1
|
Calabretta R, Beer L, Prosch H, Kifjak D, Zisser L, Binder P, Grünert S, Langsteger W, Li X, Hacker M. Induction of Arterial Inflammation by Immune Checkpoint Inhibitor Therapy in Lung Cancer Patients as Measured by 2-[ 18F]FDG Positron Emission Tomography/Computed Tomography Depends on Pre-Existing Vascular Inflammation. Life (Basel) 2024; 14:146. [PMID: 38276275 PMCID: PMC10817655 DOI: 10.3390/life14010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are one of the most effective therapies in oncology, albeit associated with various immune-related adverse events also affecting the cardiovascular system. METHODS We aimed to investigate the effect of ICI on arterial 2-[18F]FDG uptake by using 2-[18F]FDG PET/CT imaging pre/post treatment in 47 patients with lung cancer. Maximum 2-[18F]FDG standardized uptake values (SUVmax) and target-to-background ratios (TBRs) were calculated along six arterial segments. We classified the arterial PET lesions by pre-existing active inflammation (cut-off: TBRpre ≥ 1.6). 2-[18F]FDG metabolic activity pre/post treatment was also quantified in bone marrow, spleen, and liver. Circulating blood biomarkers were additionally collected at baseline and after immunotherapy. RESULTS ICI treatment resulted in significantly increased arterial inflammatory activity, detected by increased TBRs, in all arterial PET lesions analyzed. In particular, a significant elevation of arterial 2-[18F]FDG uptake was only recorded in PET lesions without pre-existing inflammation, in calcified as well as in non-calcified lesions. Furthermore, a significant increase in arterial 2-[18F]FDG metabolic activity after immunotherapy was solely observed in patients not previously treated with chemotherapy or radiotherapy as well as in those without CV risk factors. No significant changes were recorded in either 2-[18F]FDG uptake of bone marrow, spleen and liver after treatment, or the blood biomarkers. CONCLUSIONS ICI induces vascular inflammation in lung cancer patients lacking pre-existing arterial inflammation.
Collapse
Affiliation(s)
- Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Lucian Beer
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmut Prosch
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Daria Kifjak
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiology, UMass Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lucia Zisser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Patrick Binder
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Stefan Grünert
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Werner Langsteger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria (P.B.)
| |
Collapse
|
2
|
Ogawa M. Targeted Molecular Imaging and Therapy Based on Nuclear and Optical Technologies. Biol Pharm Bull 2024; 47:1066-1071. [PMID: 38825459 DOI: 10.1248/bpb.b24-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Sciences, Hokkaido University
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University
| |
Collapse
|
3
|
Kitagawa T, Sasaki K, Fujii Y, Ikegami Y, Tatsugami F, Awai K, Hirokawa Y, Nakano Y. 18F-sodium fluoride positron emission tomography following coronary computed tomography angiography in predicting long-term coronary events: a 5-year follow-up study. J Nucl Cardiol 2023; 30:2365-2378. [PMID: 37127726 DOI: 10.1007/s12350-023-03277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE The predictive value of 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) in combination with coronary computed tomography (CT) angiography (CCTA) for future coronary events has attracted interest. We evaluated the potential of 18F-NaF PET/CT following CCTA to predict major coronary events (MACE) during a 5-year follow-up period. METHODS Forty patients with coronary atherosclerotic lesions detected on CCTA underwent 18F-NaF PET/CT examination. Each lesion was evaluated for luminal stenosis and high-risk plaque (HRP) with < 30 Hounsfield units and a > 1.1 remodeling index on CCTA. Focal 18F-NaF uptake in each lesion was quantified using the maximum tissue-to-background ratio (TBRmax), and the maximum TBRmax per patient (M-TBRmax) was determined. We followed MACE (cardiac death, acute coronary syndrome, and/or coronary revascularization > 6 months after 18F-NaF PET/CT) for 5 years. RESULTS In total, 142 coronary lesions were analyzed. Eleven patients experienced any MACE. Patients with MACE showed a higher M-TBRmax than those without (1.40 ± .19 vs. 1.18 ± .18, P = .0011), and the optimal M-TBRmax cutoff to predict MACE was 1.29. Patients with M-TBRmax of ≥ 1.29 had a higher risk of MACE than those with lower values (P = .012, log-rank test), whereas patients with obstructive stenosis and those with HRP did not. Multivariate Cox proportional analysis adjusted for age, sex, coronary risk factors, and CCTA findings showed that M-TBRmax of ≥ 1.29 remained an independent predictor of 5-year MACE (hazard ratio, 5.4; 95% confidence interval, 1.1-25.4; P = .034). CONCLUSION 18F-NaF PET/CT following CCTA provides useful strategies to predict 5-year MACE.
Collapse
Affiliation(s)
- Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Ko Sasaki
- Hiroshima Heiwa Clinic, Hiroshima, Japan
| | - Yuto Fujii
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yuki Ikegami
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | | | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
4
|
Yu T, Pu H, Chen X, Kong Q, Chen C, Li G, Jiang Q, Wang Y. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties. Acta Biomater 2023; 160:45-58. [PMID: 36764592 DOI: 10.1016/j.actbio.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Valvular heart disease is a major threat to human health and transcatheter heart valve replacement (THVR) has emerged as the primary treatment option for severe heart valve disease. Bioprosthetic heart valves (BHVs) with superior hemodynamic performance and compressibility have become the first choice for THVR, and more BHVs have been requested for clinical use in recent years. However, several drawbacks remain for the commercial BHVs cross-linked by glutaraldehyde, including calcification, thrombin, poor biocompatibility and difficulty in endothelialization, which would further reduce the BHVs' lifetime. This study developed a dual-functional non-glutaraldehyde crosslinking reagent OX-VI, which can provide BHV materials with reactive double bonds (CC) for further bio-function modification in addition to the crosslinking function. BHV material PBAF@OX-PP was developed from OX-VI treated porcine pericardium (PP) after the polymerization with 4-vinylbenzene boronic acid and the subsequent modification of poly (vinyl alcohol) and fucoidan. Based on the functional anti-coagulation and endothelialization strategy and dual-functional crosslinking reagent, PBAF@OX-PP has better anti-coagulation and anti-calcification properties, higher biocompatibility, and improved endothelial cells proliferation when compared to Glut-treated PP, as well as the satisfactory mechanical properties and enhanced resistance effect to enzymatic degradation, making it a promising candidate in the clinical application of BHVs. STATEMENT OF SIGNIFICANCE: Transcatheter heart valve replacement (THVR) has become the main solution for severe valvular heart disease. However, bioprosthetic heart valves (BHVs) used in THVR exhibit fatal drawbacks such as calcification, thrombin and difficulty for endothelialization, which are due to the glutaraldehyde crosslinking, resulting in a limited lifetime to 10-15 years. A new non-glutaraldehyde cross-linker OX-VI has been designed, which can not only show great crosslinking ability but also offer the BHVs with reactive double bonds (CC) for further bio-function modification. Based on the dual-functional crosslinking reagent OX-VI, a versatile modification strategy was developed and the BHV material (PBAF@OX-PP) has been developed and shows significantly enhanced anticoagulant, anti-calcification and endothelialization properties, making it a promising candidate in the clinical application of BHVs.
Collapse
Affiliation(s)
- Tao Yu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Hongxia Pu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Chong Chen
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
5
|
Douhi A, Al-Enezi MS, Berrahmoune N, Khalil A, Fulop T, Nguyen M, Turcotte E, Croteau É, Bentourkia M. Non-calcified active atherosclerosis plaque detection with 18F-NaF and 18F-FDG PET/CT dynamic imaging. Phys Eng Sci Med 2023; 46:295-302. [PMID: 36715851 DOI: 10.1007/s13246-023-01218-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
Arterial inflammation is an indicator of atheromatous plaque vulnerability to detach and to obstruct blood vessels in the heart or in the brain thus causing heart attack or stroke. To date, it is difficult to predict the plaque vulnerability. This study was aimed to assess the behavior of 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG) uptake in the aorta and iliac arteries as a function of plaque density on CT images. We report metabolically active artery plaques associated to inflammation in the absence of calcification. 18 elderly volunteers were recruited and imaged with computed tomography (CT) and positron emission tomography (PET) with 18F-NaF and 18F-FDG. A total of 1338 arterial segments were analyzed, 766 were non-calcified and 572 had calcifications. For both 18F-NaF and 18F-FDG, the mean SUV values were found statistically significantly different between non-calcified and calcified artery segments. Clustering CT non-calcified segments, excluding blood, resulted in two clusters C1 and C2 with a mean density of 30.63 ± 5.06 HU in C1 and 43.06 ± 4.71 HU in C2 (P < 0.05), and their respective SUV were found statistically different in 18F-NaF and 18F-FDG. The 18F-NaF images showed plaques not detected on CT images, where the 18F-FDG SUV values were high in comparison to artery walls without plaques. The density on CT images alone corresponding to these plaques could be further investigated to see whether it can be an indicator of the active plaques.
Collapse
Affiliation(s)
- Abdelillah Douhi
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Mamdouh S Al-Enezi
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Nousra Berrahmoune
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Michel Nguyen
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Eric Turcotte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Étienne Croteau
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - M'hamed Bentourkia
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
6
|
Yu T, Li G, Chen X, Kuang D, Jiang Q, Guo Y, Wang Y. A versatile drug-controlled release polymer brush hybrid non-glutaraldehyde bioprosthetic heart valves with enhanced anti-inflammatory, anticoagulant and anti-calcification properties, and superior mechanical performance. Biomaterials 2023; 296:122070. [PMID: 36868031 DOI: 10.1016/j.biomaterials.2023.122070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Transcatheter heart valve replacement (THVR) is a novel treatment modality for severe heart valves diseases and has become the main method for the treatment of heart valve diseases in recent years. However, the lifespan of the commercial glutaraldehyde cross-linked bioprosthetic heart valves (BHVs) used in THVR can only serve for 10-15 years, and the essential reason for the failure of the valve leaflet material is due to these problems such as calcification, coagulation, and inflammation caused by glutaraldehyde cross-linking. Herein, a kind of novel non-glutaraldehyde cross-linking agent bromo-bicyclic-oxazolidine (OX-Br) has been designed and synthesized with both crosslinking ability and in-situ atom transfer radical polymerization (ATRP) function. Then OX-Br treated porcine pericardium (OX-Br-PP) are stepwise modified with co-polymer brushes of reactive oxygen species (ROS) response anti-inflammatory drug conjugated block and anti-adhesion polyzwitterion polymer block through the in-situ ATRP reaction to obtain the functional BHV material MPQ@OX-PP. Along with the great mechanical properties and anti-enzymatic degradation ability similar to glutaraldehyde-crosslinked porcine pericardium (Glut-PP), good biocompatibility, improved anti-inflammatory effect, robust anti-coagulant ability and superior anti-calcification property have been verified for MPQ@OX-PP by a series of in vitro and in vivo investigations, indicating the excellent application potential as a multifunctional heart valve cross-linking agent for OX-Br. Meanwhile, the strategy of synergistic effect with in situ generations of reactive oxygen species-responsive anti-inflammatory drug blocks and anti-adhesion polymer brushes can effectively meet the requirement of multifaceted performance of bioprosthetic heart valves and provide a valuable reference for other blood contacting materials and functional implantable materials with great comprehensive performance.
Collapse
Affiliation(s)
- Tao Yu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | | | - Qing Jiang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.
| |
Collapse
|
7
|
Kitagawa T, Nakano Y. Innovative atherosclerosis imaging using 18F-NaF PET/CT: Its clinical potential. J Nucl Cardiol 2022; 29:1724-1728. [PMID: 33686582 DOI: 10.1007/s12350-021-02576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Fiz F, Piccardo A, Morbelli S, Bottoni G, Piana M, Cabria M, Bagnasco M, Sambuceti G. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study. J Nucl Cardiol 2022; 29:1713-1723. [PMID: 33630243 DOI: 10.1007/s12350-021-02556-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE 18F-NaF-PET/CT can detect mineral metabolism within atherosclerotic plaques. To ascertain whether their 18F-NaF uptake purports progression, this index was compared with subsequent morphologic evolution. METHODS 71 patients underwent two consecutive 18F-NaF-PET/CTs (PET1/PET2). In PET1, non-calcified 18F-NaF hot spots were identified in the abdominal aorta. Their mean/max HU was compared with those of a non-calcified control region (CR) and with corresponding areas in PET2. A target-to-background ratio (TBR), mean density (HU), and calcium score (CS) were calculated on calcified atherosclerotic plaques in PET1 and compared with those in PET2. A VOI including the entire abdominal aorta was drawn; mean TBR and total CS were calculated on PET1 and compared with those PET2. RESULTS Hot spots in PET1 (N = 179) had a greater HU than CR (48 ± 8 vs 37 ± 9, P < .01). Mean hot spots HU increased to 59 ± 12 in PET2 (P < .001). New calcifications appeared at the hot spots site in 73 cases (41%). Baseline atherosclerotic plaque's (N = 375) TBR was proportional to percent HU and CS increase (P < .01 for both). Aortic CS increased (P < .001); the whole-aorta TBR in PET1 correlated with the CS increase between the baseline and the second PET/CT (R = .63, P < .01). CONCLUSIONS 18F-NaF-PET/CT depicts the early stages of plaques development and tracks their evolution over time.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Via Manzoni, 56, Rozzano, 20089, Milan, Italy.
| | - Arnoldo Piccardo
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Michele Piana
- Department of Mathematics, University of Genoa, Via Dodecaneso, 35, 16146, Genoa, Italy
| | - Manlio Cabria
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Marcello Bagnasco
- Department of Internal Medicine and Medical specialties, University of Genoa, Viale Benedetto XV, 10, 16132, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| |
Collapse
|
9
|
Yang W, Zhong Z, Feng G, Wang Z. Advances in positron emission tomography tracers related to vascular calcification. Ann Nucl Med 2022; 36:787-797. [PMID: 35834116 DOI: 10.1007/s12149-022-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Microcalcification, a type of vascular calcification, increases the instability of plaque and easily leads to acute clinical events. Positron emission tomography (PET) is a new examination technology with significant advantages in identifying vascular calcification, especially microcalcification. The use of the 18F-NaF is undoubtedly the benchmark, and other PET tracers related to vascular calcification are also currently in development. Despite all this, a large number of studies are still needed to further clarify the specific mechanisms and characteristics. This review aimed at providing a summary of the application and progress of different PET tracers and also the future development direction.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhiqi Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
10
|
Mechtouff L, Sigovan M, Douek P, Costes N, Le Bars D, Mansuy A, Haesebaert J, Bani-Sadr A, Tordo J, Feugier P, Millon A, Luong S, Si-Mohamed S, Collet-Benzaquen D, Canet-Soulas E, Bochaton T, Crola Da Silva C, Paccalet A, Magne D, Berthezene Y, Nighoghossian N. Simultaneous assessment of microcalcifications and morphological criteria of vulnerability in carotid artery plaque using hybrid 18F-NaF PET/MRI. J Nucl Cardiol 2022; 29:1064-1074. [PMID: 33145738 DOI: 10.1007/s12350-020-02400-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies have suggested the role of microcalcifications in plaque vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological criteria of vulnerability. METHODS AND RESULTS We included 12 patients with either recently symptomatic or asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-background ratio (TBR) was measured in culprit and nonculprit (including contralateral plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also collected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vulnerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase (TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial walls did not differ between symptomatic and asymptomatic patients. CONCLUSIONS 18F-NaF PET/MRI may be a promising tool for providing additional insights into the plaque vulnerability.
Collapse
Affiliation(s)
- Laura Mechtouff
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron, France.
- INSERM U1060, CarMeN Laboratory, University Lyon 1, Lyon, France.
| | - Monica Sigovan
- CNRS, UMR 5220, CREATIS, University of Lyon, Lyon, France
- INSA-Lyon UCBL, Inserm U1206, UJM-Saint Etienne, Lyon, France
| | - Philippe Douek
- CNRS, UMR 5220, CREATIS, University of Lyon, Lyon, France
- INSA-Lyon UCBL, Inserm U1206, UJM-Saint Etienne, Lyon, France
- Department of Radiology, Louis Pradel University Hospital, Bron, France
| | | | - Didier Le Bars
- CERMEP - Imagerie du vivant, Lyon, France
- ICBMS, University C. Bernard Lyon 1 & Hospices Civils de Lyon, Lyon, France
| | - Adeline Mansuy
- Cellule Recherche Imagerie, Louis Pradel University Hospital, Bron, France
| | - Julie Haesebaert
- Clinical Research and Epidemiology Unit, Public Health Department Hospices Civils de Lyon & Université de Lyon, Université Claude Bernard Lyon 1, Université Saint-Étienne, HESPER EA 7425, F-69008 Lyon, 42023, Saint-Etienne, France
| | - Alexandre Bani-Sadr
- Department of Nuclear Medicine, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jérémie Tordo
- Department of Nuclear Medicine, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Patrick Feugier
- Vascular Surgery Department, Edouard Herriot University Hospital & Claude Bernard Lyon 1 University, Lyon, France
| | - Antoine Millon
- Vascular Surgery Department, Edouard Herriot University Hospital & Claude Bernard Lyon 1 University, Lyon, France
| | - Stéphane Luong
- Department of Radiology, Louis Pradel University Hospital, Bron, France
| | - Salim Si-Mohamed
- Department of Radiology, Louis Pradel University Hospital, Bron, France
| | | | | | - Thomas Bochaton
- INSERM U1060, CarMeN Laboratory, University Lyon 1, Lyon, France
| | | | | | - David Magne
- ICBMS, CNRS, UMR 5246, University Lyon 1, Lyon, France
| | - Yves Berthezene
- CNRS, UMR 5220, CREATIS, University of Lyon, Lyon, France
- Neuroradiology Department, Pierre Wertheimer Hospital, Bron, France
| | - Norbert Nighoghossian
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron, France
- INSERM U1060, CarMeN Laboratory, University Lyon 1, Lyon, France
| |
Collapse
|
11
|
Raynor WY, Park PSU, Borja AJ, Sun Y, Werner TJ, Ng SJ, Lau HC, Høilund-Carlsen PF, Alavi A, Revheim ME. PET-Based Imaging with 18F-FDG and 18F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders. Diagnostics (Basel) 2021; 11:diagnostics11122234. [PMID: 34943473 PMCID: PMC8700072 DOI: 10.3390/diagnostics11122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (FDG) represents a method of detecting and characterizing arterial wall inflammation, with potential applications in the early assessment of vascular disorders such as atherosclerosis. By portraying early-stage molecular changes, FDG-PET findings have previously been shown to correlate with atherosclerosis progression. In addition, recent studies have suggested that microcalcification revealed by 18F-sodium fluoride (NaF) may be more sensitive at detecting atherogenic changes compared to FDG-PET. In this review, we summarize the roles of FDG and NaF in the assessment of atherosclerosis and discuss the role of global assessment in quantification of the vascular disease burden. Furthermore, we will review the emerging applications of FDG-PET in various vascular disorders, including pulmonary embolism, as well as inflammatory and infectious vascular diseases.
Collapse
Affiliation(s)
- William Y. Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Peter Sang Uk Park
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Austin J. Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Yusha Sun
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
- Correspondence: or
| |
Collapse
|
12
|
Calabretta R, Staber PB, Kornauth C, Lu X, Binder P, Pichler V, Mitterhauser M, Haug A, Li X, Hacker M. Immune Checkpoint Inhibitor Therapy Induces Inflammatory Activity in the Large Arteries of Lymphoma Patients under 50 Years of Age. BIOLOGY 2021; 10:1206. [PMID: 34827199 PMCID: PMC8615286 DOI: 10.3390/biology10111206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Background: Immune checkpoint inhibitors (ICI) have transformed the management of various cancers. Serious and potentially fatal cardiovascular toxicity, as well as a progression of atherosclerosis, have been described, mainly in elderly and comorbid patients. Methods: We investigated 117 arterial segments of 12 young (under 50 years of age), otherwise healthy lymphoma patients pre/post-ICI treatment using 2-[18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Maximum FDG standardized uptake values (SUVmax) and target-to-background ratios (TBRs) were calculated along arterial segments. Additionally, metabolic activities (SUVmax) of the bone marrow, spleen, and liver were analyzed. The levels of high-sensitivity C-reactive protein (hsCRP) were assessed. Results: ICI therapy induced arterial inflammatory activity, detected by increased TBR in arterial segments without pre-existing inflammation (TBRneg_pre = 1.20 ± 0.22 vs. TBRneg_post = 1.71 ± 0.45, p < 0.001), whereas already-inflamed lesions remained unchanged. Dormant calcified segments (Hounsfield Units-HU ≥ 130) showed a significant increase in TBR values after ICI treatment (TBRcalc_pre = 1.36 ± 0.38 vs. TBRcalc_post = 1.76 ± 0.42, p < 0.001). FDG uptake measured in other organs and hsCRP levels remained unchanged after ICI therapy. Conclusions: Although the effects of ICI therapy on arterial inflammation are still incompletely understood, cancer immunotherapy might be a critical moderator of atherosclerosis with a subsequently increased risk of future cerebro- and/or cardiovascular events in young oncological patients.
Collapse
Affiliation(s)
- Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Philipp B. Staber
- Division of Hematology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (P.B.S.); (C.K.)
| | - Christoph Kornauth
- Division of Hematology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (P.B.S.); (C.K.)
| | - Xia Lu
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Patrick Binder
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| |
Collapse
|
13
|
Gaudieri V, Zampella E, D'Antonio A, Cuocolo A. 18F-sodium fluoride and vascular calcification: Some like it hot. J Nucl Cardiol 2021; 28:2255-2257. [PMID: 32356181 DOI: 10.1007/s12350-020-02125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.
| |
Collapse
|
14
|
Nakahara T, Narula J, Fox JJ, Jinzaki M, Strauss HW. Temporal relationship between 18F-sodium fluoride uptake in the abdominal aorta and evolution of CT-verified vascular calcification. J Nucl Cardiol 2021; 28:1936-1945. [PMID: 31741329 DOI: 10.1007/s12350-019-01934-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fluoride-18 sodium fluoride (18F-NaF) localizes in microcalcifications in atheroma. The microcalcifications may aggregate, passing the resolution threshold to visualize on computed tomography (CT). We evaluated serial NaF positron emission tomography (PET)-CT scans to determine the temporal relationship between vascular NaF uptake and CT evident calcification in the abdominal aorta. METHODS Prostate cancer patients who had at least 3 NaF PET-CT scans over at least 1.5 years were retrospectively enrolled. Regions of interest were traced in the abdominal aorta on both PET and CT images, excluding skeletal NaF activity. The maximum standardized uptake value (SUVmax) of NaF and the density and volume of calcium (exceeding 130 HU) were summed and divided by the number of slices to produce the SUVmax/slice and the mm3·slice-1 of calcium. RESULTS Of 437 patients, 45 patients met criteria. NaF uptake waxed and waned between scans, while the calcium volume plateaued or increased over time. NaF uptake correlated with calcium volume on the baseline scan (P = .60, < .0001†) and calcium volume increment, especially from 1.0 to 1.5 years (r = .79, P < .0001†). Patients with persistently high NaF uptake showed a higher calcium volume increment (0-1.5 years) than patients with low or transiently high NaF uptake. CONCLUSIONS Abdominal aortic NaF uptake varied over time. NaF uptake on the baseline scans and high NaF uptake on the serial scans preceded an increase in calcium volume, especially by 1.0-1.5 years. Persistently high NaF uptake was associated with a greater increment in calcium volume than patients with transiently elevated or persistently low fluoride uptake.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josef J Fox
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - H William Strauss
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Toczek J. Evolution of arterial [ 18F]-sodium fluoride uptake and calcification. J Nucl Cardiol 2021; 28:1946-1948. [PMID: 31792919 DOI: 10.1007/s12350-019-01969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, USA.
| |
Collapse
|
16
|
Silva Mendes BI, Oliveira-Santos M, Vidigal Ferreira MJ. Sodium fluoride in cardiovascular disorders: A systematic review. J Nucl Cardiol 2021; 28:1461-1473. [PMID: 31388965 DOI: 10.1007/s12350-019-01832-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND 18-Fluorine sodium fluoride is a well-known radiotracer used for bone metastasis diagnosis. Its uptake correlation with cardiovascular (CV) risk was primarily suggested in oncological patients. Moreover, as a specific marker of microcalcification, it seems to correlate with CV disease progression and plaque instability. METHODS AND RESULTS Our purpose was to systematically review clinical studies that characterized the use of this marker in CV conditions. In atherosclerosis, most studies report a positive correlation with the burden of CV risk factors and vascular calcification. A higher uptake was found in culprit plaques/rupture sites in coronary and carotid arteries and it was also linked to high-risk features in histology and intravascular imaging analysis of the plaques. In aortic stenosis, this tracer displayed an increasing uptake with disease severity. CONCLUSIONS Sodium fluoride positron emission tomography is a promising non-invasive technique to identify high-risk plaques, which sets ground to a potential use of this tracer in evaluating atherosclerotic disease progression and degenerative changes in aortic valve stenosis. Nevertheless, there is a need for further prospective evidence that demonstrates this technique's value in predicting clinical events, adjusting treatment strategies, and improving patient outcomes.
Collapse
Affiliation(s)
- Beatriz Isabel Silva Mendes
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal.
| | - Manuel Oliveira-Santos
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| | - Maria João Vidigal Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| |
Collapse
|
17
|
Fender AC, Dobrev D. Contemporary plaque imaging for risk stratification of coronary artery disease: Are we getting there? IJC HEART & VASCULATURE 2020; 31:100678. [PMID: 33294585 PMCID: PMC7695964 DOI: 10.1016/j.ijcha.2020.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Anke C. Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Al-Enezi MS, Bentourkia M. Kinetic Modeling of Dynamic PET-¹⁸F-FDG Atherosclerosis Without Blood Sampling. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.3005364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Calabretta R, Hoeller C, Pichler V, Mitterhauser M, Karanikas G, Haug A, Li X, Hacker M. Immune Checkpoint Inhibitor Therapy Induces Inflammatory Activity in Large Arteries. Circulation 2020; 142:2396-2398. [PMID: 32894978 DOI: 10.1161/circulationaha.120.048708] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| | - Christoph Hoeller
- Department of Dermatology (C.H.), Medical University of Vienna, Austria
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| | - Georgios Karanikas
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy (R.C., V.P., M.M., G.K., A.H., X.L., M.H.)
| |
Collapse
|
20
|
Evans NR, Tarkin JM, Chowdhury MM, Le EPV, Coughlin PA, Rudd JHF, Warburton EA. Dual-Tracer Positron-Emission Tomography for Identification of Culprit Carotid Plaques and Pathophysiology In Vivo. Circ Cardiovasc Imaging 2020; 13:e009539. [PMID: 32164454 DOI: 10.1161/circimaging.119.009539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inflammation and microcalcification are interrelated processes contributing to atherosclerotic plaque vulnerability. Positron-emission tomography can quantify these processes in vivo. This study investigates (1) 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) uptake in culprit versus nonculprit carotid atheroma, (2) spatial distributions of uptake, and (3) how macrocalcification affects this relationship. METHODS Individuals with acute ischemic stroke with ipsilateral carotid stenosis of ≥50% underwent FDG-positron-emission tomography and NaF-positron-emission tomography. Tracer uptake was quantified using maximum tissue-to-background ratios (TBRmax) and macrocalcification quantified using Agatston scoring. RESULTS In 26 individuals, median most diseased segment TBRmax (interquartile range) was higher in culprit than in nonculprit atheroma for both FDG (2.08 [0.52] versus 1.89 [0.40]; P<0.001) and NaF (2.68 [0.63] versus 2.39 [1.02]; P<0.001). However, whole vessel TBRmax was higher in culprit arteries for FDG (1.92 [0.41] versus 1.71 [0.31]; P<0.001) but not NaF (1.85 [0.28] versus 1.79 [0.60]; P=0.10). NaF uptake was concentrated at carotid bifurcations, while FDG was distributed evenly throughout arteries. Correlations between FDG and NaF TBRmax differed between bifurcations with low macrocalcification (rs=0.38; P<0.001) versus high macrocalcification (rs=0.59; P<0.001). CONCLUSIONS This is the first study to demonstrate increased uptake of both FDG and NaF in culprit carotid plaques, with discrete distributions of pathophysiology influencing vulnerability in vivo. These findings have implications for our understanding of the natural history of the disease and for the clinical assessment and management of carotid atherosclerosis.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Clinical Neurosciences (N.R.E., E.A.W.), University of Cambridge, Cambridge, United Kingdom.,Department of Medicine (N.R.E., J.M.T., E.P.V.L., J.H.F.R.), University of Cambridge, Cambridge, United Kingdom
| | - Jason M Tarkin
- Department of Medicine (N.R.E., J.M.T., E.P.V.L., J.H.F.R.), University of Cambridge, Cambridge, United Kingdom
| | - Mohammed M Chowdhury
- Division of Vascular Surgery (M.M.C., P.A.C.), University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth P V Le
- Department of Medicine (N.R.E., J.M.T., E.P.V.L., J.H.F.R.), University of Cambridge, Cambridge, United Kingdom
| | - Patrick A Coughlin
- Division of Vascular Surgery (M.M.C., P.A.C.), University of Cambridge, Cambridge, United Kingdom
| | - James H F Rudd
- Department of Medicine (N.R.E., J.M.T., E.P.V.L., J.H.F.R.), University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences (N.R.E., E.A.W.), University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Vigne J, Hyafil F. Inflammation imaging to define vulnerable plaque or vulnerable patient. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:21-34. [PMID: 32077668 DOI: 10.23736/s1824-4785.20.03231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The role of nuclear imaging in the characterization of high-risk atherosclerotic plaque is increasing thanks to its high sensitivity to detect radiopharmaceuticals signal in tissues. Currently, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most studied and widely used radiopharmaceutical for the molecular imaging of atherosclerotic plaques with positron emission tomography (PET). [18F]FDG PET is a valuable tool to non-invasively detect, monitor and quantify inflammatory processes occurring in atherosclerotic plaques. The aim of this review is to gather insights provided by [18F]FDG PET to better understand the role of inflammation in the definitions of the vulnerable plaque and the vulnerable patient. Alternatives radiopharmaceuticals targeting inflammation and other potential high-risk plaque related processed are also discussed.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France -
- Department of Pharmacy, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
| | - Fabien Hyafil
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France
- Department of Nuclear Medicine, Bichat University Hospital, Paris, France
| |
Collapse
|
22
|
Kubota K, Ogawa M, Ji B, Watabe T, Zhang MR, Suzuki H, Sawada M, Nishi K, Kudo T. Basic Science of PET Imaging for Inflammatory Diseases. PET/CT FOR INFLAMMATORY DISEASES 2020. [PMCID: PMC7418531 DOI: 10.1007/978-981-15-0810-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
FDG-PET/CT has recently emerged as a useful tool for the evaluation of inflammatory diseases too, in addition to that of malignant diseases. The imaging is based on active glucose utilization by inflammatory tissue. Autoradiography studies have demonstrated high FDG uptake in macrophages, granulocytes, fibroblasts, and granulation tissue. Especially, activated macrophages are responsible for the elevated FDG uptake in some types of inflammation. According to one study, after activation by lipopolysaccharide of cultured macrophages, the [14C]2DG uptake by the cells doubled, reaching the level seen in glioblastoma cells. In activated macrophages, increase in the expression of total GLUT1 and redistributions from the intracellular compartments toward the cell surface have been reported. In one rheumatoid arthritis model, following stimulation by hypoxia or TNF-α, the highest elevation of the [3H]FDG uptake was observed in the fibroblasts, followed by that in macrophages and neutrophils. As the fundamental mechanism of elevated glucose uptake in both cancer cells and inflammatory cells, activation of glucose metabolism as an adaptive response to a hypoxic environment has been reported, with transcription factor HIF-1α playing a key role. Inflammatory cells and cancer cells seem to share the same molecular mechanism of elevated glucose metabolism, lending support to the notion of usefulness of FDGPET/CT for the evaluation of inflammatory diseases, besides cancer.
Collapse
|
23
|
Høilund-Carlsen PF, Sturek M, Alavi A, Gerke O. Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. Eur J Nucl Med Mol Imaging 2019; 47:1538-1551. [PMID: 31773235 PMCID: PMC7188711 DOI: 10.1007/s00259-019-04603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Purpose We examined the literature to elucidate the role of 18F-sodium fluoride (NaF)-PET in atherosclerosis. Methods Following a systematic search of PubMed/MEDLINE, Embase, and Cochrane Library included articles underwent subjective quality assessment with categories low, medium, and high. Of 2811 records, 1780 remained after removal of duplicates. Screening by title and abstract left 41 potentially eligible full-text articles, of which 8 (about the aortic valve (n = 1), PET/MRI feasibility (n = 1), aortic aneurysms (n = 1), or quantification methodology (n = 5)) were dismissed, leaving 33 published 2010–2012 (n = 6), 2013–2015 (n = 11), and 2016–2018 (n = 16) for analysis. Results They focused on coronary (n = 8), carotid (n = 7), and femoral arteries (n = 1), thoracic aorta (n = 1), and infrarenal aorta (n = 1). The remaining 15 studies examined more than one arterial segment. The literature was heterogeneous: few studies were designed to investigate atherosclerosis, 13 were retrospective, 9 applied both FDG and NaF as tracers, 24 NaF only. Subjective quality was low in one, medium in 13, and high in 19 studies. The literature indicates that NaF is a very specific tracer that mimics active arterial wall microcalcification, which is positively associated with cardiovascular risk. Arterial NaF uptake often presents before CT-calcification, tends to decrease with increasing density of CT-calcification, and appears, rather than FDG-avid foci, to progress to CT-calcification. It is mainly surface localized, increases with age with a wide scatter but without an obvious sex difference. NaF-avid microcalcification can occur in fatty streaks, but the degree of progression to CT-calcification is unknown. It remains unknown whether medical therapy influences microcalcification. The literature held no therapeutic or randomized controlled trials. Conclusion The literature was heterogeneous and with few clear cut messages. NaF-PET is a new approach to detect and quantify microcalcification in early-stage atherosclerosis. NaF uptake correlates with cardiovascular risk factors and appears to be a good measure of the body’s atherosclerotic burden, potentially suited also for assessment of anti-atherosclerotic therapy. Electronic supplementary material The online version of this article (10.1007/s00259-019-04603-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark. .,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Michael Sturek
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Kircher M, Tran-Gia J, Kemmer L, Zhang X, Schirbel A, Werner RA, Buck AK, Wester HJ, Hacker M, Lapa C, Li X. Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT. J Nucl Med 2019; 61:751-756. [PMID: 31653710 DOI: 10.2967/jnumed.119.234484] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) is expressed on the surface of various cell types involved in atherosclerosis, with a particularly rich receptor expression on macrophages and T cells. First pilot studies with 68Ga-pentixafor, a novel CXCR4-directed PET tracer, have shown promise to noninvasively image inflammation within atherosclerotic plaques. The aim of this retrospective study was to investigate the performance of 68Ga-pentixafor PET/CT for imaging atherosclerosis in comparison to 18F-FDG PET/CT. Methods: Ninety-two patients (37 women and 55 men; mean age, 62 ± 10 y) underwent 68Ga-pentixafor and 18F-FDG PET/CT for staging of oncologic diseases. In these subjects, lesions in the walls of large arteries were identified using morphologic and PET criteria for atherosclerosis (n = 652). Tracer uptake was measured and adjusted for vascular lumen (background) signal by calculation of target-to-background ratios (TBRs) by 2 investigators masked to the other PET scan. On a lesion-to-lesion and patient basis, the TBRs of both PET tracers were compared and additionally correlated to the degree of arterial calcification as quantified in CT. Results: On a lesion-to-lesion basis, 68Ga-pentixafor and 18F-FDG uptake showed a weak correlation (r = 0.28; P < 0.01). 68Ga-pentixafor PET identified more lesions (n = 290; TBR ≥ 1.6, P < 0.01) and demonstrated higher uptake than 18F-FDG PET (1.8 ± 0.5 vs. 1.4 ± 0.4; P < 0.01). The degree of plaque calcification correlated negatively with both 68Ga-pentixafor and 18F-FDG uptake (r = -0.38 vs. -0.31, both P < 0.00001). Conclusion: CXCR4-directed imaging of the arterial wall with 68Ga-pentixafor PET/CT identified more lesions than 18F-FDG PET/CT, with only a weak correlation between tracers. Further studies to elucidate the underlying biologic mechanisms and sources of CXCR4 positivity, and to investigate the clinical utility of chemokine receptor-directed imaging of atherosclerosis, are highly warranted.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Kemmer
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany; and
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Li X, Yu W, Wollenweber T, Lu X, Wei Y, Beitzke D, Wadsak W, Kropf S, Wester HJ, Haug AR, Zhang X, Hacker M. [ 68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur J Nucl Med Mol Imaging 2019; 46:1616-1625. [PMID: 31004184 PMCID: PMC6584241 DOI: 10.1007/s00259-019-04322-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/27/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Type 4 chemokine receptor (CXCR4) plays an important role in immune cell migration during the atherosclerosis progression. We aimed to evaluate [68Ga]Pentixafor positron emission tomography (PET) in combination magnetic resonance imaging (MRI) for in vivo quantification of CXCR4 expression in carotid plaques. METHODS Seventy-two patients with lymphoma were prospectively scheduled for whole body [68Ga]Pentixafor PET/MRI with an additional T2-weighted carotid sequence. Volumes of interest (VOIs) were drawn along the carotid bifurcation regions, and the maximum tissue-to-blood ratios (TBR) of [68Ga]Pentixafor uptake were calculated. Lesions were categorized into non-eccentric (n = 27), mild eccentric (n = 67), moderately (n = 41) and severely (n = 19) eccentric carotid atherosclerosis. A different cohort of symptomatic patients (n = 10) with carotid stenosis scheduled for thrombendarterectomy (TEA) was separately imaged with 3T MRI with dedicated plaque sequences (time of flight, T1-, and T2-weighted). MRI findings were correlated with histochemical assessment of intact carotid plaques. RESULTS At hybrid PET/MRI, we observed significantly increased [68Ga]Pentixafor uptake in mildly (mean TBRmax = 1.57 ± 0.27, mean SUVmax = 2.51 ± 0.39), moderately (mean TBRmax = 1.64 ± 0.37, mean SUVmax = 2.61 ± 0.55) and severely eccentric carotids (mean TBRmax = 1.55 ± 0.26, mean SUVmax = 2.40 ± 0.44) as compared to non-eccentric carotids (mean TBRmax = 1.29 ± 0.21, mean SUVmax = 1.77 ± 0.42) (p ≤ 0.05). Histological findings from TEA confirmed that prominent CXCR4 expression was localized within inflamed atheromas and preatheromas. Co-localization of cellular CXCR4 and CD68 expression in the plaque was observed by immunofluorescence staining. CONCLUSIONS In vivo evaluation of CXCR4 expression in carotid atherosclerotic lesions is feasible using [68Ga]Pentixafor PET/MRI. In atherosclerotic plaque tissue, CXCR4 expression might be used as a surrogate marker for inflammatory atherosclerosis.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wei Yu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tim Wollenweber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Anzhen Street No. 2, Beijing, 100029 China
| | - Yongxiang Wei
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Anzhen Street No. 2, Beijing, 100029 China
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | | | - Hans J. Wester
- Department of Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Alexander R. Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Anzhen Street No. 2, Beijing, 100029 China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
26
|
Cecelja M, Moore A, Fogelman I, Frost ML, Blake GM, Chowienczyk P. Evaluation of aortic 18F-NaF tracer uptake using PET/CT as a predictor of aortic calcification in postmenopausal women: A longitudinal study. JRSM Cardiovasc Dis 2019; 8:2048004019848870. [PMID: 31105936 PMCID: PMC6506920 DOI: 10.1177/2048004019848870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Introduction Aortic calcification as detected by computed tomography is associated with
arterial stiffening and is an important predictor of cardiovascular
morbidity and mortality. Uptake of 18F-sodium fluoride
(18F-NaF) in the aortic wall reflects metabolically active
areas of calcification. The aim of this study was to determine if
18F-NaF uptake in the aorta is associated with calcification
and progression of calcification as detected by computed tomography. Methods Twenty-one postmenopausal women (mean age 62 ± 6 years) underwent assessment
of aortic 18F-NaF uptake using positron emission
tomography/computer tomography at baseline and a repeat computed tomography
scan after a mean follow-up of 3.8 ± 1.3 years. Tracer uptake was quantified
by calculating the target-to-background (TBR) ratios at baseline and
follow-up. Calcification was assessed at baseline and follow-up using
computed tomography. Results Over the follow-up period, aortic calcium volume increased from 0.46 ± 0.62
to 0.71 ± 0.93 cm3 (P < 0.05). However, the
change in calcium volume did not correlate with baseline TBR either
unadjusted (r = 0.00, P = 1.00) or
adjusted for age and baseline calcium volume (beta coefficient = −0.18,
P = 0.42). TBR at baseline did not differ between
participants with (n = 16) compared to those without
(n = 5) progression in calcium volume (2.43 ± 0.46 vs.
2.31 ± 0.38, P = 0.58). In aortic segments identified to
have the highest tracer uptake at baseline, calcium volume did not
significantly change over the follow-up period
(P = 0.41). Conclusion In a cohort of postmenopausal women, 18F-NaF uptake as measured by
TBR in the lumbar aorta did not predict progression of aortic calcification
as detected by computed tomography over a four-year follow-up.
Collapse
Affiliation(s)
- Marina Cecelja
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, St Thomas' Hospital
| | - Amelia Moore
- Osteoporosis Research Unit, King's College London, Guy's Campus, London, UK
| | - Ignac Fogelman
- Department of Nuclear Medicine, King's College London, Guy's Campus, London, UK
| | - Michelle L Frost
- Department of Radiology, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Glen M Blake
- Osteoporosis Research Unit, King's College London, Guy's Campus, London, UK
| | - Phil Chowienczyk
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, Department of Clinical Pharmacology, St Thomas' Hospital
| |
Collapse
|
27
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2019; 26:524-535. [PMID: 30603892 DOI: 10.1007/s12350-018-01558-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
In this review, we summarize key articles that have been published in the Journal of Nuclear Cardiology in 2018 pertaining to nuclear cardiology with advanced multi-modality and hybrid imaging including positron emission tomography, cardiac-computed tomography, and magnetic resonance. In an upcoming review, we will summarize key articles that relate to the progress made in the field of single-photon emission computed tomography. We hope that these sister reviews will be useful to the reader to navigate the literature in our field.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
28
|
Raggi P, Prandini N, Ligabue G, Braglia G, Esposito F, Milic J, Malagoli A, Scaglioni R, Besutti G, Beghetto B, Nardini G, Roncaglia E, Mussini C, Guaraldi G. Molecular Imaging of Vascular Calcification with 18F-Sodium-Fluoride in Patients Infected with Human Immunodeficiency Virus. Int J Mol Sci 2019; 20:ijms20051183. [PMID: 30857165 PMCID: PMC6429185 DOI: 10.3390/ijms20051183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
18F-Sodium Fluoride (NaF) accumulates in areas of active hydroxyapatite deposition and potentially unstable atherosclerotic plaques. We assessed the presence of atherosclerotic plaques in 50 adult patients with HIV (HIV+) who had undergone two cardiac computed tomography scans to measure coronary artery calcium (CAC) progression. CAC and its progression are predictive of an unfavorable prognosis. Tracer uptake was quantified in six arterial territories: aortic arch, innominate carotid artery, right and left internal carotid arteries, left coronary (anterior descending and circumflex) and right coronary artery. Thirty-one patients showed CAC progression and 19 did not. At least one territory with high NaF uptake was observed in 150 (50%) of 300 arterial territories. High NaF uptake was detected more often in non-calcified than calcified areas (68% vs. 32%), and in patients without than in those with prior CAC progression (68% vs. 32%). There was no correlation between clinical and demographic variables and NaF uptake. In clinically stable HIV+ patients, half of the arterial territories showed a high NaF uptake, often in the absence of macroscopic calcification. NaF uptake at one time point did not correlate with prior progression of CAC. Prospective studies will demonstrate the prognostic significance of high NaF uptake in HIV+ patients.
Collapse
Affiliation(s)
- Paolo Raggi
- Division of Cardiology and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, 11220 83rd Avenue, Suite 5A9-014, Edmonton, AB T6G 2B7, Canada.
| | - Napoleone Prandini
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Guido Ligabue
- Department of Radiology, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Giovanni Braglia
- Modena HIV Metabolic Clinic, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Francesco Esposito
- Modena HIV Metabolic Clinic, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Jovana Milic
- Modena HIV Metabolic Clinic, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Andrea Malagoli
- Modena HIV Metabolic Clinic, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Riccardo Scaglioni
- Department of Radiology, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Giulia Besutti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Barbara Beghetto
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Giulia Nardini
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Enrica Roncaglia
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Cristina Mussini
- Modena HIV Metabolic Clinic, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Giovanni Guaraldi
- Modena HIV Metabolic Clinic, Azienda Ospedaliero-Universitaria di Modena; University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
29
|
Al-Enezi MS, Abdo RA, Mokeddem MY, Slimani FAA, Khalil A, Fulop T, Turcotte E, Bentourkia M. Assessment of artery calcification in atherosclerosis with dynamic 18F-FDG-PET/CT imaging in elderly subjects. Int J Cardiovasc Imaging 2019; 35:947-954. [PMID: 30712152 DOI: 10.1007/s10554-019-01527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/29/2022]
Abstract
Glucose metabolism in atherosclerotic arteries has been shown to be an indicator of inflammation, which might be a precursor of plaque rupture. In this prospective study, we assessed the correlation between artery calcification and glucose metabolism by means of 18F-FDG PET/CT imaging in elderly subjects. Nineteen elderly subjects, with age ranging from 65 to 85 years, underwent CT and dynamic 18F-FDG-PET imaging. The artery calcification was determined with a threshold of 130 Hounsfield units. Intensity of calcification and ratio of calcification area to total artery area were classified in four sequential classes from CT images. The CT artery images were also classified as having single or multi-spot calcifications. Their respective glucose metabolism was assessed with fractional uptake rate (FUR). Factor analysis was used in this study to separate blood images from tissue to extract the blood time activity curves for FUR calculations. The artery images in PET data were corrected for partial volume effect. The total arterial segments analyzed were 1332, with 1085 without calcification (81%), 247 (19%) with calcification, and 94 segments were having multi-spot of calcifications. There was a statistically significant difference in FUR values between non-calcified to calcified segments and between subjects under medication to non-medication when comparing the subjects based on calcification area. No statistically significant differences of FUR were found between single spot as a function of intensity, while in the multi-spots, there was a statistically significant difference for all artery segments. Metabolism activity varies for non-calcified to calcified segments. Based on the metabolic activity represented by FUR, calcifications in multi-spots have different effects than in single spots.
Collapse
Affiliation(s)
- Mamdouh S Al-Enezi
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.,Department of Diagnostic Radiology, Faculty of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Redha-Alla Abdo
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Mohamed Yazid Mokeddem
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Faiçal A A Slimani
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - M'hamed Bentourkia
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
30
|
Li L, Li X, Jia Y, Fan J, Wang H, Fan C, Wu L, Si X, Hao X, Wu P, Yan M, Wang R, Hu G, Liu J, Wu Z, Hacker M, Li S. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur J Nucl Med Mol Imaging 2018; 45:2181-2189. [PMID: 30171271 PMCID: PMC6182395 DOI: 10.1007/s00259-018-4122-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the 18F-sodium fluoride (18F-NaF) coronary uptake compared to coronary intravascular ultrasound (IVUS) in patients with symptomatic coronary artery disease. BACKGROUND 18F-NaF PET enables the assessment of vascular osteogenesis by interaction with surface hydroxyapatite, while IVUS enables both identification and quantification of intra-plaque components. METHODS Forty-four patients with symptomatic coronary artery disease were included in this prospective controlled trial, 32 of them (30 patients with unstable angina and 2 patients with stable angina), representing the final study cohort, got additional IVUS. All patients underwent cardiac 18F-NaF PET/CT and IVUS within 2 days. 18F-NaF maximum tissue-to-blood ratios (TBRmax) were calculated for 69 coronary plaques and correlated with IVUS plaque classification. RESULTS Significantly increased 18F-NaF uptake ratios were observed in fibrocalcific lesions (meanTBRmax = 1.42 ± 0.28), thin-cap atheroma with spotty calcifications (meanTBRmax = 1.32 ± 0.23), and thick-cap mixed atheroma (meanTBRmax = 1.28 ± 0.38), while fibrotic plaques showed no increased uptake (meanTBRmax = 0.96 ± 0.18). The 18F-NaF uptake ratio was consistently higher in atherosclerotic lesions with severe calcification (meanTBRmax = 1.34 ± 0.22). The regional 18F-NaF uptake was most likely localized in the border region of intensive calcification. Coronary lesions with positive 18F-NaF uptake showed some increased high-risk anatomical features on IVUS in comparison to 18F-NaF negative plaques. It included a significant severe plaque burden (70.1 ± 13.8 vs. 61.0 ± 13.8, p = 0.01) and positive remodeling index (1.03 ± 0.08 vs. 0.99 ± 0.07, p = 0.05), as well as a higher percentage of necrotic tissue (37.6 ± 13.3 vs. 29.3 ± 15.7, p = 0.02) in positive 18F-NaF lesions. CONCLUSIONS 18F-NaF coronary uptake may provide a molecular insight for the characterization of coronary atherosclerotic lesions. Specific regional uptake is needed to be determined by histology.
Collapse
Affiliation(s)
- Li Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Yongping Jia
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiamao Fan
- Department of Cardiology, The Fourth People's Hospital of Linfen, Linfen, Shanxi, China
| | - Huifeng Wang
- Department of Cardiology, Taigang General Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chunyu Fan
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Wu
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xincheng Si
- Department of Cardiology, The Fourth People's Hospital of Linfen, Linfen, Shanxi, China
| | - Xinzhong Hao
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Ping Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Min Yan
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Ruonan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Guang Hu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Jianzhong Liu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China
| | - Marcus Hacker
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
31
|
Affiliation(s)
- Ying Wang
- Department of Nuclear Medicine, First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Michael T Osborne
- Department of Radiology, Massachusetts General Hospital, Boston, MA.,Cardiology Division, Massachusetts General Hospital, Boston, MA
| | - Brian Tung
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Li
- Department of Nuclear Medicine, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Li X, Heber D, Leike T, Beitzke D, Lu X, Zhang X, Wei Y, Mitterhauser M, Wadsak W, Kropf S, Wester HJ, Loewe C, Hacker M, Haug AR. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2018; 45:558-566. [PMID: 28932900 PMCID: PMC5829117 DOI: 10.1007/s00259-017-3831-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/04/2017] [Indexed: 11/02/2022]
Abstract
PURPOSE The expression of chemokine receptor type 4 (CXCR4) was found co-localized with macrophages on the atherosclerotic vessel wall and participated in the initial emigration of leukocytes. Gallium-68 [68Ga]Pentixafor has recently been introduced for the imaging of atherosclerosis by targeting CXCR4. We sought to evaluate human atherosclerotic lesions using [68Ga]Pentixafor PET/MRI. METHODS Thirty-eight oncology patients underwent [68Ga]Pentixafor PET/MR imaging at baseline. Maximum standardized uptake values (SUVmax) were derived from hot lesions in seven arterial segments and target-to-blood ratios (TBR) were calculated. ANOVA post-hoc and paired t test were performed for statistical comparison, Spearman's correlation coefficient between uptake ratios and cardiovascular risk factors were assessed. The reproducibility of [68Ga]Pentixafor PET/MRI was assessed in seven patients with a follow-up exanimation by Pearson's regression and Bland-Altman plots analysis. RESULTS Thirty-four of 38 patients showed 611 focal [68Ga]Pentixafor uptake that followed the contours of the large arteries. Both prevalence and mean TBRmax were highest in the descending aorta. There were significantly higher TBR values found in men (1.9 ± 0.3) as compared to women (1.7 ± 0.2; p < 0.05). Patients with mean TBRmax > 1.7 showed a significantly higher incidence of diabetes, hypertension hypercholesterolemia and history of cardiovascular disease than patients with mean TBRmax ≤ 1.7. [68Ga]Pentixafor uptake showed a good reproducibility (r = 0.6, p < 0.01), and there was no difference between the mean TBRmax values of plaque lesions (TBRbaseline1.8 ± 0.3 vs TBRfollow-up1.8 ± 0.3) (p = 0.9). CONCLUSION Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting a potential role of [68Ga]Pentixafor in characterization of atherosclerosis.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Daniel Heber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Tatjana Leike
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | | | - Hans J Wester
- Department of Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
33
|
Fuery MA, Liang L, Kaplan FS, Mohler ER. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone 2018; 109:28-34. [PMID: 28688892 DOI: 10.1016/j.bone.2017.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
In recent years, the mechanisms and clinical significance of vascular calcification have been increasingly investigated. For over a century, however, pathologists have recognized that vascular calcification is a form of heterotopic ossification. In this review, we aim to describe the pathology and molecular processes of vascular ossification, to characterize its clinical significance and treatment options, and to elucidate areas that require further investigation. The molecular mechanisms of vascular ossification involve the activation of regulators including bone morphogenic proteins and chondrogenic transcription factors and the loss of mineralization inhibitors like fetuin-A and pyrophosphate. Although few studies have examined the gross pathology of vascular ossification, the presence of these molecular regulators and evidence of microfractures and cartilage have been demonstrated on heart valves and atherosclerotic plaques. These changes are often triggered by common inflammatory and metabolic disorders like diabetes, hyperlipidemia, and chronic kidney disease. The increasing prevalence of these diseases warrants further research into the clinical significance of vascular ossification and future treatment options.
Collapse
Affiliation(s)
- Michael A Fuery
- Department of Medicine, Cardiovascular Division, Section of Vascular Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Lusha Liang
- Department of Medicine, Cardiovascular Division, Section of Vascular Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Frederick S Kaplan
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Emile R Mohler
- Department of Medicine, Cardiovascular Division, Section of Vascular Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
34
|
Zhang Y, Li H, Jia Y, Yang P, Zhao F, Wang W, Liu W, Chen G, Zhuang X, Li J. Noninvasive Assessment of Carotid Plaques Calcification by 18F-Sodium Fluoride Accumulation: Correlation with Pathology. J Stroke Cerebrovasc Dis 2018; 27:1796-1801. [PMID: 29555399 DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/25/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUD Vascular calcification is currently recognized as an important pathobiological process in atherosclerosis, but the mechanism remains elusive. Given the similarities in vascular calcification and bone formation, 18F-sodium fluoride (18F-NaF) is now considered a novel marker of vascular calcification. This study aimed to correlate 18F-NaF accumulation with the histological characterization of vascular calcification in carotid plaques. METHODS A total of 8 patients who were undergoing carotid endarterectomy (CEA) for carotid artery stenosis were recruited. Before CEA, 18F-NaF positron emission tomography and computed tomography (PET-CT) studies were conducted. 18F-NaF uptake was measured by the maximum standardized uptake value and the target-to-background ratio. The Hounsfield unit (HU) value was also measured. Postoperative carotid plaques were investigated by hematoxylin and eosin staining, alizarin red staining, and immunohistochemistry (alpha-smooth muscle actin and CD68). RESULTS 18F-NaF uptake was observed in the bilateral carotid bifurcation of all patients. Compared with the pathology results, there was a significant correlation between tracer activity in the carotid plaques and the calcification in the corresponding histological sections (integrated optical density [IOD]: r = .781, P = .022; positive area: r = .765, P = .027). A negative correlation was observed between 18F-NaF uptake and smooth muscle cell staining (IOD: r = -.710, P = .049). 18F-NaF uptake did not correlate with carotid artery stenosis, HU value, or inflammation. CONCLUSIONS 18F-NaF PET-CT is a noninvasive imaging method for the assessment of calcification in human carotid atherosclerotic plaques and a promising approach to studying calcification in atherosclerotic lesions.
Collapse
Affiliation(s)
- Yan Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China; Department of Neurology, Cardio-Cerebral Vascular Disease Hospital of Ningxia Medical University, Yinchuan, China
| | - Hong Li
- Department of Neurology, Yan'an People's Hospital, Shanxi, China
| | - Yingqin Jia
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Pengfei Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feng Zhao
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Wang
- Department of Neurosurgery, Cardio-Cerebral Vascular Disease Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenqing Liu
- Department of Neurosurgery, Cardio-Cerebral Vascular Disease Hospital of Ningxia Medical University, Yinchuan, China
| | - Guisheng Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China; Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Juan Li
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
35
|
Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA. PET imaging of the neurovascular interface in cerebrovascular disease. Nat Rev Neurol 2017; 13:676-688. [PMID: 28984315 DOI: 10.1038/nrneurol.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease encompasses a range of pathologies that affect different components of the cerebral vasculature and brain parenchyma. Large artery atherosclerosis, acute cerebral ischaemia, and intracerebral small vessel disease all demonstrate altered metabolic processes that are key to their pathogenesis. Although structural imaging techniques such as MRI are the mainstay of clinical care and research in cerebrovascular disease, they have limited ability to detect these pathophysiological processes in vivo. By contrast, PET can detect and quantify metabolic processes that are relevant to each facet of cerebrovascular disease. Information obtained from PET studies has helped to shape the understanding of key concepts in cerebrovascular medicine, including vulnerable atherosclerotic plaque, salvageable ischaemic penumbra, neuroinflammation and selective neuronal loss after ischaemic insult. PET has also helped to elucidate the relationships between chronic hypoxia, neuroinflammation, and amyloid-β deposition in cerebral small vessel disease. This Review describes how PET-based imaging of metabolic processes at the neurovascular interface has contributed to our understanding of cerebrovascular disease.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John R Buscombe
- Department of Nuclear Medicine, Box 219, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
36
|
Affiliation(s)
- An S De Vriese
- Division of Nephrology, AZ Sint-Jan Brugge, Brugge, Belgium
| |
Collapse
|