1
|
Chen XY, Chen X, Liang XH, Lu D, Pan RR, Xiong QY, Liu XX, Lin JY, Zhang LJ, Chen HZ, Jin JM, Zhang WD, Luan X. Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake. Acta Pharmacol Sin 2025:10.1038/s41401-025-01562-2. [PMID: 40374895 DOI: 10.1038/s41401-025-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 05/18/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) cells exhibit a high dependency on glutamine metabolism, making it an attractive target. Despite the well-established link between glutamine reliance and tumor progression, the specific role of glutamine transporters in HNSCC remains poorly understood. The alanine-serine-cysteine transporter 2 (ASCT2), a key glutamine transporter, is overexpressed in HNSCC, and its silencing has been shown to reduce intracellular glutamine and glutathione levels, inhibiting tumor growth. These facts suggest that targeting ASCT2-mediated glutamine uptake could offer a promising therapeutic strategy for HNSCC. But no clinically approved drugs directly target ASCT2, and challenges such as the limited stability of antisense oligonucleotides persist. In this study we evaluated the correlation between ASCT2-mediate glutamine metabolism and its impact on HNSCC patients. We established a virtual screening method followed by cytotoxic assays to identify small molecules that specifically target ASCT2. Among the top 15 candidates, we identified yuanhuacine (YC) as the most potent antitumor compound with IC50 values of 1.43, 6.62, and 6.46 μM against HN6, CAL33, and SCC7 cells, respectively. We demonstrated that YC (0.3-5 μM) dose-dependently induced ASCT2 degradation by recruiting the E3 ubiquitin ligase RNF5, inhibiting glutamine uptake in HN6 cells. This disruption led to mitochondrial dysfunction and enhanced the therapeutic efficacy of YC. Our results highlight YC as a promising regulator of ASCT2-mediated glutamine metabolism in HNSCC.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong-Rong Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Yi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Xia Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China.
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhang Y, Xie L, Fujinaga M, Kurihara Y, Ogawa M, Kumata K, Mori W, Kokufuta T, Nengaki N, Wakizaka H, Luo R, Wang F, Hu K, Zhang MR. l-[5- 11C]Glutamine PET imaging noninvasively tracks dynamic responses of glutaminolysis in non-alcoholic steatohepatitis. Acta Pharm Sin B 2025; 15:681-691. [PMID: 40177565 PMCID: PMC11959927 DOI: 10.1016/j.apsb.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 07/26/2024] [Indexed: 04/05/2025] Open
Abstract
Inhibiting glutamine metabolism has been proposed as a potential treatment strategy for improving non-alcoholic steatohepatitis (NASH). However, effective methods for assessing dynamic metabolic responses during interventions targeting glutaminolysis have not yet emerged. Here, we developed a positron emission tomography (PET) imaging platform using l-[5-11C]glutamine ([11C]Gln) and evaluated its efficacy in NASH mice undergoing metabolic therapy with bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a glutaminase 1 (GLS1) inhibitor that intervenes in the first and rate-limiting step of glutaminolysis. PET imaging with [11C]Gln effectively delineated the pharmacokinetics of l-glutamine, capturing its temporal-spatial pattern of action within the body. Furthermore, [11C]Gln PET imaging revealed a significant increase in hepatic uptake in methionine and choline deficient (MCD)-fed NASH mice, whereas systemic therapeutic interventions with BPTES reduced the hepatic avidity of [11C]Gln in MCD-fed mice. This reduction in [11C]Gln uptake correlated with a decrease in GLS1 burden and improvements in liver damage, indicating the efficacy of BPTES in mitigating NASH-related metabolic abnormalities. These results suggest that [11C]Gln PET imaging can serve as a noninvasive diagnostic platform for whole-body, real-time tracking of responses of glutaminolysis to GLS1 manipulation in NASH, and it may be a valuable tool for the clinical management of patients with NASH undergoing glutaminolysis-based metabolic therapy.
Collapse
Affiliation(s)
- Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- SHI Accelerator Service, Ltd, Tokyo 141-0031, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- SHI Accelerator Service, Ltd, Tokyo 141-0031, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tomomi Kokufuta
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Rui Luo
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
3
|
Nan D, Yao W, Huang L, Liu R, Chen X, Xia W, Sheng H, Zhang H, Liang X, Lu Y. Glutamine and cancer: metabolism, immune microenvironment, and therapeutic targets. Cell Commun Signal 2025; 23:45. [PMID: 39856712 PMCID: PMC11760113 DOI: 10.1186/s12964-024-02018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Glutamine is the most abundant amino acid in human serum, and it can provide carbon and nitrogen for biosynthesis, which is crucial for proliferating cells. Moreover, it is widely known that glutamine metabolism is reprogrammed in cancer cells. Many cancer cells undergo metabolic reprogramming targeting glutamine, increasing its uptake to meet their rapid proliferation demands. An increasing amount of study is being done on the particular glutamine metabolic pathways in cancer cells.Further investigation into the function of glutamine in immune cells is warranted given the critical role these cells play in the fight against cancer. Immune cells use glutamine for a variety of biological purposes, including the growth, differentiation, and destruction of cancer cells. With the encouraging results of cancer immunotherapy in recent years, more investigation into the impact of glutamine metabolism on immune cell function in the cancer microenvironment could lead to the discovery of new targets and therapeutic approaches.Oral supplementation with glutamine also enhances the immune capabilities of cancer patients, improves the sensitivity to chemotherapy and radiotherapy, and improves prognosis. The unique metabolism of glutamine in cancer cells, its function in various immune cells, the impact of inhibitors of glutamine metabolism, and the therapeutic use of glutamine supplements are all covered in detail in this article.
Collapse
Affiliation(s)
- Ding Nan
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyan Chen
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xiaodong Liang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanwei Lu
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ayers GD, Cohen AS, Bae SW, Wen X, Pollard A, Sharma S, Claus T, Payne A, Geng L, Zhao P, Tantawy MN, Gammon ST, Manning HC. Reproducibility and repeatability of 18F-(2S, 4R)-4-fluoroglutamine PET imaging in preclinical oncology models. PLoS One 2025; 20:e0313123. [PMID: 39787098 PMCID: PMC11717184 DOI: 10.1371/journal.pone.0313123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/19/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task. 18F-(2S, 4R)-4-fluoro-glutamine (18F-Gln) is a PET tracer designed for imaging glutamine uptake and metabolism. This study illustrates high reproducibility and repeatability with 18F-Gln for in vivo research. METHODS Twenty mice bearing colorectal cancer cell line xenografts were injected with ~9 MBq of 18F-Gln and imaged in an Inveon microPET. Three individuals analyzed the tumor uptake of 18F-Gln using the same set of images, the same image analysis software, and the same analysis method. Scans were randomly re-ordered for a second repeatability measurement 6 months later. Statistical analyses were performed using the methods of Bland and Altman (B&A), Gauge Reproducibility and Repeatability (Gauge R&R), and Lin's Concordance Correlation Coefficient. A comprehensive equivalency test, designed to reject a null hypothesis of non-equivalence, was also conducted. RESULTS In a two-way random effects Gauge R&R model, variance among mice and their measurement variance were 0.5717 and 0.024. Reproducibility and repeatability accounted for 31% and 69% of the total measurement error, respectively. B&A repeatability coefficients for analysts 1, 2, and 3 were 0.16, 0.35, and 0.49. One-half B&A agreement limits between analysts 1 and 2, 1 and 3, and 2 and 3 were 0.27, 0.47, and 0.47, respectively. The mean square deviation and total deviation index were lowest for analysts 1 and 2, while coverage probabilities and coefficients of the individual agreement were highest. Finally, the definitive agreement inference hypothesis test for equivalency demonstrated that all three confidence intervals for the average difference of means from repeated measures lie within our a priori limits of equivalence (i.e. ± 0.5%ID/g). CONCLUSIONS Our data indicate high individual analyst and laboratory-level reproducibility and repeatability. The assessment of R&R using the appropriate methods is critical and should be adopted by the broader imaging community.
Collapse
Affiliation(s)
- Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allison S. Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alyssa Pollard
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shilpa Sharma
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Trey Claus
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Adria Payne
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ling Geng
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ping Zhao
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - H. Charles Manning
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| |
Collapse
|
5
|
Restall BS, Haven NJM, Martell MT, Cikaluk BD, Wang J, Kedarisetti P, Tejay S, Adam BA, Sutendra G, Li X, Zemp RJ. Metabolic light absorption, scattering, and emission (MetaLASE) microscopy. SCIENCE ADVANCES 2024; 10:eadl5729. [PMID: 39423271 PMCID: PMC11488571 DOI: 10.1126/sciadv.adl5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging of metabolism can provide key information about health and disease progression in cells and tissues; however, current methods have lacked gold-standard information about histological structure. Conversely, histology and virtual histology methods have lacked metabolic contrast. Here, we present metabolic light absorption, scattering, and emission (MetaLASE) microscopy, which rapidly provides a virtual histology and optical metabolic readout simultaneously. Hematoxylin-like nucleic contrast and eosin-like cytoplasmic contrast are obtained using photoacoustic remote sensing and ultraviolet reflectance microscopy, respectively. The same ultraviolet source excites endogenous Nicotinamide adenine dinucleotide (phosphate), flavin adenine dinucleotide, and collagen autofluorescence, providing a map of optical redox ratios to visualize metabolic variations including in areas of invasive carcinoma. Benign chronic inflammation and glands also are seen to exhibit hypermetabolism. MetaLASE microscopy offers promise for future applications in intraoperative margin analysis and in research applications where greater insights into metabolic activity could be correlated with cell and tissue types.
Collapse
Affiliation(s)
- Brendon S. Restall
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Nathaniel J. M. Haven
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Matthew T. Martell
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Brendyn D. Cikaluk
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Wang
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Saymon Tejay
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada
| | - Gopinath Sutendra
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xingyu Li
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
6
|
Song J, Zhai T, Hahm HS, Li Y, Mao H, Wang X, Jo J, Chang JW. Development of a Dual-Factor Activatable Covalent Targeted Photoacoustic Imaging Probe for Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202410645. [PMID: 38935405 DOI: 10.1002/anie.202410645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while being negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.
Collapse
Affiliation(s)
- Jiho Song
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heung Sik Hahm
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Yuancheng Li
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae Won Chang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
7
|
He Q, Li J, Tao C, Zeng C, Liu C, Zheng Z, Mou S, Liu W, Zhang B, Yu X, Zhai Y, Wang J, Zhang Q, Zhang Y, Zhang D, Zhao J, Ge P. High glutamine increases stroke risk by inducing the endothelial-to-mesenchymal transition in moyamoya disease. MedComm (Beijing) 2024; 5:e525. [PMID: 38628905 PMCID: PMC11018113 DOI: 10.1002/mco2.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
At present, there is limited research on the mechanisms underlying moyamoya disease (MMD). Herein, we aimed to determine the role of glutamine in MMD pathogenesis, and 360 adult patients were prospectively enrolled. Human brain microvascular endothelial cells (HBMECs) were subjected to Integrin Subunit Beta 4 (ITGB4) overexpression or knockdown and atorvastatin. We assessed factors associated with various signaling pathways in the context of the endothelial-to-mesenchymal transition (EndMT), and the expression level of related proteins was validated in the superficial temporal arteries of patients. We found glutamine levels were positively associated with a greater risk of stroke (OR = 1.599, p = 0.022). After treatment with glutamine, HBMECs exhibited enhanced proliferation, migration, and EndMT, all reversed by ITGB4 knockdown. In ITGB4-transfected HBMECs, the MAPK-ERK-TGF-β/BMP pathway was activated, with Smad4 knockdown reversing the EndMT. Furthermore, atorvastatin suppressed the EndMT by inhibiting Smad1/5 phosphorylation and promoting Smad4 ubiquitination in ITGB4-transfected HBMECs. We also found the protein level of ITGB4 was upregulated in the superficial temporal arteries of patients with MMD. In conclusion, our study suggests that glutamine may be an independent risk factor for hemorrhage or infarction in patients with MMD and targeting ITGB4 could potentially be therapeutic approaches for MMD.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junsheng Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chuming Tao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chaofan Zeng
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chenglong Liu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of NeurosurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siqi Mou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wei Liu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Bojian Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaofan Yu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanren Zhai
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jia Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- 3D Printing Center in Clinical NeuroscienceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qian Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yan Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Dong Zhang
- Department of NeurosurgeryBeijing HospitalBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- 3D Printing Center in Clinical NeuroscienceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Peicong Ge
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Pantel AR, Bae SW, Li EJ, O'Brien SR, Manning HC. PET Imaging of Metabolism, Perfusion, and Hypoxia: FDG and Beyond. Cancer J 2024; 30:159-169. [PMID: 38753750 PMCID: PMC11101148 DOI: 10.1097/ppo.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Imaging glucose metabolism with [18F]fluorodeoxyglucose positron emission tomography has transformed the diagnostic and treatment algorithms of numerous malignancies in clinical practice. The cancer phenotype, though, extends beyond dysregulation of this single pathway. Reprogramming of other pathways of metabolism, as well as altered perfusion and hypoxia, also typifies malignancy. These features provide other opportunities for imaging that have been developed and advanced into humans. In this review, we discuss imaging metabolism, perfusion, and hypoxia in cancer, focusing on the underlying biology to provide context. We conclude by highlighting the ability to image multiple facets of biology to better characterize cancer and guide targeted treatment.
Collapse
Affiliation(s)
- Austin R Pantel
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Li
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Sophia R O'Brien
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
9
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
10
|
Liu S, Liu F, Hou X, Zhang Q, Ren Y, Zhu H, Yang Z, Xu X. KRAS Mutation Detection with (2 S,4 R)-4-[ 18F]FGln for Noninvasive PDAC Diagnosis. Mol Pharm 2024; 21:2034-2042. [PMID: 38456403 PMCID: PMC10989612 DOI: 10.1021/acs.molpharmaceut.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis and nonspecific symptoms and progresses rapidly, is the most common pancreatic cancer type. Inhibitors targeting KRAS G12D and G12C mutations have been pivotal in PDAC treatment. Cancer cells with different KRAS mutations exhibit various degrees of glutamine dependency; in particular, cells with KRAS G12D mutations exhibit increased glutamine uptake. (2S,4R)-4-[18F]FGln has recently been developed for clinical cancer diagnosis and tumor cell metabolism analysis. Thus, we verified the heterogeneity of glutamine dependency in PDAC models with different KRAS mutations by a visual and noninvasive method with (2S,4R)-4-[18F]FGln. Two tumor-bearing mouse models (bearing the KRAS G12D or G12C mutation) were injected with (2S,4R)-4-[18F]FGln, and positron emission tomography (PET) imaging features and biodistribution were observed and analyzed. The SUVmax in the regions of interest (ROI) was significantly higher in PANC-1 (G12D) tumors than in MIA PaCa-2 (G12C) tumors. Biodistribution analysis revealed higher tumor accumulation of (2S,4R)-4-[18F]FGln and other metrics, such as T/M and T/B, in the PANC-1 mouse models compared to those in the MIAPaCa-2 mouse models. In conclusion, PDAC cells with the KRAS G12D and G12C mutations exhibit various degrees of (2S,4R)-4-[18F]FGln uptake, indicating that (2S,4R)-4-[18F]FGln might be applied to detect KRAS G12C and G12D mutations and provide treatment guidance.
Collapse
Affiliation(s)
| | | | - Xingguo Hou
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ya’nan Ren
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
11
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Huang Y, Liu Y, Li C, Li Z, Chen H, Zhang L, Liang Y, Wu Z. Evaluation of (2S,4S)-4-[ 18F]FEBGln as a Positron Emission Tomography Tracer for Tumor Imaging. Mol Pharm 2023; 20:5195-5205. [PMID: 37647563 DOI: 10.1021/acs.molpharmaceut.3c00544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Glutamine metabolism-related tracers have the potential to visualize numerous tumors because glutamine is the second largest source of energy for tumors. (2S,4S)-4-[18F]FEBGln was designed by introducing [18F]fluoroethoxy benzyl on carbon-4 of glutamine. The aim of this study was to investigate the pharmacokinetic properties and tumor positron emission tomography (PET) imaging characteristics of (2S,4S)-4-[18F]FEBGln in detail. The biodistribution results of nude mice bearing MCF-7 tumor showed that (2S,4S)-4-[18F]FEBGln had high initial tumor uptake, and a fast clearance rate, resulting in a high tumor-to-muscle ratio at 30 min postinjection. There was no obvious defluorination in vivo. The micro-PET-CT imaging results of (2S,4S)-4-[18F]FEBGln orthotopic MCF-7 tumor-bearing nude mice were consistent with the biological distribution results. Compared with (2S,4R)-4-[18F]FGln, (2S,4S)-4-[18F]FEBGln showed poor tumor retention, but its clearance in normal tissues was also fast, so it had better PET image contrast than the former. Unlike poor retention in MCF-7-bearing nude mice, (2S,4S)-4-[18F]FEBGln has good retention in NCI-h1975 and 22Rv1 tumor models. Since (2S,4S)-4-[18F]FEBGln has low uptake in normal lungs and high uptake in the bladder, it is expected to be used in the accurate diagnosis of lung cancer but cannot accurately determine prostate cancer. Consistent with the advantages of radiolabeled amino acids in the application of brain tumors, (2S,4S)-4-[18F]FEBGln accurately diagnoses U87MG glioma with higher contrast than [18F]FET and [18F]FDG, and there is a correlation between (2S,4S)-4-[18F]FEBGln uptake and tumor growth cycle. Further kinetic model analysis showed that (2S,4S)-4-[18F]FEBGln was similar to (2S,4R)-4-[18F]FGln, conforming to the one-compartment model and the Logan graphical model, and was expected to assess the size of the glutamine pool of the tumor. Therefore, (2S,4S)-4-[18F]FEBGln is expected to provide a strong imaging basis for the diagnosis, formulation of personalized plans, and efficacy evaluation of glioma, lung cancer, and breast cancer.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Mirveis Z, Howe O, Cahill P, Patil N, Byrne HJ. Monitoring and modelling the glutamine metabolic pathway: a review and future perspectives. Metabolomics 2023; 19:67. [PMID: 37482587 PMCID: PMC10363518 DOI: 10.1007/s11306-023-02031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Analysis of the glutamine metabolic pathway has taken a special place in metabolomics research in recent years, given its important role in cell biosynthesis and bioenergetics across several disorders, especially in cancer cell survival. The science of metabolomics addresses the intricate intracellular metabolic network by exploring and understanding how cells function and respond to external or internal perturbations to identify potential therapeutic targets. However, despite recent advances in metabolomics, monitoring the kinetics of a metabolic pathway in a living cell in situ, real-time and holistically remains a significant challenge. AIM This review paper explores the range of analytical approaches for monitoring metabolic pathways, as well as physicochemical modeling techniques, with a focus on glutamine metabolism. We discuss the advantages and disadvantages of each method and explore the potential of label-free Raman microspectroscopy, in conjunction with kinetic modeling, to enable real-time and in situ monitoring of the cellular kinetics of the glutamine metabolic pathway. KEY SCIENTIFIC CONCEPTS Given its important role in cell metabolism, the ability to monitor and model the glutamine metabolic pathways are highlighted. Novel, label free approaches have the potential to revolutionise metabolic biosensing, laying the foundation for a new paradigm in metabolomics research and addressing the challenges in monitoring metabolic pathways in living cells.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland.
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological, Health and Sport Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
15
|
Adrenocortical Carcinoma (ACC) Cells Rewire Their Metabolism to Overcome Curcumin Antitumoral Effects Opening a Window of Opportunity to Improve Treatment. Cancers (Basel) 2023; 15:cancers15041050. [PMID: 36831394 PMCID: PMC9954484 DOI: 10.3390/cancers15041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Extensive research suggests that curcumin interferes with multiple cell signaling pathways involved in cancer development and progression. This study aimed to evaluate curcumin effects on adrenocortical carcinoma (ACC), a rare but very aggressive tumor. Curcumin reduced growth, migration and activated apoptosis in three different ACC cell lines, H295R, SW13, MUC-1. This event was related to a decrease in estrogen-related receptor-α (ERRα) expression and cholesterol synthesis. More importantly, curcumin changed ACC cell metabolism, increasing glycolytic gene expression. However, pyruvate from glycolysis was only minimally used for lactate production and the Krebs cycle (TCA). In fact, lactate dehydrogenase, extracellular acidification rate (ECAR), TCA genes and oxygen consumption rate (OCR) were reduced. We instead found an increase in Glutamic-Pyruvic Transaminase (GPT), glutamine antiport transporter SLC1A5 and glutaminase (GLS1), supporting a metabolic rewiring toward glutamine metabolism. Targeting this mechanism, curcumin effects were improved. In fact, in a low glutamine-containing medium, the growth inhibitory effects elicited by curcumin were observed at a concentration ineffective in default growth medium. Data from this study prove the efficacy of curcumin against ACC growth and progression and point to the concomitant use of inhibitors for glutamine metabolism to improve its effects.
Collapse
|
16
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
17
|
Shegani A, Kealey S, Luzi F, Basagni F, Machado JDM, Ekici SD, Ferocino A, Gee AD, Bongarzone S. Radiosynthesis, Preclinical, and Clinical Positron Emission Tomography Studies of Carbon-11 Labeled Endogenous and Natural Exogenous Compounds. Chem Rev 2023; 123:105-229. [PMID: 36399832 PMCID: PMC9837829 DOI: 10.1021/acs.chemrev.2c00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/19/2022]
Abstract
The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.
Collapse
Affiliation(s)
- Antonio Shegani
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Steven Kealey
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Federico Luzi
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Filippo Basagni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Joana do Mar Machado
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Sevban Doğan Ekici
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alessandra Ferocino
- Institute
of Organic Synthesis and Photoreactivity, Italian National Research Council, via Piero Gobetti 101, 40129 Bologna, Italy
| | - Antony D. Gee
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Salvatore Bongarzone
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
18
|
Bhowmick N, Posadas E, Ellis L, Freedland SJ, Di Vizio D, Freeman MR, Theodorescu D, Figlin R, Gong J. Targeting Glutamine Metabolism in Prostate Cancer. Front Biosci (Elite Ed) 2023; 15:2. [PMID: 36959101 PMCID: PMC11983434 DOI: 10.31083/j.fbe1501002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023]
Abstract
Glutamine is a conditionally essential amino acid important for cancer cell proliferation through intermediary metabolism leading to de novo synthesis of purine and pyrimidine nucleotides, hexosamine biosytnehsis, fatty acid synthesis through reductive carboxylation, maintenance of redox homeostasis, glutathione synthesis, production of non-essential amino acids, and mitochondrial oxidative phosphorylation. Prostate cancer has increasingly been characterized as a tumor type that is heavily dependent on glutamine for growth and survival. In this review, we highlight the preclinical evidence that supports a relationship between glutamine signaling and prostate cancer progression. We focus on the regulation of glutamine metabolism in prostate cancer through key pathways involving the androgen receptor pathway, MYC, and the PTEN/PI3K/mTOR pathway. We end with a discussion on considerations for translation of targeting glutamine metabolism as a therapeutic strategy to manage prostate cancer. Here, it is important to understand that the tumor microenvironment also plays a role in facilitating glutamine signaling and resultant prostate cancer growth. The druggability of prostate cancer glutamine metabolism is more readily achievable with our greater understanding of tumor metabolism and the advent of selective glutaminase inhibitors that have proven safe and tolerable in early-phase clinical trials.
Collapse
Affiliation(s)
- Neil Bhowmick
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin Posadas
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Theodorescu
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Figlin
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jun Gong
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
19
|
Yang YF, Li CH, Cai HY, Lin BS, Kim CH, Chang YC. Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis. Int J Mol Sci 2022; 23:15831. [PMID: 36555470 PMCID: PMC9782057 DOI: 10.3390/ijms232415831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular metabolism governs the signaling that supports physiological mechanisms and homeostasis in an individual, including neuronal transmission, wound healing, and circadian clock manipulation. Various factors have been linked to abnormal metabolic reprogramming, including gene mutations, epigenetic modifications, altered protein epitopes, and their involvement in the development of disease, including cancer. The presence of multiple distinct hallmarks and the resulting cellular reprogramming process have gradually revealed that these metabolism-related molecules may be able to be used to track or prevent the progression of cancer. Consequently, translational medicines have been developed using metabolic substrates, precursors, and other products depending on their biochemical mechanism of action. It is important to note that these metabolic analogs can also be used for imaging and therapeutic purposes in addition to competing for metabolic functions. In particular, due to their isotopic labeling, these compounds may also be used to localize and visualize tumor cells after uptake. In this review, the current development status, applicability, and limitations of compounds targeting metabolic reprogramming are described, as well as the imaging platforms that are most suitable for each compound and the types of cancer to which they are most appropriate.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Huei-Yu Cai
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Republic of Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan
| |
Collapse
|
20
|
MRI measurement of alanine uptake in a mouse xenograft model of U-87 MG glioblastoma. Magn Reson Imaging 2022; 93:189-194. [PMID: 36029935 DOI: 10.1016/j.mri.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
The potential use of alanine as an MRI contrast agent was investigated. The relaxation properties of alanine solutions were measured at 9.4 T. The T2 relaxivity caused by the chemical exchange (R2ex) between amine protons and water protons was 0.10 mM-1 s-1 at 37 °C. As a demonstration, alanine uptake in a mouse xenograft model of U-87 MG glioblastoma was measured using MRI, and was compared with immunohistochemistry staining of ASCT2, a transporter that imports amino acids into cancer cells. Statistically significant (p = 0.0079) differences in ASCT2 distribution were found between regions that show strong and weak alanine uptake in MRI. To better understand the influence of perfusion, the effect of ASCT2 inhibition on the alanine uptake in MRI was investigated, and dynamic contrast enhanced MRI was compared with alanine MRI.
Collapse
|
21
|
Hyperpolarized [5- 13C,4,4- 2H 2,5- 15N]-L-glutamine provides a means of annotating in vivo metabolic utilization of glutamine. Proc Natl Acad Sci U S A 2022; 119:e2120595119. [PMID: 35512101 PMCID: PMC9172133 DOI: 10.1073/pnas.2120595119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glutamine is the most abundant amino acid in human plasma, although it is challenging to determine glutamine’s metabolic fate noninvasively. In this work, we utilize established chemical methods to develop a platform for imaging glutamine metabolism using hyperpolarized magnetic resonance imaging. Using this strategy, we are able to spatially measure glutaminolysis in vivo as well as develop a biomarker for the inhibition of glutaminase. Combining this biomarker with isotope tracing metabolomics connects this inhibition to reduced glutamine contribution to the tricarboxylic acid cycle. This provides an approach for future imaging of glutamine metabolism in humans. Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.
Collapse
|
22
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
23
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
24
|
Cohen AS, Grudzinski J, Smith GT, Peterson TE, Whisenant JG, Hickman TL, Ciombor KK, Cardin D, Eng C, Goff LW, Das S, Coffey RJ, Berlin JD, Manning HC. First-in-Human PET Imaging and Estimated Radiation Dosimetry of l-[5- 11C]-Glutamine in Patients with Metastatic Colorectal Cancer. J Nucl Med 2022; 63:36-43. [PMID: 33931465 PMCID: PMC8717201 DOI: 10.2967/jnumed.120.261594] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
Altered metabolism is a hallmark of cancer. In addition to glucose, glutamine is an important nutrient for cellular growth and proliferation. Noninvasive imaging via PET may help facilitate precision treatment of cancer through patient selection and monitoring of treatment response. l-[5-11C]-glutamine (11C-glutamine) is a PET tracer designed to study glutamine uptake and metabolism. The aim of this first-in-human study was to evaluate the radiologic safety and biodistribution of 11C-glutamine for oncologic PET imaging. Methods: Nine patients with confirmed metastatic colorectal cancer underwent PET/CT imaging. Patients received 337.97 ± 44.08 MBq of 11C-glutamine. Dynamic PET acquisitions that were centered over the abdomen or thorax were initiated simultaneously with intravenous tracer administration. After the dynamic acquisition, a whole-body PET/CT scan was acquired. Volume-of-interest analyses were performed to obtain estimates of organ-based absorbed doses of radiation. Results:11C-glutamine was well tolerated in all patients, with no observed safety concerns. The organs with the highest radiation exposure included the bladder, pancreas, and liver. The estimated effective dose was 4.46E-03 ± 7.67E-04 mSv/MBq. Accumulation of 11C-glutamine was elevated and visualized in lung, brain, bone, and liver metastases, suggesting utility for cancer imaging. Conclusion: PET using 11C-glutamine appears safe for human use and allows noninvasive visualization of metastatic colon cancer lesions in multiple organs. Further studies are needed to elucidate its potential for other cancers and for monitoring response to treatment.
Collapse
Affiliation(s)
- Allison S Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Gary T Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Section Chief, Nuclear Medicine, Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Tiffany L Hickman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Kristen K Ciombor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Dana Cardin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Cathy Eng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Laura W Goff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Satya Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Jordan D Berlin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee;
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
25
|
Heishima K, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, Kuranaga Y, Sakai H, Ito R, Nakagawa T, Ueda H, Akao Y. Petasin potently inhibits mitochondrial complex I-based metabolism that supports tumor growth and metastasis. J Clin Invest 2021; 131:139933. [PMID: 34623325 PMCID: PMC8409585 DOI: 10.1172/jci139933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial electron transport chain complex I (ETCC1) is the essential core of cancer metabolism, yet potent ETCC1 inhibitors capable of safely suppressing tumor growth and metastasis in vivo are limited. From a plant extract screening, we identified petasin (PT) as a highly potent ETCC1 inhibitor with a chemical structure distinct from conventional inhibitors. PT had at least 1700 times higher activity than that of metformin or phenformin and induced cytotoxicity against a broad spectrum of tumor types. PT administration also induced prominent growth inhibition in multiple syngeneic and xenograft mouse models in vivo. Despite its higher potency, it showed no apparent toxicity toward nontumor cells and normal organs. Also, treatment with PT attenuated cellular motility and focal adhesion in vitro as well as lung metastasis in vivo. Metabolome and proteome analyses revealed that PT severely depleted the level of aspartate, disrupted tumor-associated metabolism of nucleotide synthesis and glycosylation, and downregulated major oncoproteins associated with proliferation and metastasis. These findings indicate the promising potential of PT as a potent ETCC1 inhibitor to target the metabolic vulnerability of tumor cells.
Collapse
Affiliation(s)
- Kazuki Heishima
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Nobuhiko Sugito
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masashi Nishikawa
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Ryo Honda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Yuki Kuranaga
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Ryo Ito
- CCI Holdings Inc., Seki, Gifu, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroshi Ueda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Yukihiro Akao
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| |
Collapse
|
26
|
Polat IH, Tarrado-Castellarnau M, Benito A, Hernandez-Carro C, Centelles J, Marin S, Cascante M. Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10091349. [PMID: 34572981 PMCID: PMC8472416 DOI: 10.3390/antiox10091349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Nucleotide pools need to be constantly replenished in cancer cells to support cell proliferation. The synthesis of nucleotides requires glutamine and 5-phosphoribosyl-1-pyrophosphate produced from ribose-5-phosphate via the oxidative branch of the pentose phosphate pathway (ox-PPP). Both PPP and glutamine also play a key role in maintaining the redox status of cancer cells. Enhanced glutamine metabolism and increased glucose 6-phosphate dehydrogenase (G6PD) expression have been related to a malignant phenotype in tumors. However, the association between G6PD overexpression and glutamine consumption in cancer cell proliferation is still incompletely understood. In this study, we demonstrated that both inhibition of G6PD and glutamine deprivation decrease the proliferation of colon cancer cells and induce cell cycle arrest and apoptosis. Moreover, we unveiled that glutamine deprivation induce an increase of G6PD expression that is mediated through the activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2). This crosstalk between G6PD and glutamine points out the potential of combined therapies targeting oxidative PPP enzymes and glutamine catabolism to combat colon cancer.
Collapse
Affiliation(s)
- Ibrahim H. Polat
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, CEDEX, 38700 La Tronche, France
| | - Míriam Tarrado-Castellarnau
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Adrian Benito
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Claudia Hernandez-Carro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Josep Centelles
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (A.B.); (C.H.-C.); (J.C.)
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.)
| |
Collapse
|
27
|
Shen Y, Zhang Y, Li W, Chen K, Xiang M, Ma H. Glutamine metabolism: from proliferating cells to cardiomyocytes. Metabolism 2021; 121:154778. [PMID: 33901502 DOI: 10.1016/j.metabol.2021.154778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Glutamine is a major energy source for rapidly dividing cells, such as hematopoietic stem cells and cancer cells. Reliance on glutamine is therefore regarded as a metabolic hallmark of proliferating cells. Moreover, reprogramming glutamine metabolism by various factors, including tissue type, microenvironment, pro-oncogenes, and tumor suppressor genes, can facilitate stem cell fate decisions, tumor recurrence, and drug resistance. However, the significance of glutamine metabolism in cardiomyocytes, an end-differentiated cell type, is not fully understood. Existing evidence suggests important roles of glutamine metabolism in the development of cardiovascular diseases. In this review, we have focused on glutaminolysis and its regulatory network in proliferating cells. We have summarized current findings about the role of glutamine utilization in cardiomyocytes and have discussed possibilities of targeting glutamine metabolism for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yimin Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuhao Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wudi Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kaijie Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
28
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Koyama S, Yamashita A, Matsuura Y, Saito Y, Maekawa K, Gi T, Kitamura K, Asada Y. Intracellular glutamine level determines vascular smooth muscle cell-derived thrombogenicity. Atherosclerosis 2021; 328:62-73. [PMID: 34102425 DOI: 10.1016/j.atherosclerosis.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The everolimus-eluting stent (EES), one of the effective stents for in-stent restenosis (ISR), has a lower incidence of stent thrombosis; however, the underlying mechanism remains unknown. This study aimed to identify the effects of everolimus on vascular metabolism and thrombogenicity and examine their mechanistic link. METHODS EESs and bare-metal stents were implanted in rabbit iliac arteries with smooth muscle cell (SMC)-rich neointima induced by endothelial denudation. Four weeks after stent implantation, the stented arteries were examined for histological analysis and metabolomics. Additionally, everolimus effects in coronary artery SMCs metabolism, tissue factor (TF) expression, and procoagulant activity were assessed in vitro. RESULTS EES-implanted arteries showed decreased neointima formation, less SMCs infiltration, and reduced TF expression. Concomitantly, they were metabolically characterized by increased levels of metabolites in amino acids, such as glutamine. Similarly, everolimus increased intracellular glutamine levels, decreased TF expression, and reduced procoagulant activity in SMCs in vitro. On the contrary, exogenous glutamine administration also increased intracellular glutamine level, decreased TF expression, and reduced procoagulant activity despite enhanced mammalian target of rapamycin (mTOR) activity. CONCLUSIONS Intracellular glutamine level is likely to determine vascular SMC-related thrombogenicity regardless of mTOR pathway activity. Therefore, increased intracellular glutamine level might contribute partially to the beneficial effect of EES use on stent thrombosis.
Collapse
Affiliation(s)
- Shohei Koyama
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan; Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan
| | - Yunosuke Matsuura
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Yusuke Saito
- Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan
| | - Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan.
| |
Collapse
|
30
|
Li T, Copeland C, Le A. Glutamine Metabolism in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:17-38. [PMID: 34014532 DOI: 10.1007/978-3-030-65768-0_2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a fundamental process for all cellular functions. For decades, there has been growing evidence of a relationship between metabolism and malignant cell proliferation. Unlike normal differentiated cells, cancer cells have reprogrammed metabolism in order to fulfill their energy requirements. These cells display crucial modifications in many metabolic pathways, such as glycolysis and glutaminolysis, which include the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and the pentose phosphate pathway (PPP) [1]. Since the discovery of the Warburg effect, it has been shown that the metabolism of cancer cells plays a critical role in cancer survival and growth. More recent research suggests that the involvement of glutamine in cancer metabolism is more significant than previously thought. Glutamine, a nonessential amino acid with both amine and amide functional groups, is the most abundant amino acid circulating in the bloodstream [2]. This chapter discusses the characteristic features of glutamine metabolism in cancers and the therapeutic options to target glutamine metabolism for cancer treatment.
Collapse
Affiliation(s)
- Ting Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
31
|
Prasad P, Ghosh S, Roy SS. Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation. Cell Mol Life Sci 2021; 78:4821-4845. [PMID: 33895866 PMCID: PMC11073067 DOI: 10.1007/s00018-021-03818-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
Glutamine is essential for maintaining the TCA cycle in cancer cells yet they undergo glutamine starvation in the core of tumors. Cancer stem cells (CSCs), responsible for tumor recurrence are often found in the nutrient limiting cores. Our study uncovers the molecular basis and cellular links between glutamine deprivation and stemness in the cancer cells. We showed that glutamine is dispensable for the survival of ovarian and colon cancer cells while it is required for their proliferation. Glutamine starvation leads to the metabolic reprogramming in tumor cells with enhanced glycolysis and unaltered oxidative phosphorylation. Production of reactive oxygen species (ROS) in glutamine limiting condition induces MAPK-ERK1/2 signaling pathway to phosphorylate dynamin-related protein-1(DRP1) at Ser616. Moreover, p-DRP1 promotes mitochondrial fragmentation and enhances numbers of CD44 and CD117/CD45 positive CSCs. Besides the established features of cancer stem cells, glutamine deprivation induces perinuclear localization of fragmented mitochondria and reduction in proliferation rate which are usually observed in CSCs. Treatment with glutaminase inhibitor (L-DON) mimics the effects of glutamine starvation without altering cell survival in in vitro as well as in in vivo model. Interestingly, the combinatorial treatment of L-DON with DRP1 inhibitor (MDiVi-1) reduces the stem cell population in tumor tissue in mouse model. Collectively our data suggest that glutamine deficiency in the core of tumors can increase the cancer stem cell population and the combination therapy with MDiVi-1 and L-DON is a useful approach to reduce CSCs population in tumor.
Collapse
Affiliation(s)
- Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sampurna Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
32
|
Renick PJ, Mulgaonkar A, Co CM, Wu CY, Zhou N, Velazquez A, Pennington J, Sherwood A, Dong H, Castellino L, Öz OK, Tang L, Sun X. Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with d-[5- 11C]-Glutamine. ACS Infect Dis 2021; 7:347-361. [PMID: 33476123 DOI: 10.1021/acsinfecdis.0c00617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.
Collapse
|
33
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
34
|
Maniam S, Maniam S. Cancer Cell Metabolites: Updates on Current Tracing Methods. Chembiochem 2020; 21:3476-3488. [PMID: 32639076 DOI: 10.1002/cbic.202000290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Cancer is the second leading cause of death-1 in 6 deaths globally is due to cancer. Cancer metabolism is a complex and one of the most actively researched area in cancer biology. Metabolic reprogramming in cancer cells entails activities that involve several enzymes and metabolites to convert nutrient into building blocks that alter energy metabolism to fuel rapid cell division. Metabolic dependencies in cancer generate signature metabolites that have key regulatory roles in tumorigenesis. In this minireview, we highlight recent advances in the popular methods ingrained in biochemistry research such as stable and flux isotope analysis, as well as radioisotope labeling, which are valuable in elucidating cancer metabolites. These methods together with analytical tools such as chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry have helped to bring about exploratory work in understanding the role of important as well as obscure metabolites in cancer cells. Information obtained from these analyses significantly contribute in the diagnosis and prognosis of tumors leading to potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Applied Science, RMIT University, 240 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
35
|
Jin H, Wang S, Zaal EA, Wang C, Wu H, Bosma A, Jochems F, Isima N, Jin G, Lieftink C, Beijersbergen R, Berkers CR, Qin W, Bernards R. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. eLife 2020; 9:56749. [PMID: 33016874 PMCID: PMC7535927 DOI: 10.7554/elife.56749] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
The dependency of cancer cells on glutamine may be exploited therapeutically as a new strategy for treating cancers that lack druggable driver genes. Here we found that human liver cancer was dependent on extracellular glutamine. However, targeting glutamine addiction using the glutaminase inhibitor CB-839 as monotherapy had a very limited anticancer effect, even against the most glutamine addicted human liver cancer cells. Using a chemical library, we identified V-9302, a novel inhibitor of glutamine transporter ASCT2, as sensitizing glutamine dependent (GD) cells to CB-839 treatment. Mechanically, a combination of CB-839 and V-9302 depleted glutathione and induced reactive oxygen species (ROS), resulting in apoptosis of GD cells. Moreover, this combination also showed tumor inhibition in HCC xenograft mouse models in vivo. Our findings indicate that dual inhibition of glutamine metabolism by targeting both glutaminase and glutamine transporter ASCT2 represents a potential novel treatment strategy for glutamine addicted liver cancers.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Haiqiu Wu
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, Netherlands
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Nikita Isima
- Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute. The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
36
|
Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules 2020; 10:biom10101370. [PMID: 32993063 PMCID: PMC7599606 DOI: 10.3390/biom10101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
Collapse
|
37
|
Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers (Basel) 2020; 12:cancers12092624. [PMID: 32937954 PMCID: PMC7565600 DOI: 10.3390/cancers12092624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Within the last few years, accumulating evidences suggest the involvement of altered metabolisms in human diseases including cancer. Metabolism is defined as the sum of biochemical processes in living organisms that produce and consume energy. Tumor growth requires restructuring of cellular metabolism to meet the increasing demand for building blocks to support the ever-increasing cancer cell numbers. The principle of perturbed metabolism in tumors is known for 50–60 years, it regains greater appreciation within the last few years with the realization that there is interdependency between metabolism and all aspects of cellular function including regulation and control of cell growth. Tumor cells do not need stimulation signals from the surrounding environment to promote cell proliferation; in some cases, the tumor cells can generate their own growth signals. In order to support the continuous tumor cell growth even under stressful conditions, a change in metabolism is necessary to fulfill the continuous demand for energy and building blocks. A better understanding of the relationship between tumor environment and altered cell metabolisms will provide valuable insights to design innovative approaches to limit the supply of energy and macromolecules for the treatment of cancer including melanoma. Abstract Aberrant glutamatergic signaling has been implicated in altered metabolic activity and the demand to synthesize biomass in several types of cancer including melanoma. In the last decade, there has been a significant contribution to our understanding of metabolic pathways. An increasing number of studies are now emphasizing the importance of glutamate functioning as a signaling molecule and a building block for cancer progression. To that end, our group has previously illustrated the role of glutamatergic signaling mediated by metabotropic glutamate receptor 1 (GRM1) in neoplastic transformation of melanocytes in vitro and spontaneous development of metastatic melanoma in vivo. Glutamate, the natural ligand of GRM1, is one of the most abundant amino acids in humans and the predominant excitatory neurotransmitter in the central nervous system. Elevated levels of glutaminolytic mitochondrial tricarboxylic acid (TCA) cycle intermediates, especially glutamate, have been reported in numerous cancer cells. Herein, we highlight and critically review metabolic bottlenecks that are prevalent during tumor evolution along with therapeutic implications of limiting glutamate bioavailability in tumors.
Collapse
|
38
|
Zhou P, Liang X, Zhou C, Qin J, Hou C, Zhu Z, Zhang W, Wang S, Zhong D. Glutamine-β-cyclodextrin for targeted doxorubicin delivery to triple-negative breast cancer tumors via the transporter ASCT2. J Mater Chem B 2020; 7:5363-5375. [PMID: 31403158 DOI: 10.1039/c9tb01225g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemotherapy is the primary therapy for triple-negative breast cancer (TNBC) and the tumor-targeted delivery of chemotherapeutic drugs is necessary to minimize their side effects on normal tissues. TNBC cells display addictions to glutamine in culture, and the levels of the glutamine transporter, alanine-serine-cysteine transporter 2 (ASCT2), are elevated in many types of cancer. However, glutamine- or ASCT2-based carriers have not been used in tumor-targeted drug delivery. In this study, a novel derivative of β-cyclodextrin (β-CD), glutamine-β-cyclodextrin (GLN-CD), was developed by conjugating glutamine with the 6-hydroxy of β-CD, and GLN-CD was then used to prepare doxorubicin (DOX) inclusion complexes (DOX@GLN-CD) for TNBC treatment. GLN-CD and glutamine have similar ASCT2-binding sites, and GLN-CD has the potential to enter cells through ASCT2-dependent facilitated diffusion. An increase in the degree of substitution did not promote binding between GLN-CD and ASCT2. GLN-CD and DOX formed inclusion complexes at a molar ratio of 1 : 1. DOX@GLN-CD specifically accumulated in TNBC cells, including MDA-MB-231 and BT549 cells, where it subsequently induced G2/M blockade and apoptosis, but hardly affected nontumorigenic MCF10A cells. l-γ-Glutamyl-p-nitroanilide (GPNA), which is a specific inhibitor of ASCT2, antagonistically decreased the cellular uptake of DOX@GLN-CD by TNBC cells, which further confirmed the role of ASCT2 in DOX@GLN-CD transport. In vivo, DOX@GLN-CD accumulated specifically in tumors, achieved improved outcomes and minimized the toxic effects on main organs at the same dose as DOX. As a novel derivative of β-CD, GLN-CD is an effective carrier that can specifically deliver DOX to TNBC cells via targeting ASCT2 and minimize its uptake by normal cells.
Collapse
Affiliation(s)
- Ping Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, People's Republic of China
| | - Xingmei Liang
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300051, People's Republic of China.
| | - Ce Zhou
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | - Jiaqi Qin
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | - Chunyu Hou
- The Center for Translational Cancer Research, Peking University First Hospital, Beijing 100871, People's Republic of China
| | - Zhiyan Zhu
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | - Wenxue Zhang
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300051, People's Republic of China.
| | - Shuqing Wang
- School of Pharmacy, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | - Diansheng Zhong
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300051, People's Republic of China.
| |
Collapse
|
39
|
Park SY, Mosci C, Kumar M, Wardak M, Koglin N, Bullich S, Mueller A, Berndt M, Stephens AW, Chin FT, Gambhir SS, Mittra ES. Initial evaluation of (4S)-4-(3-[ 18F]fluoropropyl)-L-glutamate (FSPG) PET/CT imaging in patients with head and neck cancer, colorectal cancer, or non-Hodgkin lymphoma. EJNMMI Res 2020; 10:100. [PMID: 32857284 PMCID: PMC7455665 DOI: 10.1186/s13550-020-00678-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose (4S)-4-(3-[18F]Fluoropropyl)-l-glutamic acid ([18F]FSPG) measures system xC− transporter activity and shows promise for oncologic imaging. We present data on tumor uptake of this radiopharmaceutical in human subjects with head and neck cancer (HNC), colorectal cancer (CRC), and non-Hodgkin lymphoma (NHL). Methods A total of 15 subjects with HNC (n = 5), CRC (n = 5), or NHL (n = 5) were recruited (mean age 66.2 years, range 44–87 years). 301.4 ± 28.1 MBq (8.1 ± 0.8 mCi) of [18F]FSPG was given intravenously to each subject, and 3 PET/CT scans were obtained 0–2 h post-injection. All subjects also had a positive [18F]FDG PET/CT scan within 1 month prior to the [18F]FSPG PET scan. Semi-quantitative and visual comparisons of the [18F]FSPG and [18F]FDG scans were performed. Results [18F]FSPG showed strong uptake in all but one HNC subject. The lack of surrounding brain uptake facilitated tumor delineation in the HNC patients. [18F]FSPG also showed tumor uptake in all CRC subjects, but variable uptake in the NHL subjects. While the absolute [18F]FDG SUV values were comparable or higher than [18F]FSPG, the tumor-to-background SUV ratios were greater with [18F]FSPG than [18F]FDG. Conclusions [18F]FSPG PET/CT showed promising results across 15 subjects with 3 different cancer types. Concordant visualization was mostly observed between [18F]FSPG and [18F]FDG PET/CT images, with some inter- and intra-individual uptake variability potentially reflecting differences in tumor biology. The tumor-to-background ratios were greater with [18F]FSPG than [18F]FDG in the cancer types evaluated. Future studies based on larger numbers of subjects and those with a wider array of primary and recurrent or metastatic tumors are planned to further evaluate the utility of this novel tracer.
Collapse
Affiliation(s)
- Sonya Y Park
- Department of Radiology, Division of Nuclear Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Camila Mosci
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meena Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mirwais Wardak
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norman Koglin
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | | | - Andre Mueller
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Mathias Berndt
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Andrew W Stephens
- Bayer Pharma AG, Berlin, Germany.,Life Molecular Imaging GmbH, Berlin, Germany
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA.,Bio-X Program, Stanford University, Stanford, CA, USA
| | - Erik S Mittra
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Diagnostic Radiology, Division of Nuclear Medicine & Molecular Imaging, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L340, Portland, OR, 97239, USA.
| |
Collapse
|
40
|
Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res 2020; 79:101050. [PMID: 32592726 DOI: 10.1016/j.plipres.2020.101050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.
Collapse
Affiliation(s)
- Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
41
|
Zhu H, Liu F, Zhang Y, Yang J, Xu X, Guo X, Liu T, Li N, Zhu L, Kung HF, Yang Z. (2S,4R)-4-[ 18F]Fluoroglutamine as a PET Indicator for Bone Marrow Metabolism Dysfunctional: from Animal Experiments to Clinical Application. Mol Imaging Biol 2020; 21:945-953. [PMID: 30793240 DOI: 10.1007/s11307-019-01319-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Previous reports confirmed that (2S,4R)-4-[18F]Fluoroglutamine ([18F]GLN) accumulated in bone and bone marrow. This study investigates the potential of using [18F]GLN positron emission tomography (PET) to monitor changes of bone marrow activity after chemotherapy (myelosuppression). PROCEDURES Bone marrow inhibition model in mice was induced by an intravenous injection of chemotherapy drug (doxorubicin or rituximab) and the inhibition was confirmed by routine blood cell counts. Bone uptakes of these four radiotracers (2-deoxy-2-[18F]fluoro-D-glucose, [18F]GLN, 3'-dexoy-3'-[18F]fluorothymidine ([18F]FLT), and sodium [18F]fluoride) in the mice were measured after i.v. injection and dissection of femur and tibia, and the uptakes in bone-only (BO) and bone marrow (BM) were obtained after separating bone from bone marrow. Additionally, six volunteers were recruited and evaluated with [18F]GLN. The PET-/CT-guided volumes of interests (VOI) in cervical, thoracic, lumbar vertebra, and skull cortical bone were defined as bone marrow or bone for evaluation, respectively. RESULTS [18F]GLN showed a relatively high bone marrow uptake in mice (up to 9.5 ± 1.3 % ID/g) at 1 h after injection, which was 2.1 times that of [18F]FLT. The [18F]GLN uptakes in the bone marrow were substantially inhibited by chemotherapy drug. The decrease of [18F]GLN's bone marrow uptake was consistent with the reduction of white blood cells (myelosuppression). For [18F]GLN/PET imaging in humans, the SUVmean value of bone marrow (1 h after i.v. injection) was between 3.1 and 3.6 in the healthy volunteers (n = 3), and between 1.8 and 2.2 (n = 3) (P < 0.001) in myelosuppression patients, showing a clear reduction of bone marrow uptake. CONCLUSIONS Dissection experiments in mice showed that [18F]GLN displayed relatively high bone marrow uptake, and the uptake was sensitive to bone marrow inhibition induced by doxorubicin/rituximab. The same conclusion was confirmed [18F]GLN/PET imaging in humans. Therefore, [18F]GLN/PET imaging may be a useful tool to assess reduction of bone marrow activity in cancer patients, who may be at risk of myelosuppression after chemotherapy. TRIAL REGISTRATION Approved by Institutional Review Board of Peking University Cancer Hospital (No. 2017KT38). Registered 18 August 2017.
Collapse
Affiliation(s)
- Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Jianhua Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China.,Capital Medical University, Beijing Institute for Brain Diseases, Beijing, 100069, China
| | - Hank F Kung
- Capital Medical University, Beijing Institute for Brain Diseases, Beijing, 100069, China. .,Department of Radiology, University of Pennsylvania School of Medicine, 3700 Market Street, Suite 305, Philadelphia, PA, 19104, USA.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
42
|
Abstract
PURPOSE This study aims to explore whether 4-(2S,4R)-[18F]fluoroglutamine (4-[18F]FGln) positron emission tomography (PET) imaging is helpful in identifying and monitoring MYCN-amplified neuroblastoma by enhanced glutamine metabolism. PROCEDURES Cell uptake studies and dynamic small-animal PET studies of 4-[18F]FGln and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) were conducted in human MYCN-amplified (IMR-32 and SK-N-BE (2) cells) and non-MYCN-amplified (SH-SY5Y cell) neuroblastoma cells and animal models. Subsequently, short hairpin RNA (shRNA) knockdown of alanine-serine-cysteine transporter 2 (ASCT2/SLC1A5) in IMR-32 cells and xenografts were investigated in vitro and in vivo. Western blot (WB), real-time polymerase chain reaction (RT-PCR), and immunofluorescence (IF) assays were used to measure the prevalence of ASCT2, Ki-67, and c-Caspase 3, respectively. RESULTS IMR-32 and SK-N-BE (2) cells showed high glutamine uptake in vitro (31.6 ± 1.7 and 21.6 ± 6.6 %ID/100 μg). In the in vivo study, 4-[18F]FGln was localized in IMR-32, SK-N-BE (2), and SH-SY5Y tumors with a high uptake (6.6 ± 0.3, 5.6 ± 0.2, and 3.7 ± 0.1 %ID/g). The maximum uptake (tumor-to-muscle, T/M) of the IMR-32 and SK-N-BE (2) tumors (3.71 and 2.63) was significantly higher than that of SH-SY5Y (1.54) tumors (P < 0.001, P < 0.001). The maximum uptake of 4-[18F]FGln in IMR-32 and SK-N-BE (2) tumors was 2.3-fold and 2.1-fold higher than that of [18F]FDG, respectively. Furthermore, in the in vitro and in vivo studies, the maximum uptake of 4-[18F]FGln in shASCT2-IMR-32 cells and tumors was 2.1-fold and 2.5-fold lower than that of the shControl-IMR-32. No significant difference in [18F]FDG uptake was found between shASCT2-IMR-32 and shControl-IMR-32 cells and tumors. CONCLUSION 4-[18F]FGln PET can provide a valuable clinical tool in the assessment of metabolic glutamine uptake in MYCN-amplified neuroblastoma. ASCT2-targeted therapy may provide a supplementary method in MYCN-amplified neuroblastoma treatment.
Collapse
|
43
|
Liao S, Liang L, Yue C, He J, He Z, Jin X, Luo G, Zhou Y. CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells. Int J Oncol 2020; 57:338-354. [PMID: 32319590 DOI: 10.3892/ijo.2020.5040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 11/06/2022] Open
Abstract
In contrast to normal cells, cancer cells typically undergo metabolic reprogramming. Studies have shown that oncogenes play an important role in this metabolic reprogramming. CD38 is a multifunctional transmembrane protein that is expressed abnormally in a variety of tumor types. To investigate the effect and possible mechanism of CD38 in cervical cancer cells and to provide a new therapeutic target for the treatment of cervical cancer, the present study identified that CD38 is involved in regulating cell metabolism in cervical cancer cells. Liquid chromatography‑tandem mass spectrometry and bioinformatic analyses revealed that differentially abundant proteins in CD38‑overexpressed cervical cancer cells (CaSki‑CD38 and HeLa‑CD38) are predominantly involved in glycolytic pathways, oxidative phosphorylation and the NAD/NADH metabolic process. Further experiments using an ATP test kit and lactate test kit revealed that CD38 promotes glucose consumption, increases lactate accumulation and increases ATP production. In addition, CD38 increases the phosphorylation of phosphatidylserine/threonine kinase (AKT), mechanistic target of rapamycin (mTOR) and phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K), which play a key role in tumor metabolism. Furthermore, it was found that the energy metabolism of cervical cancer cells was inhibited following treatment with the mTOR inhibitor rapamycin. In conclusion, the results of the present study suggested that CD38 regulates the metabolism of cervical cancer cells by regulating the PI3K/AKT/mTOR pathway, which may be a candidate target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Shan Liao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chunxue Yue
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Junyu He
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhengxi He
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xi Jin
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
44
|
Dynamic PET/CT imaging of 18F-(2S, 4R)4-fluoroglutamine in healthy volunteers and oncological patients. Eur J Nucl Med Mol Imaging 2020; 47:2280-2292. [DOI: 10.1007/s00259-019-04543-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
|
45
|
Ali JS, Ain NU, Naz S, Zia M. Biomarker selection and imaging design in cancer: A link with biochemical pathways for imminent engineering. Heliyon 2020; 6:e03340. [PMID: 32055737 PMCID: PMC7005466 DOI: 10.1016/j.heliyon.2020.e03340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/27/2019] [Accepted: 01/29/2020] [Indexed: 01/15/2023] Open
Abstract
Malignant cells reprogram metabolic pathways to meet the demands of growth and proliferation. These altered manners of metabolism are now identified as hallmarks of cancer. Studies have revealed tumor cells alter specific pathways such as glycolysis, fatty acid synthesis and amino acid synthesis to support their proliferation. In this review, we provide a theoretical framework to understand metabolic reprogramming and the mechanisms accompanying distorted metabolism to tumor progression. How these alterations will be assisting in cancer diagnostics and advances in standard techniques in marker identification and imagining are also discussed.
Collapse
Affiliation(s)
| | | | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
46
|
Liu S, Wu R, Sun Y, Ploessl K, Zhang Y, Liu Y, Wu Z, Zhu L, Kung HF. Design, synthesis and evaluation of a novel glutamine derivative (2 S,4 R)-2-amino-4-cyano-4-[ 18F]fluorobutanoic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new glutamine derivative (2S,4R)-2-amino-4-cyano-4-[18F]fluorobutanoic acid (2S,4R)-4-[18F]FCABA ([18F]1) and its labeled precursor can be converted into (2S,4R)-4-[18F]FGln and (2S,4R)4-[18F]FGlu by changing the labeling conditions.
Collapse
Affiliation(s)
- Song Liu
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Renbo Wu
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Yuli Sun
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Karl Ploessl
- Department of Radiology
- University of Pennsylvania
- Philadelphia
- USA
| | - Yan Zhang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University
- Beijing 100069
- China
| | - Zehui Wu
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| | - Lin Zhu
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Hank F. Kung
- Beijing Institute of Brain Disorders
- Laboratory of Brain Disorders
- Ministry of Science and Technology
- Collaborative Innovation Center for Brain Disorders
- Capital Medical University
| |
Collapse
|
47
|
Wu R, Liu S, Liu Y, Sun Y, Cheng X, Huang Y, Yang Z, Wu Z. Synthesis and biological evaluation of [18F](2S,4S)4-(3-fluoropropyl) arginine as a tumor imaging agent. Eur J Med Chem 2019; 183:111730. [DOI: 10.1016/j.ejmech.2019.111730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022]
|
48
|
Natarajan SK, Venneti S. Glutamine Metabolism in Brain Tumors. Cancers (Basel) 2019; 11:E1628. [PMID: 31652923 PMCID: PMC6893651 DOI: 10.3390/cancers11111628] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Altered metabolism is a hallmark of cancer cells. Tumor cells rewire their metabolism to support their uncontrolled proliferation by taking up nutrients from the microenvironment. The amino acid glutamine is a key nutrient that fuels biosynthetic processes including ATP generation, redox homeostasis, nucleotide, protein, and lipid synthesis. Glutamine as a precursor for the neurotransmitter glutamate, and plays a critical role in the normal functioning of the brain. Brain tumors that grow in this glutamine/glutamate rich microenvironment can make synaptic connections with glutamatergic neurons and reprogram glutamine metabolism to enable their growth. In this review, we examine the functions of glutamate/glutamine in the brain and how brain tumor cells reprogram glutamine metabolism. Altered glutamine metabolism can be leveraged to develop non-invasive imaging strategies and we review these imaging modalities. Finally, we examine if targeting glutamine metabolism could serve as a therapeutic strategy in brain tumors.
Collapse
Affiliation(s)
- Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Pathology, University of Michigan 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 41804, USA.
| |
Collapse
|
49
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
50
|
Abstract
Warburg and coworkers' observation of altered glucose metabolism in tumours has been neglected for several decades, which, in part, was because of an initial misinterpretation of the basis of their finding. Following the realisation that genetic alterations are often linked to metabolism, and that the tumour micro-environment imposes different demands on cancer cells, has led to a reinvestigation of cancer metabolism in recent years. Increasing our understanding of the drivers and consequences of the Warburg effect in cancer and beyond will help to identify new therapeutic strategies as well as to identify new prognostic and therapeutic biomarkers. Here we discuss the initial findings of Warburg and coworkers regarding cancer cell glucose metabolism, how these studies came into focus again in recent years following the discovery of metabolic oncogenes, and the therapeutic potential that lies within targeting the altered metabolic phenotype in cancer. In addition, another essential nutrient in cancer metabolism, glutamine, will be discussed.
Collapse
|