1
|
Pareek A, Kumar S, Kapoor DU, Prajapati BG. Advancements in superparamagnetic nanogels: A dual-role platform for diagnosis and targeted drug delivery. Int J Pharm 2025; 677:125683. [PMID: 40334826 DOI: 10.1016/j.ijpharm.2025.125683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/12/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Superparamagnetic nanogels represent a groundbreaking advancement in nanotechnology, combining the unique properties of superparamagnetic materials with the versatility of nanogels to create multifunctional platforms for biomedical applications. These innovative constructs play a dual role in diagnosis and targeted drug delivery, addressing critical challenges in modern healthcare. This review paper explores the synthesis, characterization, and applications of superparamagnetic nanogels, providing a comprehensive overview of their potential impact in biomedicine. The synthesis section outlines various materials, fabrication techniques, and surface functionalization methods used to enhance their functionality and biocompatibility. Characterization techniques are discussed, focusing on their structural, magnetic, and biological properties. In diagnostic applications, superparamagnetic nanogels excel as contrast agents for magnetic resonance imaging, biosensors, and tools for real-time disease monitoring. Their superior sensitivity and specificity offer unprecedented opportunities for early disease detection and personalized treatment. In drug delivery, these nanogels demonstrate remarkable efficiency in encapsulating therapeutic agents and enabling controlled release. Magnetic guidance enhances targeting precision, minimizing off-target effects and improving therapeutic outcomes, particularly in cancer therapy. The dual-role capability of these nanogels underscores their potential as transformative tools in precision medicine. This review emphasizes recent advancements, highlighting the challenges and future perspectives in optimizing superparamagnetic nanogels for clinical translation. By bridging the gap between innovative design and practical application, this work aims to inspire further research and development in this dynamic field.
Collapse
Affiliation(s)
- Anil Pareek
- Department of Pharmaceutics, Lachoo Memorial College of Science and Technology (Autonomous), Jodhpur, Rajasthan 342003, India
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy Bareilly, 243001 Uttar Pradesh, India
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601 Gujarat, India.
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
Chen Y, Cai S, Liu FY, Liu M. Advancing oral cancer care: nanomaterial-driven diagnostic and therapeutic innovations. Cell Biol Toxicol 2025; 41:90. [PMID: 40407908 PMCID: PMC12102110 DOI: 10.1007/s10565-025-10027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/13/2025] [Indexed: 05/26/2025]
Abstract
The advent of nanotechnology has significantly advanced the diagnosis and treatment of oral cancer, offering more precise and efficient therapeutic strategies. This review presents a comprehensive overview of recent developments in the application of nanotechnology to oral cancer management. It begins with an overview of the epidemiology of oral cancer and outlines current diagnostic and therapeutic methods. The classification and advantages of various nanomaterials are then introduced. The paper thoroughly explores the use of nanomaterials as drug delivery systems (DDSs), imaging contrast agents, and therapeutic tools, with particular emphasis on multifunctional nanoplatforms that integrate diagnostics and therapy. These platforms enable real-time monitoring and immediate therapeutic response, offering innovative approaches for early detection and intervention. Despite these promising advances, several challenges persist, including issues related to biocompatibility, clearance, targeting specificity, and clinical translation. The review concludes by highlighting current limitations and proposing future directions for the clinical application of nanotechnology in oral cancer treatment.
Collapse
Affiliation(s)
- Yuwen Chen
- Departmentof Orthodontics, School of Stomatology, China Medical University, 117 South Nanjing Street, Heping, Shenyang, Liaoning, 110002, P.R. China
| | - Sijia Cai
- Departmentof Orthodontics, School of Stomatology, China Medical University, 117 South Nanjing Street, Heping, Shenyang, Liaoning, 110002, P.R. China
| | - Fa-Yu Liu
- Department of Oromaxillofacial-Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, P.R. China
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, P.R. China.
| |
Collapse
|
3
|
Roussel T, Cruz-Dubois T, Louis B, Laurini E, Ding L, Balasse L, Nail V, Dignat-George F, Giorgio S, Pricl S, Guillet B, Garrigue P, Peng L. Impact of inner hydrophobicity of dendrimer nanomicelles on biodistribution: a PET imaging study. J Mater Chem B 2025; 13:5041-5050. [PMID: 39699216 DOI: 10.1039/d4tb01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution. Remarkably, despite maintaining the exact same surface chemistry, similar zeta potential, and small size, the altered and enlarged hydrophobic component within the amphiphilic dendrimer led to enhanced stability of the self-assembled nanomicelles, with prolonged circulation time and massive accumulation in the liver. This study reveals that even structural alteration within the interior of nanomicelles can dramatically impact biodistribution profiles. This finding highlights the deeper complexity of rational design for nanomedicine and the need to consider factors other than surface charge and chemistry, as well as size, all of which significantly impact the biodistribution of self-assembling nanosystems.
Collapse
Affiliation(s)
- Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Twiany Cruz-Dubois
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Beatrice Louis
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
| | - Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Laure Balasse
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | | | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland
| | - Benjamin Guillet
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Philippe Garrigue
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
4
|
Cervini R, Centa A, Locatelli C, Dal Pont GC, Assolini JP. Unraveling the Nano World in Paracoccidioidomycosis: Promising Applications of Nanotechnology in Diagnosis, Treatment, and Vaccines: A Mini Review. Curr Microbiol 2025; 82:264. [PMID: 40295332 DOI: 10.1007/s00284-025-04251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides. This disease is prevalent in Latin America, with Brazil being an endemic region. This mycosis can be classified as PCM infection, PCM disease and residual PCM. Although diagnosis and treatment exist, they have some limitations, and there is no vaccine available for this disease. Thus, the application of nanotechnology in the biomedical and health areas has become an innovative alternative. In this review, we highlight the main advances in the use of nanotechnology to improve and/or develop methods of diagnosis, treatment and vaccines for PCM. In order to improve diagnostic methods, nanoparticles can be used as biosensors associated with cell biology and spectroscopy techniques. The use of nanomaterials of different shapes and nature can act directly on the pathogen or as drug carriers, maintaining or improving antifungal activity and reducing toxicity in vitro and in vivo. In addition, nanoparticulate systems could be an important tool for vaccine development, stimulating a Th1 response, which is considered protective in PCM.
Collapse
Affiliation(s)
- Ricardo Cervini
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Ariana Centa
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Claudriana Locatelli
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - Gustavo Colombo Dal Pont
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Research Group in Bioactive Molecules, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil
| | - João Paulo Assolini
- Alto Vale do Rio Peixe University, Victor Baptista Adami Street, 800, Caçador, SC, 89500-000, Brazil.
- Experimental Pathophysiology Research Group, Alto Vale do Rio Peixe University, Caçador, SC, Brazil.
- Translational Health Research Laboratory, Alto Vale do Rio Peixe University, Caçador, SC, Brazil.
| |
Collapse
|
5
|
Pan H, Balbirnie M, Hou K, Sta Maria NS, Sahay S, Denver P, Lepore S, Jones M, Zuo X, Zhu C, Mirbaha H, Shahpasand-Kroner H, Mekkittikul M, Lu J, Hu CJ, Cheng X, Abskharon R, Sawaya MR, Williams CK, Vinters HV, Jacobs RE, Harris NG, Cole GM, Frautschy SA, Eisenberg DS. Liganded magnetic nanoparticles for magnetic resonance imaging of α-synuclein. NPJ Parkinsons Dis 2025; 11:88. [PMID: 40268938 PMCID: PMC12019173 DOI: 10.1038/s41531-025-00918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Aggregation of the protein α-synuclein (α-syn) is the histopathological hallmark of neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are collectively known as synucleinopathies. Currently, patients with synucleinopathies are diagnosed by physical examination and medical history, often at advanced stages of disease. Because synucleinopathies are associated with α-syn aggregates, and α-syn aggregation often precedes onset of symptoms, detecting α-syn aggregates would be a valuable early diagnostic for patients with synucleinopathies. Here, we design a liganded magnetic nanoparticle (LMNP) functionalized with an α-syn-targeting peptide to be used as a magnetic resonance imaging (MRI)-based biomarker for α-syn. Our LMNPs bind to aggregates of α-syn in vitro, cross the blood-brain barrier in mice with mannitol adjuvant, and can be used as an MRI contrast agent to distinguish mice with α-synucleinopathy from age-matched, wild-type control mice in vivo. These results provide evidence for the potential of magnetic nanoparticles that target α-syn for diagnosis of synucleinopathies.
Collapse
Affiliation(s)
- Hope Pan
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Melinda Balbirnie
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Ke Hou
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Naomi S Sta Maria
- Department of Research Physiology, Department of Neuroscience, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Shruti Sahay
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Paul Denver
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Stefano Lepore
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mychica Jones
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaohong Zuo
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chunni Zhu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Brain Research Institute Electron Microscopy Core Facility, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Hilda Mirbaha
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Hedieh Shahpasand-Kroner
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marisa Mekkittikul
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jiahui Lu
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Carolyn J Hu
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Xinyi Cheng
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Romany Abskharon
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Christopher K Williams
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Russell E Jacobs
- Department of Research Physiology, Department of Neuroscience, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Neil G Harris
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gregory M Cole
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sally A Frautschy
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Attanayake SB, Nguyen MD, Chanda A, Alonso J, Orue I, Lee TR, Srikanth H, Phan MH. Superparamagnetic Superparticles for Magnetic Hyperthermia Therapy: Overcoming the Particle Size Limit. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19436-19445. [PMID: 40108950 DOI: 10.1021/acsami.4c22386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Iron oxide (e.g., Fe3O4 or γ-Fe2O3) nanoparticles are promising candidates for a variety of biomedical applications ranging from magnetic hyperthermia therapy to drug delivery and biodetection due to their superparamagnetism, nontoxicity, and biodegradability. While particles of small size (below a critical size, ∼20 nm) display superparamagnetic behavior at room temperature, these particles tend to penetrate highly sensitive areas of the body such as the blood-brain barrier, leading to undesired effects. In addition, these particles possess a high probability of retention, which can lead to genotoxicity and biochemical toxicity. Increasing particle size is a means for addressing these problems but also suppresses the superparamagnetism. We have overcome this particle size limit by synthesizing unique polycrystalline iron oxide nanoparticles composed of multiple nanocrystals of 10 to 15 nm size while tuning particle size from 160 to 400 nm. These so-called superparticles preserve superparamagnetic characteristics and exhibit excellent hyperthermia responses. The specific absorption rates exceed 250 W/g (HAC = 800 Oe, f = 310 kHz) at a low concentration of 0.5 mg/mL, indicating their capability in cancer treatment with minimum dose. Our study underscores the potential of size-tunable polycrystalline iron oxide superparticles with superparamagnetic properties for advanced biomedical applications and sensing technologies.
Collapse
Affiliation(s)
- Supun B Attanayake
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Javier Alonso
- Department of CITIMAC, Universidad de Cantabria, Santander 39005, Spain
| | - Iñaki Orue
- SGIker Medidas Magnéticas, Universidad Del País Vasco, Leioa 48940, Spain
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
7
|
Liu J, Zhang M, Wu C, Pan X, Huang Z. TPGS/soluplus® blended micelles: an effective strategy for improving loading capacity of ferroptosis inducer erastin. J DISPER SCI TECHNOL 2025; 46:523-535. [DOI: 10.1080/01932691.2023.2295024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 06/25/2024]
Affiliation(s)
| | | | | | - Xin Pan
- College of Pharmacy, Sun Yat-Sen University
| | | |
Collapse
|
8
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
9
|
Zhou Q, Wang Y, Si G, Chen X, Mu D, Zhang B. Application of Nanomaterials in Early Imaging and Advanced Treatment of Atherosclerosis. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:51-76. [PMID: 40018650 PMCID: PMC11863161 DOI: 10.1021/cbmi.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 03/01/2025]
Abstract
Atherosclerosis (AS) is a serious disease that poses a significant threat to the global population. In this review, we analyze the development of AS from multiple perspectives, aiming to elucidate its molecular mechanisms. We also focus on imaging techniques and therapeutic approaches, highlighting the crucial role of nanomaterials in both imaging and therapy for AS. By leveraging their compatibility and targeting capabilities, nanomaterials can be integrated with traditional medical imaging and therapeutic agents to achieve targeted drug delivery, controlled release, and precise localization and imaging of atherosclerotic plaques.
Collapse
Affiliation(s)
- Qianru Zhou
- Department
of Radiology, Nanjing Drum Tower Hospital Clinical College of Traditional
Chinese and Western Medicine, Nanjing University
of Chinese Medicine, Nanjing 210008, China
| | - Yujie Wang
- Department
of Radiology, Nanjing Drum Tower Hospital
Clinical College of Jiangsu University, Nanjing 210008, China
| | - Guangxiang Si
- Jiangsu
Key Laboratory for Biomaterials and Devices, School of Biological
Science and Medical Engineering, Southeast
University, Nanjing 210000, China
| | - Xingbiao Chen
- Clinical
Science, Philips Healthcare, Shanghai 200233, China
| | - Dan Mu
- Department
of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of
Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Bing Zhang
- Department
of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of
Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
10
|
Wahab A, Suhail M, Eggers T, Shehzad K, Akakuru OU, Ahmad Z, Sun Z, Iqbal MZ, Kong X. Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics. Acta Biomater 2025; 193:83-106. [PMID: 39793747 DOI: 10.1016/j.actbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, 19F CAs, and HP 13C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. 19F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP 13C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs. STATEMENT OF SIGNIFICANCE: The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP 13C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.
Collapse
Affiliation(s)
- Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tatiana Eggers
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Khurram Shehzad
- Institute of Physics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Zahoor Ahmad
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhichao Sun
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
11
|
Han CY, Choi SH, Chi SH, Hong JH, Cho YE, Kim J. Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring. NANO CONVERGENCE 2024; 11:53. [PMID: 39661218 PMCID: PMC11635084 DOI: 10.1186/s40580-024-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages-including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility-and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.
Collapse
Affiliation(s)
- Chae Yeon Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Hun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Soo-Hyang Chi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, 36729, South Korea
| | - Jihoon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
12
|
Sun Q, Yu L, Donnelly SC, Fradin C, Thompson RT, Prato FS, Goldhawk DE. Essential magnetosome proteins MamI and MamL from magnetotactic bacteria interact in mammalian cells. Sci Rep 2024; 14:26292. [PMID: 39487238 PMCID: PMC11530650 DOI: 10.1038/s41598-024-77591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
To detect cellular activities deep within the body using magnetic resonance platforms, magnetosomes are the ideal model of genetically-encoded nanoparticles. These membrane-bound iron biominerals produced by magnetotactic bacteria are highly regulated by approximately 30 genes; however, the number of magnetosome genes that are essential and/or constitute the root structure upon which biominerals form is largely undefined. To examine the possibility that key magnetosome genes may interact in a foreign environment, we expressed mamI and mamL as fluorescent fusion proteins in mammalian cells. Localization and potential protein-protein interaction(s) were investigated using confocal microscopy and fluorescence correlation spectroscopy (FCS). Enhanced green fluorescent protein (EGFP)-MamI and the red fluorescent Tomato-MamL displayed distinct intracellular localization, with net-like and punctate fluorescence, respectively. Remarkably, co-expression revealed co-localization of both fluorescent fusion proteins in the same punctate pattern. An interaction between MamI and MamL was confirmed by co-immunoprecipitation. In addition, changes in EGFP-MamI distribution were accompanied by acquisition of intracellular mobility which all Tomato-MamL structures displayed. Analysis of extracts from these cells by FCS was consistent with an interaction between fluorescent fusion proteins, including an increase in particle radius. Co-localization and interaction of MamI and MamL demonstrate that select magnetosome proteins may associate in mammalian cells.
Collapse
Affiliation(s)
- Qin Sun
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada
| | - Liu Yu
- Physics & Astronomy, McMaster University, Hamilton, ON, Canada
| | | | - Cécile Fradin
- Physics & Astronomy, McMaster University, Hamilton, ON, Canada
- Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - R Terry Thompson
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Medical Imaging, Western University, London, ON, Canada
- Physics & Astronomy, Western University, London, ON, Canada
| | - Frank S Prato
- Imaging, Lawson Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada
- Medical Imaging, Western University, London, ON, Canada
| | - Donna E Goldhawk
- Imaging, Lawson Research Institute, London, ON, Canada.
- Medical Biophysics, Western University, London, ON, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, ON, Canada.
- Imaging Program, Lawson Research Institute, 268 Grosvenor St. , PO Box 5777 Station B, London, ON, N6A 4V2, Canada.
| |
Collapse
|
13
|
Che Dji LV, Kaddah R, Girardet T, Fleutot S, Bouguet-Bonnet S. Effect of the Dispersion Medium on NMR Relaxation Properties of Superparamagnetic Iron Oxide Nanoparticles between 0.24 mT and 14.1 T. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22089-22097. [PMID: 39392228 DOI: 10.1021/acs.langmuir.4c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Due to weak exchange interactions, magnetite particles at a critical diameter of about 20 nm are considered monodomain. At this size, they exhibit a phenomenological magnetic property called superparamagnetism, making them useful as magnetic resonance imaging contrast agents, or MRI CAs. However, questions persist regarding the impact of using different physiological solvents and varying the environment in which these particles are dispersed on their performance, determined by their relaxivity. A colloidal suspension of superparamagnetic iron oxide nanoparticles (SPIONs) electrostatically stabilized by citrate ligand was synthesized using a fast, reliable, and reproducible developed microwave approach, ensuring high stability over time at pH 7. We studied the effects of three physiological media on these MRI CAs. Ultrapure water was used for the synthesis, while phosphate-buffered saline and physiological liquid were used to disperse the nanoparticles, as these media contain essential electrolytes for the functioning of the human body. The SPIONs underwent systematic characterizations to determine their physicochemical and magnetic properties. This study reports the longitudinal relaxivities of SPIONs at medically relevant magnetic field strengths. Field dependence of their relaxivity (efficacy) was evaluated using a nuclear magnetic resonance dispersion (NMRD) profile measured over a wide range of proton resonance frequencies between 5 kHz and 600 MHz. The Roch et al. model (Roch, A.; et al. J. Chem. Phys., 1999, 110, 5403-5411) was used to analyze the NMRD profile and evaluate the impact of SPIONs on water proton relaxation in the different redispersion media. It was observed in this study that the dynamics of water protons are not influenced by the redispersion media of these citrate-coated SPIONs. However, the presence of salt ions notably reduces their relaxivities by lowering the saturation magnetization of SPIONs.
Collapse
Affiliation(s)
- Lyns Verel Che Dji
- CRM2 (Cristallographie, Résonance Magnétique et Modélisations), CNRS, Université de Lorraine, Vandœuvre-lès-Nancy F-54500, France
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Roua Kaddah
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Thomas Girardet
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Solenne Fleutot
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Sabine Bouguet-Bonnet
- CRM2 (Cristallographie, Résonance Magnétique et Modélisations), CNRS, Université de Lorraine, Vandœuvre-lès-Nancy F-54500, France
| |
Collapse
|
14
|
Mariotti M, Giacon N, Lo Cascio E, Cacaci M, Picchietti S, Di Vito M, Sanguinetti M, Arcovito A, Bugli F. Functionalized PLGA-Based Nanoparticles with Anti-HSV-2 Human Monoclonal Antibody: A Proof of Concept for Early Diagnosis and Targeted Therapy. Pharmaceutics 2024; 16:1218. [PMID: 39339254 PMCID: PMC11434782 DOI: 10.3390/pharmaceutics16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Functionalized nanoparticles (NPs) represent a cutting edge in innovative clinical approaches, allowing for the delivery of selected compounds with higher specificity in a wider time frame. They also hold promise for novel theranostic applications that integrate both diagnostic and therapeutic functions. Pathogens are continuously evolving to try to escape the strategies designed to treat them. Objectives: In this work, we describe the development of a biotechnological device, Nano-Immuno-Probes (NIPs), for early detection and infections treatment. Human Herpes Simplex Virus 2 was chosen as model pathogen. Methods: NIPs consist of PLGA-PEG-Sulfone polymeric NPs conjugated to recombinant Fab antibody fragments targeting the viral glycoprotein G2. NIPs synthesis involved multiple steps and was validated through several techniques. Results: DLS analysis indicated an expected size increase with a good polydispersity index. Z-average and z-potential values were measured for PLGA-PEG-Bis-Sulfone NPs (86.6 ± 10.9 nm; -0.7 ± 0.3 mV) and NIPs (151 ± 10.4 nm; -5.1 ± 1.9 mV). SPR assays confirmed NIPs' specificity for the glycoprotein G2, with an apparent KD of 1.03 ± 0.61 µM. NIPs exhibited no cytotoxic effects on VERO cells at 24 and 48 h. Conclusions: This in vitro study showed that NIPs effectively target HSV-2, suggesting the potential use of these nanodevices to deliver both contrast agents as well as therapeutic compounds.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
16
|
Ling B, Gungoren B, Yao Y, Dutka P, Vassallo R, Nayak R, Smith CAB, Lee J, Swift MB, Shapiro MG. Truly Tiny Acoustic Biomolecules for Ultrasound Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307106. [PMID: 38409678 PMCID: PMC11602542 DOI: 10.1002/adma.202307106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography is challenging due to the size and stability constraints of conventional bubble-based agents. Here bicones, truly tiny acoustic contrast agents based on gas vesicles (GVs), a unique class of air-filled protein nanostructures naturally produced in buoyant microbes, are described. It is shown that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bilge Gungoren
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Przemysław Dutka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Reid Vassallo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Rohit Nayak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cameron A. B. Smith
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Justin Lee
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
17
|
Striggow F, Ribeiro C, Aziz A, Nauber R, Hebenstreit F, Schmidt OG, Medina-Sánchez M. Magnetotactic Sperm Cells for Assisted Reproduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310288. [PMID: 38150615 DOI: 10.1002/smll.202310288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Indexed: 12/29/2023]
Abstract
Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.
Collapse
Affiliation(s)
- Friedrich Striggow
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Carla Ribeiro
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Richard Nauber
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Franziska Hebenstreit
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
18
|
Wu H, Zhou F, Gao W, Chen P, Wei Y, Wang F, Zhao H. Current status and research progress of minimally invasive treatment of glioma. Front Oncol 2024; 14:1383958. [PMID: 38835394 PMCID: PMC11148461 DOI: 10.3389/fonc.2024.1383958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Glioma has a high malignant degree and poor prognosis, which seriously affects the prognosis of patients. Traditional treatment methods mainly include craniotomy tumor resection, postoperative radiotherapy and chemotherapy. Although above methods have achieved remarkable curative effect, they still have certain limitations and adverse reactions. With the introduction of the concept of minimally invasive surgery and its clinical application as well as the development and progress of imaging technology, minimally invasive treatment of glioma has become a research hotspot in the field of neuromedicine, including photothermal treatment, photodynamic therapy, laser-induced thermal theraphy and TT-Fields of tumor. These therapeutic methods possess the advantages of precision, minimally invasive, quick recovery and significant curative effect, and have been widely used in clinical practice. The purpose of this review is to introduce the progress of minimally invasive treatment of glioma in recent years and the achievements and prospects for the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Feng Zhou
- Department of Neurosurgery, The First Hospital of Yu Lin, Yulin, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
19
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
20
|
Ferreira-Filho VC, Morais B, Vieira BJC, Waerenborgh JC, Carmezim MJ, Tóth CN, Même S, Lacerda S, Jaque D, Sousa CT, Campello MPC, Pereira LCJ. Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile. Molecules 2024; 29:1824. [PMID: 38675647 PMCID: PMC11052394 DOI: 10.3390/molecules29081824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.
Collapse
Affiliation(s)
- Vital Cruvinel Ferreira-Filho
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Beatriz Morais
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Bruno J. C. Vieira
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - João Carlos Waerenborgh
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Maria João Carmezim
- Centro de Química Estrutural-CQE, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Csilla Noémi Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, CEDEX 2, France; (C.N.T.); (S.M.); (S.L.)
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, CEDEX 2, France; (C.N.T.); (S.M.); (S.L.)
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, CEDEX 2, France; (C.N.T.); (S.M.); (S.L.)
| | - Daniel Jaque
- Departamento de Física de Materiales, Universidad Autonoma de Madrid, Avda. Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Célia T. Sousa
- Departamento de Física Aplicada, Universidad Autonoma de Madrid, Avda. Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Laura C. J. Pereira
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| |
Collapse
|
21
|
Kaur J, Sridharr M. Key Insights on the Classification and Theranostic Applications of Magnetic Resonance Imaging Contrast Agents. ChemMedChem 2024; 19:e202300521. [PMID: 38246874 DOI: 10.1002/cmdc.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive molecular imaging tool being extensively employed in clinical and biomedical research for the detection of a broad spectrum of diseases. This technique offers remarkable spatial resolution, good tissue penetration and a high soft tissue contrast. Contrast agents (CAs) have been regularly used in MRI tests to enhance the resolution of MR images and to visualize the diseased sites in the body. In the past years, considerable efforts have been devoted towards developing new theranostic MRI agents that can be tailored to integrate the targeting and therapeutic functions in a single agent. In this review, we have underlined the role of the MRI CAs in the developing field of 'theranostics' and their recent applications in the combined imaging and therapy of different types of tumors. In addition, this review also outlines the different categories of MRI CAs and their comprehensive classification based on different criteria such as chemical composition, relaxation mechanism and biodistribution with clinically relevant examples.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Sector-125, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Manasvini Sridharr
- LMU Biocenter, Martinsreid, Ludwig-Maximilians-Universität München, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, München, Germany
| |
Collapse
|
22
|
Pant A, Singh G, Barnwal RP, Sharma T, Singh B. QbD-driven development and characterization of superparamagnetic iron oxide nanoparticles (SPIONS) of a bone-targeting peptide for early detection of osteoporosis. Int J Pharm 2024; 654:123936. [PMID: 38417727 DOI: 10.1016/j.ijpharm.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Osteoporosis is a metabolic disorder that leads to deterioration of bones. The major challenges confronting osteoporosis therapy include early-stage detection and regular disease monitoring. The present studies employed D-aspartic acid octapeptide (-D-Asp-)8 as bone-targeting peptide for evaluating osteoporosis manifestation, and superparamagnetic iron oxide nanoparticles (SPIONs) as nanocarriers for MRI-aided diagnosis. Thermal decomposition technique was employed to synthesize SPIONs, followed by surface-functionalization with hydrophilic ligands. Failure mode effect analysis and factor screening studies were performed to identify concentrations of SPIONs and ligand as critical material attributes, and systematic optimization was subsequently conducted employing face-centered cubic design. The optimum formulation was delineated using desirability function, and design space demarcated with 178.70 nm as hydrodynamic particle size, -24.40 mV as zeta potential, and 99.89 % as hydrophilic iron content as critical quality attributes. XRD patterns ratified lattice structure and SQUID studies corroborated superparamagnetic properties of hydrophilic SPIONs. Bioconjugation of (-D-Asp-)8 with SPIONs (1:1) was confirmed using UV spectroscopy, FTIR and NMR studies. Cell line studies indicated successful targeting of SPIONs to MG-63 human osteoblasts, ratifying enormous bone-targeting and safety potential of peptide-tethered SPIONs as MRI probes. In vivo MRI imaging studies in rats showcased promising contrast ability and safety of peptide-conjugated SPIONs.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India.
| |
Collapse
|
23
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
24
|
Cai ZM, Li ZZ, Zhong NN, Cao LM, Xiao Y, Li JQ, Huo FY, Liu B, Xu C, Zhao Y, Rao L, Bu LL. Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives. J Nanobiotechnology 2024; 22:135. [PMID: 38553735 PMCID: PMC10979629 DOI: 10.1186/s12951-024-02408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.
Collapse
Affiliation(s)
- Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, 4066, Australia
| | - Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
25
|
Prasad R, Peng B, Mendes BB, Kilian HI, Gorain M, Zhang H, Kundu GC, Xia J, Lovell JF, Conde J. Biomimetic bright optotheranostics for metastasis monitoring and multimodal image-guided breast cancer therapeutics. J Control Release 2024; 367:300-315. [PMID: 38281670 DOI: 10.1016/j.jconrel.2024.01.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nanoparticle formulations blending optical imaging contrast agents and therapeutics have been a cornerstone of preclinical theranostic applications. However, nanoparticle-based theranostics clinical translation faces challenges on reproducibility, brightness, photostability, biocompatibility, and selective tumor targeting and penetration. In this study, we integrate multimodal imaging and therapeutics within cancer cell-derived nanovesicles, leading to biomimetic bright optotheranostics for monitoring cancer metastasis. Upon NIR light irradiation, the engineered optotheranostics enables deep visualization and precise localization of metastatic lung, liver, and solid breast tumors along with solid tumor ablation. Metastatic cell-derived nanovesicles (∼80 ± 5 nm) are engineered to encapsulate imaging (emissive organic dye and gold nanoparticles) and therapeutic agents (anticancer drug doxorubicin and photothermally active organic indocyanine green dye). Systemic administration of biomimetic bright optotheranostic nanoparticles shows escape from mononuclear phagocytic clearance with (i) rapid tumor accumulation (3 h) and retention (up to 168 h), (ii) real-time monitoring of metastatic lung, liver, and solid breast tumors and (iii) 3-fold image-guided solid tumor reduction. These findings are supported by an improvement of X-ray, fluorescence, and photoacoustic signals while demonstrating a tumor reduction (201 mm3) in comparison with single therapies that includes chemotherapy (134 mm3), photodynamic therapy (72 mm3), and photothermal therapy (88mm3). The proposed innovative platform opens new avenues to improve cancer diagnosis and treatment outcomes by allowing the monitorization of cancer metastasis, allowing the precise cancer imaging, and delivering synergistic therapeutic agents at the solid tumor site.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India; Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Berney Peng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India; School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
26
|
Dang-Luong PT, Nguyen HP, Le-Tuan L, Cao XT, Tran-Anh V, Quang HV. Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:180-189. [PMID: 38352718 PMCID: PMC10862130 DOI: 10.3762/bjnano.15.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Theragnostics has become a popular term nowadays, since it enables both diagnosis and therapy at the same time while only using one carrier platform. Therefore, formulating a nanocarrier system that could serve as theragnostic agent by using simple techniques would be an advantage during production. In this project, we aimed to develop a nanocarrier that can be loaded with the chemotherapeutic medication chlorambucil and magnetic resonance imaging agents (e.g., iron oxide nanoparticles and near-infrared fluorophore IR780) for theragnostics. Poly(lactic-co-glycolic acid) was combined with the aforementioned ingredients to generate poly(vinyl alcohol)-based nanoparticles (NPs) using the single emulsion technique. Then the NPs were coated with F127 and F127-folate by simple incubation for five days. The nanoparticles have the hydrodynamic size of approx. 250 nm with negative charge. Similar to chlorambucil and IR780, iron oxide loadings were observed for all three kinds of NPs. The release of chlorambucil was quicker at pH 5.4 than at pH 7.4 at 37 °C. The F127@NPs and F127-folate@NPs demonstrated much greater cell uptake and toxicity up to 72 h after incubation. Our in vitro results of F127@NPs and F127-folate@NPs have demonstrated the ability of these systems to serve as medication and imaging agent carriers for cancer treatment and diagnostics, respectively.
Collapse
Affiliation(s)
| | - Hong-Phuc Nguyen
- NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Loc Le-Tuan
- NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Xuan-Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Vy Tran-Anh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Vu Quang
- Department of Biotechnology, NTT Hi-tech institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
27
|
Zuben de Valega Negrão CV, Cerize NN, Silva Justo-Junior AD, Liszbinski RB, Meneguetti GP, Araujo L, Rocco SA, Almeida Gonçalves KD, Cornejo DR, Leo P, Perecin C, Adamoski D, Gomes Dias SM. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification. Nanomedicine (Lond) 2024; 19:231-254. [PMID: 38284384 DOI: 10.2217/nnm-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 μg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.
Collapse
Affiliation(s)
- Cyro von Zuben de Valega Negrão
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Natália Np Cerize
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Amauri da Silva Justo-Junior
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Raquel Bester Liszbinski
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Giovanna Pastore Meneguetti
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Larissa Araujo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Daniel R Cornejo
- Department of Materials & Mechanics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Patrícia Leo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Caio Perecin
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Sandra M Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
28
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
29
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Kanber M, Umerah O, Brindley S, Zhang X, Brown JM, Reynolds L, Beltran-Huarac J. Magneto-Mechanical Actuation Induces Endothelial Permeability. ACS Biomater Sci Eng 2023; 9:6902-6914. [PMID: 38014849 PMCID: PMC10716818 DOI: 10.1021/acsbiomaterials.3c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Cancer treatment is one of the major health problems that burden our society. According to the American Cancer Society, over 1.9 million new cancer cases and ∼0.6 million deaths from cancer are expected in the US in 2023. Therapeutic targeting is considered to be the gold standard in cancer treatment. However, when a tumor grows beyond a critical size, its vascular system differentiates abnormally and erratically, creating a heterogeneous endothelial barrier that further restricts drug delivery into tumors. While several methods exist, these prompt tumor migration and the appearance of new metastatic sites. Herein, we propose an innovative method based on magneto-mechanical actuation (MMA) to induce endothelial permeability. This method employs FDA-approved PEGylated superparamagnetic iron oxide nanoparticles (PEG-SPIONs) and alternating nonheating magnetic fields. MMA lies in the translation of magnetic forces into mechanical agitation. As a proof of concept, we developed a 2D cell culture model based on human umbilical vein endothelial cells (HUVEC), which were incubated with PEG-SPIONs and then exposed to different magnetic doses. After adjusting the particle concentration, incubation times, and parameters (amplitude, frequency, and exposure time) of the magnetic field generator, we induced actin filament remodeling and subsequent vascular endothelial-cadherin junction disruption. This led to transient gaps in cell monolayers, through which fluorescein isothiocyanate-dextran was translocated. We observed no cell viability reduction for 3 h of particle incubation up to a concentration of 100 μg/mL in the presence and absence of magnetic fields. For optimal permeability studies, the magnetic field parameters were adjusted to 100 mT, 65 Hz, and 30 min in a pulse mode with 5 min OFF intervals. We found that the endothelial permeability reached the highest value (33%) when 2 h postmagnetic field treatment was used. To explain these findings, a magneto-mechanical transduced stress mechanism mediated by intracellular forces was proposed. This method can open new avenues for targeted drug delivery into anatomic regions within the body for a broad range of disease interventions.
Collapse
Affiliation(s)
- Mohammad Kanber
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Obum Umerah
- Brody
School of Medicine, East Carolina University, Greenville, North Carolina 27858, United States
| | - Stephen Brindley
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Xuanyi Zhang
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jared M. Brown
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Lew Reynolds
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juan Beltran-Huarac
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
31
|
Kargozar S, Moghanian A, Rashvand A, Miri AK, Hamzehlou S, Baino F, Mozafari M, Wang AZ. Nanostructured bioactive glasses: A bird's eye view on cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1905. [PMID: 37259946 DOI: 10.1002/wnan.1905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
Bioactive glasses (BGs) arewell known for their successful applications in tissue engineering and regenerative medicine. Recent experimental studies have shown their potential usability in oncology, either alone or in combination with other biocompatible materials, such as biopolymers. Direct contact with BG particles has been found to cause toxicity and death in specific cancer cells (bone-derived neoplastic stromal cells) in vitro. Nanostructured BGs (NBGs) can be doped with anticancer elements, such as gallium, to enhance their toxic effects against tumor cells. However, the molecular mechanisms and intracellular targets for anticancer compositions of NBGs require further clarification. NBGs have been successfully evaluated for use in various well-established cancer treatment strategies, including cancer hyperthermia, phototherapy, and anticancer drug delivery. Existing results indicate that NBGs not only enhance cancer cell death, but can also participate in the regeneration of lost healthy tissues. However, the application of NBGs in oncology is still in its early stages, and numerous unanswered questions must be addressed. For example, the impact of the composition, biodegradation, size, and morphology of NBGs on their anticancer efficacy should be defined for each type of cancer and treatment strategy. Moreover, it should be more clearly assessed whether NBGs can shrink tumors, slow/stop cancer progression, or cure cancer completely. In this regard, the use of computational studies (in silico methods) is highly recommended to design the most effective glass formulations for cancer therapy approaches and to predict, to some extent, the relevant properties, efficacy, and outcomes. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Ali Rashvand
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Amir K Miri
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Sepideh Hamzehlou
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Andrew Z Wang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Kafali M, Şahinoğlu OB, Tufan Y, Orsel ZC, Aygun E, Alyuz B, Saritas EU, Erdem EY, Ercan B. Antibacterial properties and osteoblast interactions of microfluidically synthesized chitosan - SPION composite nanoparticles. J Biomed Mater Res A 2023; 111:1662-1677. [PMID: 37232403 DOI: 10.1002/jbm.a.37575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
In this research, a multi-step microfluidic reactor was used to fabricate chitosan - superparamagnetic iron oxide composite nanoparticles (Ch - SPIONs), where composite formation using chitosan was aimed to provide antibacterial property and nanoparticle stability for magnetic resonance imaging (MRI). Monodispersed Ch - SPIONs had an average particle size of 8.8 ± 1.2 nm with a magnetization value of 32.0 emu/g. Ch - SPIONs could be used as an MRI contrast agent by shortening T2 relaxation parameter of the surrounding environment, as measured on a 3 T MRI scanner. In addition, Ch - SPIONs with concentrations less than 1 g/L promoted bone cell (osteoblast) viability up to 7 days of culture in vitro in the presence of 0.4 T external static magnetic field. These nanoparticles were also tested against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), which are dangerous pathogens that cause infection in tissues and biomedical devices. Upon interaction of Ch - SPIONs with S. aureus and P. aeruginosa at 0.01 g/L concentration, nearly a 2-fold reduction in the number of colonies was observed for both bacteria strains at 48 h of culture. Results cumulatively showed that Ch - SPIONs were potential candidates as a cytocompatible and antibacterial agent that can be targeted to biofilm and imaged using an MRI.
Collapse
Affiliation(s)
- Melisa Kafali
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - O Berkay Şahinoğlu
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Yiğithan Tufan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Z Cemre Orsel
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Elif Aygun
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Beril Alyuz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| | - E Yegan Erdem
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Biomedical Engineering Program, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
33
|
Tegafaw T, Liu S, Ahmad MY, Ali Al Saidi AK, Zhao D, Liu Y, Yue H, Nam SW, Chang Y, Lee GH. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv 2023; 13:32381-32397. [PMID: 37928839 PMCID: PMC10623544 DOI: 10.1039/d3ra06837d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Nanodiamonds (ND) are chemically inert and stable owing to their sp3 covalent bonding structure, but their surface sp2 graphitic carbons can be easily homogenized with diverse functional groups via oxidation, reduction, hydrogenation, amination, and halogenation. Further surface conjugation of NDs with hydrophilic ligands can boost their colloidal stability and functionality. In addition, NDs are non-toxic as they are made of carbons. They exhibit stable fluorescence without photobleaching. They also possess paramagnetic and ferromagnetic properties, making them suitable for use as a new type of fluorescence imaging (FI) and magnetic resonance imaging (MRI) probe. In this review, we focused on recently developed ND production methods, surface homogenization and functionalization methods, biocompatibilities, and biomedical imaging applications as FI and MRI probes. Finally, we discussed future perspectives.
Collapse
Affiliation(s)
- Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| |
Collapse
|
34
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
36
|
Ling B, Gungoren B, Yao Y, Dutka P, Smith CAB, Lee J, Swift MB, Shapiro MG. Truly tiny acoustic biomolecules for ultrasound imaging and therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546773. [PMID: 37425749 PMCID: PMC10327013 DOI: 10.1101/2023.06.27.546773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography has been challenging due to the size and stability constraints of conventional bubble-based agents. Here we describe bicones, truly tiny acoustic contrast agents based on gas vesicles, a unique class of air-filled protein nanostructures naturally produced in buoyant microbes. We show that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Bilge Gungoren
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Przemysław Dutka
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Cameron A. B. Smith
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Justin Lee
- Division of Biology and Biological Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology; Pasadena, CA 91125, USA
- Howard Hughes Medical Institute; Pasadena, CA 91125, USA
| |
Collapse
|
37
|
Ahmadi M, Emzhik M, Mosayebnia M. Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 2023; 13:1546-1583. [PMID: 36811810 DOI: 10.1007/s13346-023-01291-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
Providing accurate molecular imaging of the body and biological process is critical for diagnosing disease and personalizing treatment with the minimum side effects. Recently, diagnostic radiopharmaceuticals have gained more attention in precise molecular imaging due to their high sensitivity and appropriate tissue penetration depth. The fate of these radiopharmaceuticals throughout the body can be traced using nuclear imaging systems, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET) modalities. In this regard, nanoparticles are attractive platforms for delivering radionuclides into targets because they can directly interfere with the cell membranes and subcellular organelles. Moreover, applying radiolabeled nanomaterials can decrease their toxicity concerns because radiopharmaceuticals are usually administrated at low doses. Therefore, incorporating gamma-emitting radionuclides into nanomaterials can provide imaging probes with valuable additional properties compared to the other carriers. Herein, we aim to review (1) the gamma-emitting radionuclides used for labeling different nanomaterials, (2) the approaches and conditions adopted for their radiolabeling, and (3) their application. This study can help researchers to compare different radiolabeling methods in terms of stability and efficiency and choose the best way for each nanosystem.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Emzhik
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Junction, Vali-E-Asr Ave, Tehran, 14155-6153, Iran.
| |
Collapse
|
38
|
Rivera D, Schupper AJ, Bouras A, Anastasiadou M, Kleinberg L, Kraitchman DL, Attaluri A, Ivkov R, Hadjipanayis CG. Neurosurgical Applications of Magnetic Hyperthermia Therapy. Neurosurg Clin N Am 2023; 34:269-283. [PMID: 36906333 PMCID: PMC10726205 DOI: 10.1016/j.nec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Magnetic hyperthermia therapy (MHT) is a highly localized form of hyperthermia therapy (HT) that has been effective in treating various forms of cancer. Many clinical and preclinical studies have applied MHT to treat aggressive forms of brain cancer and assessed its role as a potential adjuvant to current therapies. Initial results show that MHT has a strong antitumor effect in animal studies and a positive association with overall survival in human glioma patients. Although MHT is a promising therapy with the potential to be incorporated into the future treatment of brain cancer, significant advancement of current MHT technology is required.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Alexander J Schupper
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alexandros Bouras
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Maria Anastasiadou
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA
| | - Dara L Kraitchman
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, The Pennsylvania State University, 777 West Harrisburg Pike Middletown, PA 17057, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA; Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231-5678, USA; Department of Mechanical Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Constantinos G Hadjipanayis
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
39
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
40
|
Zhang X, Centurion F, Misra A, Patel S, Gu Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv Drug Deliv Rev 2023; 194:114709. [PMID: 36690300 DOI: 10.1016/j.addr.2023.114709] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Atherosclerosis, a chronic cardiovascular disease caused by plaque development in arteries, remains a leading cause of morbidity and mortality. Atherosclerotic plaques are characterized by the expression and regulation of key molecules such as cell surface receptors, cytokines, and signaling pathway proteins, potentially facilitating precise diagnosis and treatment on a molecular level by specifically targeting the characteristic molecules. In this review, we highlight the recent progress in the past five years on developing molecularly targeted nanomedicine for imaging detection and treatment of atherosclerosis with the use of inorganic nanoparticles. Through targeted delivery of imaging contrast nanoparticles to specific molecules in atherogenesis, atherosclerotic plaque development at different stages could be identified and monitored via various molecular imaging modalities. We also review molecularly targeted therapeutic approaches that target and regulate molecules associated with lipid regulation, inflammation, and apoptosis. The review is concluded with discussion on current challenges and future development of nanomedicine for atherosclerotic diagnosis and treatment.
Collapse
Affiliation(s)
- Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
41
|
Puskar A, Saadah B, Rauf A, Kasperek SR, Umair M. A primer on contrast agents for magnetic resonance imaging of post‐procedural and follow‐up imaging of islet cell transplant. NANO SELECT 2023. [DOI: 10.1002/nano.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anessa Puskar
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Bara Saadah
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Asad Rauf
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | | | - Muhammad Umair
- Department of Radiology Johns Hopkins Baltimore Maryland USA
- Department of Biomedical Engineering University of Illinois Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
42
|
Liu R, Xu Y, Zhang N, Qu S, Zeng W, Li R, Dai Z. Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Lăbuşcă L, Herea DD, Chiriac H, Lupu N. Magnetic sensors for regenerative medicine. MAGNETIC SENSORS AND ACTUATORS IN MEDICINE 2023:401-433. [DOI: 10.1016/b978-0-12-823294-1.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Duan Y, Shen C, Zhang Y, Luo Y. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Front Oncol 2022; 12:1031000. [PMID: 36568152 PMCID: PMC9767962 DOI: 10.3389/fonc.2022.1031000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly invasive thoracic malignancy with increasing prevalence, lung cancer is also the most lethal cancer worldwide due to the failure of effective early detection and the limitations of conventional therapeutic strategies for advanced-stage patients. Over the past few decades, nanotechnology has emerged as an important technique to obtain desired features by modifying and manipulating different objects on a molecular level and gained a lot of attention in many fields of medical applications. Studies have shown that in lung cancer, nanotechnology may be more effective and specific than traditional methods for detecting extracellular cancer biomarkers and cancer cells in vitro, as well as imaging cancer in vivo; Nanoscale drug delivery systems have developed rapidly to overcome various forms of multi-drug resistance and reduce detrimental side effects to normal tissues by targeting cancerous tissue precisely. There is no doubt that nanotechnology has the potential to enhance healthcare systems by simplifying and improving cancer diagnostics and treatment. Throughout this review, we summarize and highlight recent developments in nanotechnology applications for lung cancer in diagnosis and therapy. Moreover, the prospects and challenges in the translation of nanotechnology-based diagnostic and therapeutic methods into clinical applications are also discussed.
Collapse
Affiliation(s)
- Yujuan Duan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Shen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yao Luo
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
46
|
Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022; 191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Nanoparticle based imaging agents (NIAs) have been intensively explored in bench studies. Unfortunately, only a few cases have made their ways to clinical translation. In this review, clinical trials of NIAs were investigated for understanding possible barriers behind that. First, the complexity of multifunctional NIAs is considered a main barrier because it brings uncertainty to batch-to-batch fabrication, and results in sophisticated in vivo behaviors. Second, inadequate biosafety studies slow down the translational work. Third, NIA uptake at disease sites is highly heterogeneous, and often exhibits poor targeting efficiency. Focusing on the aforementioned problems, key design parameters were analyzed including NIAs' size, composition, surface characteristics, dosage, administration route, toxicity, whole-body distribution and clearance in clinical trials. Possible strategies were suggested to overcome these barriers. Besides, regulatory guidelines as well as scale-up and reproducibility during manufacturing process were covered as they are also key factors to consider during clinical translation of NIAs.
Collapse
Affiliation(s)
- Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
47
|
Pallares RM, Mottaghy FM, Schulz V, Kiessling F, Lammers T. Nanoparticle Diagnostics and Theranostics in the Clinic. J Nucl Med 2022; 63:1802-1808. [PMID: 36302654 PMCID: PMC9730918 DOI: 10.2967/jnumed.122.263895] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
Nanoparticles possess unique features that may be useful for disease diagnosis and therapy. Preclinically, many different nanodiagnostics have been explored, but only a few have made it to the market. We here provide an overview of nanoparticle-based imaging agents currently used and evaluated in the clinic and discuss preclinical progress and translational avenues for the use of nanoparticles for diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Roger M. Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany;,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; and
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany;,Physics Institute III B, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
48
|
Parodi A, Kolesova EP, Voronina MV, Frolova AS, Kostyushev D, Trushina DB, Akasov R, Pallaeva T, Zamyatnin AA. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. Int J Mol Sci 2022; 23:13368. [PMID: 36362156 PMCID: PMC9656556 DOI: 10.3390/ijms232113368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/04/2023] Open
Abstract
The ultimate goal of nanomedicine has always been the generation of translational technologies that can ameliorate current therapies. Cancer disease represented the primary target of nanotechnology applied to medicine, since its clinical management is characterized by very toxic therapeutics. In this effort, nanomedicine showed the potential to improve the targeting of different drugs by improving their pharmacokinetics properties and to provide the means to generate new concept of treatments based on physical treatments and biologics. In this review, we considered different platforms that reached the clinical trial investigation, providing an objective analysis about their physical and chemical properties and the working mechanism at the basis of their tumoritr opic properties. With this review, we aim to help other scientists in the field in conceiving their delivering platforms for clinical translation by providing solid examples of technologies that eventually were tested and sometimes approved for human therapy.
Collapse
Affiliation(s)
- Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maya V. Voronina
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia S. Frolova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Kostyushev
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
| | - Roman Akasov
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
49
|
Kashizadeh A, Pastras C, Rabiee N, Mohseni-Dargah M, Mukherjee P, Asadnia M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102599. [PMID: 36064032 DOI: 10.1016/j.nano.2022.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Meniere's disease (MD) is a progressive inner ear disorder involving recurrent and prolonged episodes or attacks of vertigo with associated symptoms, resulting in a significantly reduced quality of life for sufferers. In most cases, MD starts in one ear; however, in one-third of patients, the disorder progresses to the other ear. Unfortunately, the etiology of the disease is unknown, making the development of effective treatments difficult. Nanomaterials, including nanoparticles (NPs) and nanocarriers, offer an array of novel diagnostic and therapeutic applications related to MD. NPs have specific features such as biocompatibility, biochemical stability, targetability, and enhanced visualization using imaging tools. This paper provides a comprehensive and critical review of recent advancements in nanotechnology-based diagnostic and therapeutic approaches for MD. Furthermore, the crucial challenges adversely affecting the use of nanoparticles to treat middle ear disorders are investigated. Finally, this paper provides recommendations and future directions for improving the performances of nanomaterials on theragnostic applications of MD.
Collapse
Affiliation(s)
- Afsaneh Kashizadeh
- School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Christopher Pastras
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; The Menière's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Masoud Mohseni-Dargah
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payal Mukherjee
- RPA Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
50
|
Attanayake SB, Chanda A, Das R, Kapuruge N, Gutierrez HR, Phan MH, Srikanth H. Emergent magnetism and exchange bias effect in iron oxide nanocubes with tunable phase and size. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:495301. [PMID: 36223791 DOI: 10.1088/1361-648x/ac99cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We report a systematic investigation of the magnetic properties including the exchange bias (EB) effect in an iron oxide nanocube system with tunable phase and average size (10, 15, 24, 34, and 43 nm). X-ray diffraction and Raman spectroscopy reveal the presence of Fe3O4, FeO, andα-Fe2O3phases in the nanocubes, in which the volume fraction of each phase varies depending upon particle size. While the Fe3O4phase is dominant in all and tends to grow with increasing particle size, the FeO phase appears to coexist with the Fe3O4phase in 10, 15, and 24 nm nanocubes but disappears in 34 and 43 nm nanocubes. The nanocubes exposed to air resulted in anα-Fe2O3oxidized surface layer whose thickness scaled with particle size resulting in a shell made ofα-Fe2O3phase and a core containing Fe3O4or a mixture of both Fe3O4and FeO phases. Magnetometry indicates that the nanocubes undergo Morin (of theα-Fe2O3phase) and Verwey (of the Fe3O4phase) transitions at ∼250 K and ∼120 K, respectively. For smaller nanocubes (10, 15, and 24 nm), the EB effect is observed below 200 K, of which the 15 nm nanocubes showed the most prominent EB with optimal antiferromagnetic (AFM) FeO phase. No EB is reported for larger nanocubes (34 and 43 nm). The observed EB effect is ascribed to the strong interfacial coupling between the ferrimagnetic (FiM) Fe3O4phase and AFM FeO phase, while its absence is related to the disappearance of the FeO phase. The Fe3O4/α-Fe2O3(FiM/AFM) interfaces are found to have negligible influence on the EB. Our findings shed light on the complexity of the EB effect in mixed-phase iron oxide nanosystems and pave the way to design exchange-coupled nanomaterials with desirable magnetic properties for biomedical and spintronic applications.
Collapse
Affiliation(s)
- Supun B Attanayake
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Raja Das
- SEAM Research Centre, South East Technological University, Waterford, Ireland
| | - Nalaka Kapuruge
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Humberto R Gutierrez
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| |
Collapse
|