and dorsolateral prefrontal cortices; the temporal, parietal and occipital lobes; and the hippocampus, thalamus, and amygdala. Symptom severity was assessed in the SCZ group using the Positive and Negative Syndrome Scale. RESULTS We found no significant effects of group on [11C]UCB-J VT or distribution volume ratio in most regions of interest (effect sizes from d = 0.0-0.7, p > .05), with two exceptions: we found lower distribution volume ratio in the temporal lobe (d = 0.7, uncorrected p < .05) and lower VT/fp in the anterior cingulate cortex in patients (d = 0.7, uncorrected p < .05). The Positive and Negative Syndrome Scale total score was negatively associated with [11C]UCB-J VT in the hippocampus in the SCZ group (r = -0.48, p = .03). CONCLUSIONS These findings indicate that large differences in synaptic terminal density are not present early in SCZ, although there may be more subtle effects. When taken together with previous evidence of lower [11C]UCB-J VT in patients with chronic illness, this may indicate synaptic density changes during the course of SCZ.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
| | - Thomas Whitehurst
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ekaterina Shatalina
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ayla Mansur
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, London, United Kingdom; Invicro, Burlington Danes Building, London, United Kingdom
| | - Atheeshaan Arumuham
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Martin Osugo
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tiago Reis Marques
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Susham Gupta
- Early Detection and Early Intervention, East London National Health Service Foundation Trust, London, United Kingdom
| | - Ravi Mehrotra
- Early Intervention in Psychosis Team, West Middlesex University Hospital, West London National Health Service Trust, Isleworth, London, United Kingdom
| | - Eugenii A Rabiner
- Invicro, Burlington Danes Building, London, United Kingdom; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, London, United Kingdom; Invicro, Burlington Danes Building, London, United Kingdom
| | - Sridhar Natesan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Oliver D Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
33
|
Kumar A, Scarpa M, Nordberg A. Tracing synaptic loss in Alzheimer's brain with SV2A PET-tracer UCB-J. Alzheimers Dement 2024; 20:2589-2605. [PMID: 38363009 PMCID: PMC11032538 DOI: 10.1002/alz.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.
Collapse
Affiliation(s)
- Amit Kumar
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Miriam Scarpa
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Agneta Nordberg
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Theme Inflammation and AgingKarolinska University HospitalStockholmSweden
| |
Collapse
|
34
|
Rossi R, Bærentzen SL, Thomsen MB, Real CC, Wegener G, Grassi-Oliveira R, Gjedde A, Landau AM. A single dose of cocaine raises SV2A density in hippocampus of adolescent rats. Acta Neuropsychiatr 2024; 36:109-117. [PMID: 36847240 DOI: 10.1017/neu.2023.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
OBJECTIVE Cocaine is a highly addictive psychostimulant that affects synaptic activity with structural and functional adaptations of neurons. The transmembrane synaptic vesicle glycoprotein 2A (SV2A) of pre-synaptic vesicles is commonly used to measure synaptic density, as a novel approach to the detection of synaptic changes. We do not know if a single dose of cocaine suffices to affect pre-synaptic SV2A density, especially during adolescence when synapses undergo intense maturation. Here, we explored potential changes of pre-synaptic SV2A density in target brain areas associated with the cocaine-induced boost of dopaminergic neurotransmission, specifically testing if the effects would last after the return of dopamine levels to baseline. METHODS We administered cocaine (20 mg/kg i.p.) or saline to rats in early adolescence, tested their activity levels and removed the brains 1 hour and 7 days after injection. To evaluate immediate and lasting effects, we did autoradiography with [3H]UCB-J, a specific tracer for SV2A, in medial prefrontal cortex, striatum, nucleus accumbens, amygdala, and dorsal and ventral areas of hippocampus. We also measured the striatal binding of [3H]GBR-12935 to test cocaine's occupancy of the dopamine transporter at both times of study. RESULTS We found a significant increase of [3H]UCB-J binding in the dorsal and ventral sections of hippocampus 7 days after the cocaine administration compared to saline-injected rats, but no differences 1 hour after the injection. The [3H]GBR-12935 binding remained unchanged at both times. CONCLUSION Cocaine provoked lasting changes of hippocampal synaptic SV2A density after a single exposure during adolescence.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Majken B Thomsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Neuroscience, University of Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Fang XT, Raval NR, O’Dell RS, Naganawa M, Mecca AP, Chen MK, van Dyck CH, Carson RE. Synaptic density patterns in early Alzheimer's disease assessed by independent component analysis. Brain Commun 2024; 6:fcae107. [PMID: 38601916 PMCID: PMC11004947 DOI: 10.1093/braincomms/fcae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in post-mortem studies. Previously, we observed in vivo reductions of synaptic density with [11C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner. [11C]UCB-J binding to synaptic vesicle protein 2A was measured in 38 Alzheimer's disease (24 mild Alzheimer's disease dementia and 14 mild cognitive impairment) and 19 cognitively normal participants. [11C]UCB-J distribution volume ratio values were calculated with a whole cerebellum reference region. Principal components analysis was first used to extract 18 independent components to which independent component analysis was then applied. Subject loading weights per pattern were compared between groups using Kruskal-Wallis tests. Spearman's rank correlations were used to assess relationships between loading weights and measures of cognitive and functional performance: Logical Memory II, Rey Auditory Verbal Learning Test-long delay, Clinical Dementia Rating sum of boxes and Mini-Mental State Examination. We observed significant differences in loading weights among cognitively normal, mild cognitive impairment and mild Alzheimer's disease dementia groups in 5 of the 18 independent components, as determined by Kruskal-Wallis tests. Only Patterns 1 and 2 demonstrated significant differences in group loading weights after correction for multiple comparisons. Excluding the cognitively normal group, we observed significant correlations between the loading weights for Pattern 1 (left temporal cortex and the cingulate gyrus) and Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019), Mini-Mental State Examination (r = 0.48, P = 0.0055) and Logical Memory II score (r = 0.44, P = 0.013). For Pattern 2 (temporal cortices), significant associations were demonstrated between its loading weights and Logical Memory II score (r = 0.34, P = 0.0384). Following false discovery rate correction, only the relationship between the Pattern 1 loading weights with Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019) and Mini-Mental State Examination (r = 0.48, P = 0.0055) remained statistically significant. We demonstrated that independent component analysis could define coherent spatial patterns of synaptic density. Furthermore, commonly used measures of cognitive performance correlated significantly with loading weights for two patterns within only the mild cognitive impairment/mild Alzheimer's disease dementia group. This study leverages data-centric approaches to augment the conventional region-of-interest-based methods, revealing distinct patterns that differentiate between mild cognitive impairment and mild Alzheimer's disease dementia, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Xiaotian T Fang
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nakul R Raval
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan S O’Dell
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Kai Chen
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Toyonaga T, Khattar N, Wu Y, Lu Y, Naganawa M, Gallezot JD, Matuskey D, Mecca AP, Pittman B, Dias M, Nabulsi NB, Finnema SJ, Chen MK, Arnsten A, Radhakrishnan R, Skosnik PD, D'Souza DC, Esterlis I, Huang Y, van Dyck CH, Carson RE. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [ 11C]UCB-J. Eur J Nucl Med Mol Imaging 2024; 51:1012-1022. [PMID: 37955791 DOI: 10.1007/s00259-023-06487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Nikkita Khattar
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yanjun Wu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yihuan Lu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nabeel B Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Kai Chen
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Bouvé College of Health Sciences, Northeastern University Schools of Nursing & Pharmacy/Pharmaceutical Sciences, Boston, MA, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
38
|
DiFilippo A, Jonaitis E, Makuch R, Gambetti B, Fleming V, Ennis G, Barnhart T, Engle J, Bendlin B, Johnson S, Handen B, Krinsky-McHale S, Hartley S, Christian B. Measurement of synaptic density in Down syndrome using PET imaging: a pilot study. Sci Rep 2024; 14:4676. [PMID: 38409349 PMCID: PMC10897336 DOI: 10.1038/s41598-024-54669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Down syndrome (DS) is the most prevalent genetic cause of intellectual disability, resulting from trisomy 21. Recently, positron emission tomography (PET) imaging has been used to image synapses in vivo. The motivation for this pilot study was to investigate whether synaptic density in low functioning adults with DS can be evaluated using the PET radiotracer [11C]UCB-J. Data were acquired from low functioning adults with DS (n = 4) and older neurotypical (NT) adults (n = 37). Motion during the scans required the use of a 10-minute acquisition window for the calculation of synaptic density using SUVR50-60,CS which was determined to be a suitable approximation for specific binding in this analysis using dynamic data from the NT group. Of the regions analyzed a large effect was observed when comparing DS and NT hippocampus and cerebral cortex synaptic density as well as hippocampus and cerebellum volumes. In this pilot study, PET imaging of [11C]UCB-J was successfully completed and synaptic density measured in low functioning DS adults. This work provides the basis for studies where synaptic density may be compared between larger groups of NT adults and adults with DS who have varying degrees of baseline cognitive status.
Collapse
Affiliation(s)
- Alexandra DiFilippo
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Erin Jonaitis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Renee Makuch
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Brianna Gambetti
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Victoria Fleming
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Gilda Ennis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Todd Barnhart
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jonathan Engle
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Barbara Bendlin
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sterling Johnson
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sigan Hartley
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Bradley Christian
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| |
Collapse
|
39
|
Holmes SE, Honhar P, Tinaz S, Naganawa M, Hilmer AT, Gallezot JD, Dias M, Yang Y, Toyonaga T, Esterlis I, Mecca A, Van Dyck C, Henry S, Ropchan J, Nabulsi N, Louis ED, Comley R, Finnema SJ, Carson RE, Matuskey D. Synaptic loss and its association with symptom severity in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:42. [PMID: 38402233 PMCID: PMC10894197 DOI: 10.1038/s41531-024-00655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Parkinson's disease (PD) is the fastest growing neurodegenerative disease, but at present there is no cure, nor any disease-modifying treatments. Synaptic biomarkers from in vivo imaging have shown promise in imaging loss of synapses in PD and other neurodegenerative disorders. Here, we provide new clinical insights from a cross-sectional, high-resolution positron emission tomography (PET) study of 30 PD individuals and 30 age- and sex-matched healthy controls (HC) with the radiotracer [11C]UCB-J, which binds to synaptic vesicle glycoprotein 2A (SV2A), and is therefore, a biomarker of synaptic density in the living brain. We also examined a measure of relative brain perfusion from the early part of the same PET scan. Our results provide evidence for synaptic density loss in the substantia nigra that had been previously reported, but also extend this to other early-Braak stage regions known to be affected in PD (brainstem, caudate, olfactory cortex). Importantly, we also found a direct association between synaptic density loss in the nigra and severity of symptoms in patients. A greater extent and wider distribution of synaptic density loss in PD patients with longer illness duration suggests that [11C]UCB-J PET can be used to measure synapse loss with disease progression. We also demonstrate lower brain perfusion in PD vs. HC groups, with a greater extent of abnormalities in those with longer duration of illness, suggesting that [11C]UCB-J PET can simultaneously provide information on changes in brain perfusion. These results implicate synaptic imaging as a useful PD biomarker for future disease-modifying interventions.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Praveen Honhar
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mika Naganawa
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ansel T Hilmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | | | - Mark Dias
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yanghong Yang
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Adam Mecca
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Shannan Henry
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, New Haven, CT, USA
| | | | | | - Richard E Carson
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Li A, Yang B, Naganawa M, Fontaine K, Toyonaga T, Carson RE, Tang J. Dose reduction in dynamic synaptic vesicle glycoprotein 2A PET imaging using artificial neural networks. Phys Med Biol 2023; 68:245006. [PMID: 37857316 PMCID: PMC10739622 DOI: 10.1088/1361-6560/ad0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Objective. Reducing dose in positron emission tomography (PET) imaging increases noise in reconstructed dynamic frames, which inevitably results in higher noise and possible bias in subsequently estimated images of kinetic parameters than those estimated in the standard dose case. We report the development of a spatiotemporal denoising technique for reduced-count dynamic frames through integrating a cascade artificial neural network (ANN) with the highly constrained back-projection (HYPR) scheme to improve low-dose parametric imaging.Approach. We implemented and assessed the proposed method using imaging data acquired with11C-UCB-J, a PET radioligand bound to synaptic vesicle glycoprotein 2A (SV2A) in the human brain. The patch-based ANN was trained with a reduced-count frame and its full-count correspondence of a subject and was used in cascade to process dynamic frames of other subjects to further take advantage of its denoising capability. The HYPR strategy was then applied to the spatial ANN processed image frames to make use of the temporal information from the entire dynamic scan.Main results. In all the testing subjects including healthy volunteers and Parkinson's disease patients, the proposed method reduced more noise while introducing minimal bias in dynamic frames and the resulting parametric images, as compared with conventional denoising methods.Significance. Achieving 80% noise reduction with a bias of -2% in dynamic frames, which translates into 75% and 70% of noise reduction in the tracer uptake (bias, -2%) and distribution volume (bias, -5%) images, the proposed ANN+HYPR technique demonstrates the denoising capability equivalent to a 11-fold dose increase for dynamic SV2A PET imaging with11C-UCB-J.
Collapse
Affiliation(s)
- Andi Li
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bao Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Mika Naganawa
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Kathryn Fontaine
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Takuya Toyonaga
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Richard E Carson
- Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Jing Tang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
41
|
Asch RH, Naganawa M, Nabulsi N, Huan Y, Esterlis I, Carson RE. Evaluating infusion methods and simplified quantification of synaptic density in vivo with [ 11C]UCB-J and [ 18F]SynVesT-1 PET. J Cereb Blood Flow Metab 2023; 43:2120-2129. [PMID: 37669455 PMCID: PMC10925870 DOI: 10.1177/0271678x231200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/07/2023]
Abstract
For some positron emission tomography studies, radiotracer is administered as bolus plus continuous infusion (B/I) to achieve a state of equilibrium. This approach can reduce scanning time and simplify data analysis; however, the method must be validated and optimized for each tracer. This study aimed to validate a B/I method for in vivo quantification of synaptic density using radiotracers which target the synaptic vesicle glycoprotein 2 A: [11C]UCB-J and [18F]SynVesT-1. Observed mean standardized uptake values (SUV) in target tissue relative to that in plasma (CT/CP) or a reference tissue (SUVR-1) were calculated for 30-minute intervals across 120 or 150-minute dynamic scans and compared against one-tissue compartment (1TC) model estimates of volume of distribution (VT) and binding potential (BPND), respectively. We were unable to reliably achieve a state of equilibrium with [11C]UCB-J, and all 30-minute windows yielded overly large bias and/or variability for CT/CP and SUVR-1. With [18F]SynVesT-1, a 30-minute scan 90-120 minutes post-injection yielded CT/CP and SUVR-1 values that estimated their respective kinetic parameter with sufficient accuracy and precision (within 7± 6%) . This B/I approach allows a clinically feasible scan at equilibrium with potentially better accuracy than a static scan SUVR following a bolus injection.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Myburgh PJ, Sai KKS. Development and Optimization of 11C-Labeled Radiotracers: A Review of the Modern Quality Control Design Process. ACS Pharmacol Transl Sci 2023; 6:1616-1631. [PMID: 37974626 PMCID: PMC10644505 DOI: 10.1021/acsptsci.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Introduction - Several 11C-tracers have demonstrated high potential in early diagnostic PET imaging applications of neurodegenerative diseases including Alzheimer's and Parkinson's disease. These radiotracers often track critical biomarkers in disease pathogenesis such as tau fibrils ([11C]PBB3) or β-amyloid plaques ([11C]PiB) associated with such diseases. Purpose - The short review aims to serve as a guideline in the future development of radiotracers for students, postdocs and/or new radiochemists who will be synthesizing clinical grade or novel research 11C-tracers, including knowledge of regulatory requirements. We aim to bridge the gap between novel and established 11C-tracer quality control (QC) processes through exploring the design process and regulatory requirements for 11C-pharmaceuticals. Methods - A literature survey was undertaken to identify articles with a detailed description of the QC methodology and characterization for each of the sections of the review. Overview - First a general summary of 11C-tracer production was presented; this was used to establish possible places for contamination or assurances for a sterile final product. The key mandated QC analyses for clinical use were then discussed. Further, we assessed the QC methods used for established 11C-tracers and then reviewed the routine QC tests for preclinical translational and validation studies. Therefore, both mandated QC methods for clinical and preclinical animal studies were reviewed. Last, some examples of optimization and automation were reviewed, and implications of the QC practices associated with such procedures were considered. Conclusion - All of the common QC parameters associated with 11C-tracers under clinical and preclinical settings (along with a few exceptions) were discussed in detail. While it is important to establish standard, peer-reviewed QC testing protocols for a novel 11C-tracer entering the clinical umbrella, equal importance is needed on preclinical applications to address credibility and repeatability for the study.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| | - Kiran Kumar Solingapuram Sai
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
- Department
of Radiology, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
43
|
Johansen A, Armand S, Plavén-Sigray P, Nasser A, Ozenne B, Petersen IN, Keller SH, Madsen J, Beliveau V, Møller K, Vassilieva A, Langley C, Svarer C, Stenbæk DS, Sahakian BJ, Knudsen GM. Effects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial. Mol Psychiatry 2023; 28:4272-4279. [PMID: 37814129 PMCID: PMC10827655 DOI: 10.1038/s41380-023-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for treating neuropsychiatric disorders. However, the exact mechanism of action and why effects can take several weeks to manifest is not clear. The hypothesis of neuroplasticity is supported by preclinical studies, but the evidence in humans is limited. Here, we investigate the effects of the SSRI escitalopram on presynaptic density as a proxy for synaptic plasticity. In a double-blind placebo-controlled study (NCT04239339), 32 healthy participants with no history of psychiatric or cognitive disorders were randomized to receive daily oral dosing of either 20 mg escitalopram (n = 17) or a placebo (n = 15). After an intervention period of 3-5 weeks, participants underwent a [11C]UCB-J PET scan (29 with full arterial input function) to quantify synaptic vesicle glycoprotein 2A (SV2A) density in the hippocampus and the neocortex. Whereas we find no statistically significant group difference in SV2A binding after an average of 29 (range: 24-38) days of intervention, our secondary analyses show a time-dependent effect of escitalopram on cerebral SV2A binding with positive associations between [11C]UCB-J binding and duration of escitalopram intervention. Our findings suggest that brain synaptic plasticity evolves over 3-5 weeks in healthy humans following daily intake of escitalopram. This is the first in vivo evidence to support the hypothesis of neuroplasticity as a mechanism of action for SSRIs in humans and it offers a plausible biological explanation for the delayed treatment response commonly observed in patients treated with SSRIs. While replication is warranted, these results have important implications for the design of future clinical studies investigating the neurobiological effects of SSRIs.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Armand
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Ida N Petersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sune H Keller
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kirsten Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Alexandra Vassilieva
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Desmond KL, Lindberg A, Garcia A, Tong J, Harkness MB, Dobrota E, Smart K, Uribe C, Meyer JH, Houle S, Strafella AP, Li S, Huang Y, Vasdev N. First-in-Human PET Imaging of [ 18F]SDM-4MP3: A Cautionary Tale. Mol Imaging 2023; 2023:8826977. [PMID: 37719326 PMCID: PMC10504053 DOI: 10.1155/2023/8826977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
[18F]SynVesT-1 is a PET radiopharmaceutical that binds to the synaptic vesicle protein 2A (SV2A) and serves as a biomarker of synaptic density with widespread clinical research applications in psychiatry and neurodegeneration. The initial goal of this study was to concurrently conduct PET imaging studies with [18F]SynVesT-1 at our laboratories. However, the data in the first two human PET studies had anomalous biodistribution despite the injected product meeting all specifications during the prerelease quality control protocols. Further investigation, including imaging in rats as well as proton and carbon 2D-NMR spectroscopic studies, led to the discovery that a derivative of the precursor had been received from the manufacturer. Hence, we report our investigation and the first-in-human study of [18F]SDM-4MP3, a structural variant of [18F]SynVesT-1, which does not have the requisite characteristics as a PET radiopharmaceutical for imaging SV2A in the central nervous system.
Collapse
Affiliation(s)
- Kimberly L. Desmond
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Michael B. Harkness
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Elena Dobrota
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Kelly Smart
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Carme Uribe
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Sylvain Houle
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Antonio P. Strafella
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, University of Toronto, Ontario, Canada
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| |
Collapse
|
45
|
Laurell GL, Plavén-Sigray P, Johansen A, Raval NR, Nasser A, Aabye Madsen C, Madsen J, Hansen HD, Donovan LL, Knudsen GM, Lammertsma AA, Ogden RT, Svarer C, Schain M. Kinetic models for estimating occupancy from single-scan PET displacement studies. J Cereb Blood Flow Metab 2023; 43:1544-1556. [PMID: 37070382 PMCID: PMC10414003 DOI: 10.1177/0271678x231168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/19/2023]
Abstract
The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.
Collapse
Affiliation(s)
- Gjertrud Louise Laurell
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University, Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lene Lundgaard Donovan
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Adriaan A Lammertsma
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - R Todd Ogden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Molecular Imaging and Neuropathology Division, The New York State Psychiatric Institute, New York, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Antaros Medical, Mölndal, Sweden
| |
Collapse
|
46
|
Vogler L, Ballweg A, Bohr B, Briel N, Wind K, Antons M, Kunze LH, Gnörich J, Lindner S, Gildehaus FJ, Baumann K, Bartenstein P, Boening G, Ziegler SI, Levin J, Zwergal A, Höglinger GU, Herms J, Brendel M. Assessment of synaptic loss in mouse models of β-amyloid and tau pathology using [ 18F]UCB-H PET imaging. Neuroimage Clin 2023; 39:103484. [PMID: 37541098 PMCID: PMC10407951 DOI: 10.1016/j.nicl.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.
Collapse
Affiliation(s)
- Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nils Briel
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Lea H Kunze
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Vertigo and Balance Disorders (DSGZ), University Hospital of Munich, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
47
|
O'Dell RS, Higgins-Chen A, Gupta D, Chen MK, Naganawa M, Toyonaga T, Lu Y, Ni G, Chupak A, Zhao W, Salardini E, Nabulsi NB, Huang Y, Arnsten AFT, Carson RE, van Dyck CH, Mecca AP. Principal component analysis of synaptic density measured with [ 11C]UCB-J PET in early Alzheimer's disease. Neuroimage Clin 2023; 39:103457. [PMID: 37422964 PMCID: PMC10338149 DOI: 10.1016/j.nicl.2023.103457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.
Collapse
Affiliation(s)
- Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| | - Albert Higgins-Chen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Pain Research, Informatics, Multi-morbidities, and Education Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dhruva Gupta
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Gessica Ni
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Anna Chupak
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Wenzhen Zhao
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| |
Collapse
|
48
|
Xiong M, Roshanbin S, Sehlin D, Hansen HD, Knudsen GM, Rokka J, Eriksson J, Syvänen S. Synaptic density in aging mice measured by [ 18F]SynVesT-1 PET. Neuroimage 2023:120230. [PMID: 37355199 DOI: 10.1016/j.neuroimage.2023.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Johanna Rokka
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
49
|
Fontana IC, Scarpa M, Malarte ML, Rocha FM, Ausellé-Bosch S, Bluma M, Bucci M, Chiotis K, Kumar A, Nordberg A. Astrocyte Signature in Alzheimer's Disease Continuum through a Multi-PET Tracer Imaging Perspective. Cells 2023; 12:1469. [PMID: 37296589 PMCID: PMC10253101 DOI: 10.3390/cells12111469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Reactive astrogliosis is an early event in the continuum of Alzheimer's disease (AD). Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of Aβ plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current view of reactive astrogliosis heterogeneity-more than one subtype of astrocyte involved-in AD, we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive astrogliosis and improve the detection of AD in its early stages.
Collapse
Affiliation(s)
- Igor C. Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Filipa M. Rocha
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sira Ausellé-Bosch
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Faculty of Health and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Marina Bluma
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Stockholm, Sweden
| |
Collapse
|
50
|
Kiemes A, Serrano Navacerrada ME, Kim E, Randall K, Simmons C, Rojo Gonzalez L, Petrinovic MM, Lythgoe DJ, Rotaru D, Di Censo D, Hirschler L, Barbier EL, Vernon AC, Stone JM, Davies C, Cash D, Modinos G. Erbb4 Deletion From Inhibitory Interneurons Causes Psychosis-Relevant Neuroimaging Phenotypes. Schizophr Bull 2023; 49:569-580. [PMID: 36573631 PMCID: PMC10154722 DOI: 10.1093/schbul/sbac192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND HYPOTHESIS Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.
Collapse
Affiliation(s)
- Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Maria Elisa Serrano Navacerrada
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Eugene Kim
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Marija-Magdalena Petrinovic
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Rotaru
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Davide Di Censo
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|