1
|
Ye S, Shi D, Li X, Yang Y, Pan X, Wang L, Wu H. Development and bioevaluation of 18F-labeled bivalent cyclic peptides for PET imaging of αvβ6 integrin overexpression. Bioorg Chem 2025; 159:108362. [PMID: 40096805 DOI: 10.1016/j.bioorg.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Integrin αvβ6 has emerged as a critical target in cancer diagnostics and therapeutics. In this study, we developed two bivalent ligands, NOTA-(SDM17)2 and NOTA-(AvB6)2, for positron emission tomography (PET) imaging of αvβ6 integrins. Surface plasmon resonance (SPR) revealed affinities for NOTA-(SDM17)2 and NOTA-(AvB6)2 with KD values of 2.15 μM and 5.21 μM, respectively. Micro-PET imaging demonstrated significantly higher uptake of [18F]AlF-NOTA-(SDM17)2 and [18F]AlF-NOTA-(AvB6)2 in H2009 tumors (αvβ6-positive) compared to MDA-MB-231 tumors (αvβ6-negative) ([18F]AlF-NOTA-(SDM17)2: 3.2 ± 0.3 vs. 0.3 ± 0.07 %ID/g; [18F]AlF-NOTA-(AvB6)2: 6.4 ± 0.5 vs. 1.0 ± 0.2 %ID/g at 60 min p.i., P < 0.05). Both bivalent tracers exhibited enhanced tumor uptake and retention relative to their monovalent counterparts ([18F]AlF-NOTA-SDM17 and [18F]AlF-NOTA-AvB6) at 60 min p.i., (P < 0.05). Notably, [18F]AlF-NOTA-(SDM17)2 demonstrated a superior tumor-to-liver ratio (13.24 vs. 5.93, P = 0.029) and longer retention, as confirmed by in vivo biodistribution studies. These findings highlight the potential of [18F]AlF-NOTA-(SDM17)2 and [18F]AlF-NOTA-(AvB6)2 as bivalent PET tracers to enhance tumor uptake and prolong retention. Among them, [18F]AlF-NOTA-(SDM17)2 shows particular promise for clinical translation due to its higher tumor-to-non-tumor ratio and prolonged retention.
Collapse
Affiliation(s)
- Shimin Ye
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Dazhi Shi
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Xuefei Li
- Central Research Institute, United Imaging Healthcare, 2258 Chengbei Road, Shanghai 201807, China
| | - Yali Yang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Xingzhu Pan
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Lijuan Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| | - Hubing Wu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
2
|
Pang X, Zhao Y, Chen X, Wang M, Chen X, Yuan H, Sun Y, Han J, Zhao X. Preclinical Evaluation and First-in-Human Study of [ 68Ga]Ga-αvβ6-2: A Novel Dimeric Integrin αvβ6-Targeted PET Probe for Pancreatic Cancer Imaging. Mol Pharm 2025; 22:2650-2659. [PMID: 40193102 DOI: 10.1021/acs.molpharmaceut.5c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Integrin αvβ6 is highly expressed in pancreatic cancer, making it an ideal target for molecular imaging diagnosis. Multimerization is considered an effective strategy to increase the accumulation of molecular probes in tumors. Here, we synthesized monomeric and dimeric αvβ6-targeting molecular probes, labeled with 68Ga, and designated them [68Ga]Ga-αvβ6-1 and [68Ga]Ga-αvβ6-2, respectively. Both in vitro and in vivo studies were conducted using human pancreatic cancer BxPC-3 cells and BxPC-3 tumor-bearing mice. Additionally, positron emission tomography/computed tomography (PET/CT) imaging with [68Ga]Ga-αvβ6-2 was performed in three patients with pancreatic cancer. In vitro studies demonstrated that [68Ga]Ga-αvβ6-2 exhibited greater binding affinity, cellular uptake, and internalization than did [68Ga]Ga-αvβ6-1. Micro-PET/CT imaging and biodistribution studies revealed the superior imaging performance of [68Ga]Ga-αvβ6-2. Furthermore, the first-in-human evaluation highlighted the favorable in vivo distribution and diagnostic efficacy of [68Ga]Ga-αvβ6-2 in pancreatic cancer. These results underscore the effectiveness of the multimerization strategy in the application of αvβ6-targeted molecular probes, suggesting that [68Ga]Ga-αvβ6-2 may possess favorable clinical translation potential.
Collapse
Affiliation(s)
- Xiao Pang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Medical Imaging College, North Sichuan Medical College; Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yan Zhao
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Mengjiao Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiaoshan Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Huiqing Yuan
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yuhan Sun
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, Hebei 050011, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
3
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
4
|
Ludwig B, Krautkremer N, Tomassi S, Di Maro S, Di Leva FS, Benge A, Nieberler M, Kessler H, Marinelli L, Kossatz S, Reuning U. Switching Roles─Exploring Concentration-Dependent Agonistic versus Antagonistic Behavior of Integrin Ligands. J Med Chem 2025; 68:4334-4351. [PMID: 39908297 PMCID: PMC11874007 DOI: 10.1021/acs.jmedchem.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Identification of integrins as cancer targets has stimulated the development of specific inhibitory ligands. However, following cilengitide's unexpected clinical failure by promoting angiogenesis at low concentrations, pure ligand antagonism was soon scrutinized. We evaluated αvβ3, αvβ6, or α5β1 ligands for concentration-dependent functional switches in respective integrin subtype-overexpressing cancer cells. Cilengitide (L2) or L1 provoked minor transient changes in (p)-FAK and (p)-p44/42(erk-1/2) predominantly at low concentrations and antagonized cell migration at high concentrations, while agonistically accelerating it at low concentrations. L5 (α5β1) showed bell-shaped FAK activation at both concentrations, blocking cell migration at high concentrations only in α5β1+ OV-MZ-6 cells, not acting agonistically. L3 (αvβ6) did not alter signaling upon long exposure but transiently and early activated FAK in αvβ6+ HN cells at both concentrations, with neither antagonistic nor agonistic consequences on cell motility. These data underscore the need for in-depth evaluation of ligand actions to ensure their most promising medical use.
Collapse
Affiliation(s)
- Beatrice
Stefanie Ludwig
- Department
of Nuclear Medicine, School of Medicine & Health, Klinikum rechts
der Isar, TUM University Hospital, Technical
University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute
for Translational Cancer Research (TranslaTUM), School of Medicine
& Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Nils Krautkremer
- Department
of Oral and Maxillofacial Surgery, School of Medicine & Health,
Klinikum rechts der Isar, TUM University
Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Stefano Tomassi
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Salvatore Di Maro
- SUN −
Department of Environmental, Biological and Pharmaceutical Sciences
and Technologies, Università degli
Studi della Campania “Luigi Vanvitelli”, Viale Abramo Lincoln, 5, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anke Benge
- Department
of Obstetrics & Gynecology, School of Medicine & Health, Clinical
Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Markus Nieberler
- Department
of Oral and Maxillofacial Surgery, School of Medicine & Health,
Klinikum rechts der Isar, TUM University
Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Horst Kessler
- Department
of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Institute for Advanced Study, Technical University
Munich, Lichtenbergstrasse
2a, Garching 85748, Germany
| | - Luciana Marinelli
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Susanne Kossatz
- Department
of Nuclear Medicine, School of Medicine & Health, Klinikum rechts
der Isar, TUM University Hospital, Technical
University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute
for Translational Cancer Research (TranslaTUM), School of Medicine
& Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Department
of Chemistry, School of Natural Sciences, Technical University Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Ute Reuning
- Department
of Obstetrics & Gynecology, School of Medicine & Health, Clinical
Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| |
Collapse
|
5
|
Rheinfrank T, Lebruška V, Stangl S, Vojtíčková M, Nguyen NT, Koller L, Šimeček J, Kubíček V, Kossatz S, Notni J. Three Is a Magic Number: Tailored Clickable Chelators Used to Determine Optimal RGD-Peptide Multiplicity in αvβ6-Integrin Targeted 177Lu-Labeled Cancer Theranostics. Bioconjug Chem 2024; 35:1970-1984. [PMID: 39608839 DOI: 10.1021/acs.bioconjchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
Collapse
Affiliation(s)
- Tim Rheinfrank
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Viktor Lebruška
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Stefan Stangl
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Lena Koller
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Jakub Šimeček
- TRIMT GmbH, Carl-Eschebach-Str. 7, 01454 Radeberg, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Johannes Notni
- TRIMT GmbH, Carl-Eschebach-Str. 7, 01454 Radeberg, Germany
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, D-81675 München, Germany
| |
Collapse
|
6
|
Liu Z, Xiang S, Chen B, Li J, Zhu D, Xu H, Hu S. Parkinson Disease -Targeted Nanocapsules for Synergistic Treatment: Combining Dopamine Replacement and Neuroinflammation Mitigation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404717. [PMID: 39431293 PMCID: PMC11633476 DOI: 10.1002/advs.202404717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/07/2024] [Indexed: 10/22/2024]
Abstract
Parkinson's disease (PD) is characterized by dopamine (DA) neuron loss and neuroinflammation. This study develops carrier-free nanocapsules (NCs) for targeted delivery of DA and catalase (CAT) to the PD brain, addressing both DA depletion and neuroinflammation simultaneously. The NCs are engineered by DA and 4-formylphenylboronic acid co-loading with cRGD-modified CAT (CAT-cRGD) and surface-modifying with Angiopep-2 (Ang). Ang targets the blood-brain barrier (BBB), enhancing brain delivery, while cRGD targets upregulated integrin receptors in the PD-affected BBB. The NCs showed a 1.4-fold increase in parkinsonian brain targeting efficiency compared to normal mice. In PD mice models, NCs demonstrated a stable increase in learning and memory, enhanced locomotor activity, and improved motor coordination. DA supplementation significantly enhanced dopaminergic signaling, increasing DA levels 1.8- and 3.5-fold in the striatum and substantia nigra, respectively. Additionally, delivered CAT effectively reduced neuroinflammation by mitigating endoplasmic reticulum stress, slowing disease progression, and protecting DA from oxidation. This innovative approach using PD-targeted NCs represents a synergistic strategy for PD treatment, combining symptomatic relief with disease progression intervention.
Collapse
Affiliation(s)
- Ziyao Liu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangsha410008China
- Key Laboratory of Biological Nanotechnology of National Health CommissionXiangya Hospital, Central South UniversityChangsha410008China
| | - Shijun Xiang
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangsha410008China
| | - Bei Chen
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangsha410008China
| | - Jian Li
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangsha410008China
| | - Dingcheng Zhu
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhou311121China
| | - Hongjuan Xu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangsha410008China
- Key Laboratory of Biological Nanotechnology of National Health CommissionXiangya Hospital, Central South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DiseasesXiangya HospitalCentral South UniversityChangsha410008China
| | - Shuo Hu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangsha410008China
- Key Laboratory of Biological Nanotechnology of National Health CommissionXiangya Hospital, Central South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DiseasesXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
7
|
Quigley NG, Zierke MA, Ludwig BS, Richter F, Nguyen NT, Reissig F, Šimeček J, Kossatz S, Notni J. The importance of tyrosines in multimers of cyclic RGD nonapeptides: towards αvβ6-integrin targeted radiotherapeutics. RSC Med Chem 2024; 15:2018-2029. [PMID: 38911160 PMCID: PMC11187563 DOI: 10.1039/d4md00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
In a recent paper in this journal (RSC Med. Chem., 2023, 14, 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(NMe)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log D). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules. In the present work, we investigated whether a comparable effect also occurred for a series of 5 tetramers labeled with lutetium-177. We found that in contrast to the trimers, liver uptake of the tetramers was well correlated to their polarity, indicating that the unusual observations along the trimer series indeed was a unique feature, probably related to their particular symmetry. Since the Lu-177 labeled tetramers are also potential agents for treatment of a variety of αvβ6-integrin expressing cancers, these were evaluated in mice bearing human lung adenocarcinoma xenografts. Due to their tumor-specific uptake and retention in biodistribution and SPECT imaging experiments, these compounds are considered a step forward on the way to αvβ6-integrin-targeted anticancer agents. Furthermore, we noticed that the presence of tyrosines in general had a positive impact on the in vivo performance of our peptide multimers. In view of the fact that a corresponding rule was already proposed in the context of protein engineering, we argue in favor of considering peptide multimers as a special class of small or medium-sized proteins. In summary, we contend that the performance of peptide multimers is less determined by the in vitro characteristics (particularly, affinity and selectivity) of monomers, but rather by the peptides' suitability for the overall macromolecular design concept, and peptides containing tyrosines are preferred.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | | | - Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Falco Reissig
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Jakub Šimeček
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
8
|
Quigley NG, Steiger K, Färber SF, Richter F, Weichert W, Notni J. Sensitive Positron Emission Tomography Imaging of PD-L1 Expression in Human Breast and Lung Carcinoma Xenografts Using the Radiometalated Peptide Ga-68-TRAP-WL12. Mol Pharm 2024; 21:1827-1837. [PMID: 38291706 DOI: 10.1021/acs.molpharmaceut.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Noninvasive imaging of the immune checkpoint protein programmed death ligand 1 (PD-L1; synonyms: CD274, B7-H1) holds great promise to improve patient selection and, thus, response rates for immune checkpoint therapy (ICT) with monoclonal antibodies targeting the PD1/PD-L1 axis. The PD-L1 specific peptide WL12 (cyclo(AcY-(NMe)A-N-P-H-L-Hyp-W-S-W(Me)-(NMe)Nle-(NMe)Nle-O-C)-G-NH2) was functionalized with the Gallium-68 chelator TRAP by means of click chemistry (CuAAC). The resulting conjugate TRAP-WL12 was labeled with Gallium-68 within 16 min, with approximately 90% radiochemical yield and 99% radiochemical purity, affording Ga-68-TRAP-WL12 with molar activities typically exceeding 100 MBq/nmol. This radiotracer was characterized by positron emission tomography (PET) imaging and ex vivo biodistribution in murine xenografts of nontransfected PD-L1 expressing tumor cell lines, MDA-MB-231 (human breast carcinoma), and H2009 (human lung adenocarcinoma). It showed a favorable biodistribution profile with rapid renal clearance and low background (tumor-to-blood ratio = 26.6, 3 h p.i.). Conjugation of the Ga-68-TRAP moiety to WL12 successfully mitigated the nonspecific uptake of this peptide in organs, particularly the liver. This was demonstrated by comparing Ga-68-TRAP-WL12 with the archetypical Ga-68-DOTA-WL12, for which tumor-to-liver ratios of 1.4 and 0.5, respectively, were found. Although immunohistochemistry (IHC) revealed a low PD-L1 expression in MDA-MB-213 and H2009 xenografts that corresponds well to the clinical situation, PET showed high tumor uptakes (6.6 and 7.3% injected activity per gram of tissue (iA/g), respectively) for Ga-68-TRAP-WL12. Thus, this tracer has the potential for routine clinical PD-L1 PET imaging because it detects even very low PD-L1 expression densities with high sensitivity and may open an avenue to replace PD-L1 IHC of biopsies as the standard means to select potential responders for ICT.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Stefanie Felicitas Färber
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München, Trogerstr. 18, München D-81675, Germany
- TRIMT GmbH, Carl-Eschebach-Str. 7, Radeberg D-01454, Germany
| |
Collapse
|
9
|
Quigley NG, Richter F, Kossatz S, Notni J. Complexity of αvβ6-integrin targeting RGD peptide trimers: emergence of non-specific binding by synergistic interaction. RSC Med Chem 2023; 14:2564-2573. [PMID: 38099056 PMCID: PMC10718521 DOI: 10.1039/d3md00365e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023] Open
Abstract
Multimerization is an established strategy to design bioactive macromolecules with enhanced avidity, which has been widely employed to increase the target-specific binding and uptake of imaging probes and pharmaceuticals. However, the factors governing the general biodistribution of multimeric probes are less well understood but are nonetheless decisive for their clinical application. We found that regiospecific exchange of phenylalanine by tyrosine (chemically equivalent to addition of single oxygen atoms) can have an unexpected, dramatic impact on the in vivo behavior of gallium-68 labeled αvβ6-integrin binding peptides trimers. For example, introduction of one and two Tyr, equivalent to just 1 and 2 additional oxygens and molecular weight increases of 0.38% and 0.76% for our >4 kDa constructs, reduced non-specific liver uptake by 50% and 72%, respectively. The observed effect did not correlate to established polarity measures such as log D, and generally defies explanation by reductionist approaches. We conclude that multimers should be viewed not just as molecular combinations of peptides whose properties simply add up, but as whole entities with higher intrinsic complexity and thus a strong tendency to exhibit newly emerged properties that, on principle, cannot be predicted from the characteristics of the monomers used.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine, Technische Universität München Trogerstr. 18 D-81675 München Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
10
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
11
|
Thakral P, Das SS, Dhiman S, Manda D, Virupakshappa CB, Malik D, Sen I. Validation of In-House Kit-Like Synthesis of 68Ga-Trivehexin and Its Biodistribution for Targeting the Integrin αvβ6 Expressing Tumors. Cancer Biother Radiopharm 2023; 38:468-474. [PMID: 37093129 DOI: 10.1089/cbr.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Integrin αvβ6 has become an extremely promising theranostic target for precise delineation of fast-growing malignant cells in the recent years. The aim of the study was to validate the in-house kit-like synthesis of 68Ga-Trivehexin (integrin αvβ6) and to evaluate its uptake in patients with integrin αvβ6 expressing head and neck and pancreatic cancer. Materials and Methods: 68Ga-Trivehexin was synthesized by adding the variable amount of integrin αvβ6 (30-50 μg) to full volume (4-5 mL) Ga-68 in 0.05 M HCl and heating the reaction mixture at 90°C for 12 min at pH 3.5-4 to obtain the radiotracer with high radiochemical purity (RCP) and high yield. Quality control procedures were done to assess the RCP, stability, pyrogenicity and sterility of the radiotracer. 68Ga-Trivehexin was then administered in patients who met the eligibility criteria. Whole body PET/CT scans were done at variable time points post intravenous (i.v.) injection of 84-185 MBq of 68Ga-Trivehexin to assess its biodistribution and maximum uptake time. Results: 0.2 mCi of 68Ga/μg of Trivehexin at 90°C for 12 min was the optimal parameter to obtain 85%-88% of noncorrected yield and 99% of RCP. The 68Ga-Trivehexin showed in vitro stability upto 6 h and was also found to be sterile and pyrogen free. Intense radiotracer uptake was noticed in the tumor and no uptake was noticed in healthy tissues. PET/CT imaging at 60 min post injection was found to be the optimal time for imaging the tumors with 68Ga-Trivehexin. Conclusion: The protocol for in-house kit-like labeling of 68Ga-Trivehexin was safe, reproducible, and cost-effective. 68Ga-Trivehexin is an extremely promising agent for noninvasive molecular imaging of integrin αvβ6 expressing tumors.
Collapse
Affiliation(s)
- Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Subha Shankar Das
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Shweta Dhiman
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Divya Manda
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - C B Virupakshappa
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Dharmender Malik
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| | - Ishita Sen
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurgaon, India
| |
Collapse
|
12
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
13
|
Ganguly T, Bauer N, Davis RA, Foster CC, Harris RE, Hausner SH, Roncali E, Tang SY, Sutcliffe JL. Preclinical Evaluation of 68Ga- and 177Lu-Labeled Integrin α vβ 6-Targeting Radiotheranostic Peptides. J Nucl Med 2023; 64:639-644. [PMID: 36207137 PMCID: PMC11927081 DOI: 10.2967/jnumed.122.264749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022] Open
Abstract
The integrin αvβ6, an epithelium-specific cell surface receptor, is overexpressed on numerous malignancies, including the highly lethal pancreatic ductal adenocarcinomas. Here, we developed and tested a novel αvβ6-targeting peptide, DOTA-5G (1) radiolabeled with 68Ga, for PET/CT imaging and 177Lu for treatment. With the goal to develop a radiotheranostic, further modifications were made for increased circulation time, renal recycling, and tumor uptake, yielding DOTA-albumin-binding moiety-5G (2). Methods: Peptides 1 and 2 were synthesized on solid phase, and their affinity for αvβ6 was assessed by enzyme-linked immunosorbent assay. The peptides were radiolabeled with 68Ga and 177Lu. In vitro cell binding, internalization, and efflux of 68Ga-1 and 177Lu-2 were evaluated in αvβ6-positive BxPC-3 human pancreatic cancer cells. PET/CT imaging of 68Ga-1 and 68Ga-2 was performed on female nu/nu mice bearing subcutaneous BxPC-3 tumors. Biodistribution was performed for 68Ga-1 (1 and 2 h after injection), 68Ga-2 (2 and 4 h after injection), and 177Lu-1 and 177Lu-2 (1, 24, 48, and 72 h after injection). The 177Lu-2 biodistribution data were extrapolated for human dosimetry data estimates using OLINDA/EXM 1.1. Therapeutic efficacy of 177Lu-2 was evaluated in mice bearing BxPC-3 tumors. Results: Peptides 1 and 2 demonstrated high affinity (<55 nM) for αvβ6 by enzyme-linked immunosorbent assay. 68Ga-1, 68Ga-2, 177Lu-1, and 177Lu-2 were synthesized in high radiochemical purity. Rapid in vitro binding and internalization of 68Ga-1 and 177Lu-2 were observed in BxPC-3 cells. PET/CT imaging and biodistribution studies demonstrated uptake in BxPC-3 tumors. Introduction of the albumin-binding moiety in 177Lu-2 resulted in a 5-fold increase in tumor uptake and retention over time. Based on the extended dosimetry data, the dose-limiting organ for 177Lu-2 is the kidney. Treatment with 177Lu-2 prolonged median survival by 1.5- to 2-fold versus controls. Conclusion: 68Ga-1 and 177Lu-2 demonstrated high affinity for the integrin αvβ6 both in vitro and in vivo, were rapidly internalized into BxPC-3 cells, and were stable in mouse and human serum. Both radiotracers showed favorable pharmacokinetics in preclinical studies, with predominantly renal excretion and good tumor-to-normal-tissue ratios. Favorable human dosimetry data suggest the potential of 177Lu-2 as a treatment for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Tanushree Ganguly
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Nadine Bauer
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Ryan A Davis
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Cameron C Foster
- Division of Nuclear Medicine, Department of Radiology, University of California Davis, Sacramento, California; and
| | - Rebecca E Harris
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Sven H Hausner
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, Davis, California
- Division of Nuclear Medicine, Department of Radiology, University of California Davis, Sacramento, California; and
| | - Sarah Y Tang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Julie L Sutcliffe
- Department of Biomedical Engineering, University of California Davis, Davis, California;
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, California
| |
Collapse
|
14
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
15
|
Ren J, Zhu S, Zhang G, Tan X, Qiu L, Lin J, Jiang L. 68Ga-Labeled Cystine Knot Peptide Targeting Integrin α vβ 6 for Lung Cancer PET Imaging. Mol Pharm 2022; 19:2620-2628. [PMID: 35674464 DOI: 10.1021/acs.molpharmaceut.2c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Integrin αvβ6 has been considered as a promising biomarker for lung cancer, and its expression is often related to poor prognosis. An αvβ6-binding cystine knot peptide R01-MG was previously engineered and validated. Here, we developed a positron emission tomography (PET) probe of R01-MG for imaging αvβ6-positive lung cancer. Cystine knot peptide R01-MG was synthesized through solid-phase peptide synthesis chemistry and radiolabeled with 68Ga after being conjugated with 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA). The stability of 68Ga-DOTA-R01-MG was analyzed in phosphate-buffered saline (PBS) (pH 7.4) and fetal bovine serum (FBS). The cell uptake assay of the probe was evaluated using αvβ6-positive (A549 and H1975) and αvβ6-negative (H1299) lung cancer cell lines. In addition, small animal PET imaging and biodistribution studies of 68Ga-DOTA-R01-MG were performed in αvβ6-positive and αvβ6-negative lung cancer models. Our study showed that 68Ga-DOTA-R01-MG exhibited excellent stability in PBS and FBS. Small animal PET imaging and biodistribution data revealed that 68Ga-DOTA-R01-MG displayed rapid and good tumor uptake in animal models with αvβ6-positive lung cancer, and the probe was rapidly cleared from the normal tissues, resulting in good tumor-to-normal tissue contrasts. Meanwhile, no obvious tumor uptake of 68Ga-DOTA-R01-MG was observed in animal models with αvβ6-negative lung cancer, demonstrating specific binding of the probe to integrin αvβ6. In conclusion, 68Ga-DOTA-R01-MG has great potential to be a promising PET tracer for imaging αvβ6-positive lung cancer.
Collapse
Affiliation(s)
- Jingyun Ren
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shiyu Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guojin Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoyue Tan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
16
|
Quigley NG, Steiger K, Hoberück S, Czech N, Zierke MA, Kossatz S, Pretze M, Richter F, Weichert W, Pox C, Kotzerke J, Notni J. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the "Cancer Integrin" αvβ6 with Ga-68-Trivehexin. Eur J Nucl Med Mol Imaging 2022; 49:1136-1147. [PMID: 34559266 PMCID: PMC8460406 DOI: 10.1007/s00259-021-05559-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/05/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE To develop a new probe for the αvβ6-integrin and assess its potential for PET imaging of carcinomas. METHODS Ga-68-Trivehexin was synthesized by trimerization of the optimized αvβ6-integrin selective cyclic nonapeptide Tyr2 (sequence: c[YRGDLAYp(NMe)K]) on the TRAP chelator core, followed by automated labeling with Ga-68. The tracer was characterized by ELISA for activities towards integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1, as well as by cell binding assays on H2009 (αvβ6-positive) and MDA-MB-231 (αvβ6-negative) cells. SCID-mice bearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static (75 min p.i.) µPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationships were established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, and metastatic PDAC. RESULTS Ga-68-Trivehexin showed a high αvβ6-integrin affinity (IC50 = 0.047 nM), selectivity over other subtypes (IC50-based factors: αvβ8, 131; αvβ3, 57; α5β1, 468), blockable uptake in H2009 cells, and negligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a high target-specific uptake in tumor and a low non-specific uptake in other organs and tissues except the excretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results, showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10-13) as well as in kidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed high uptake in HNSCC but not in tumor-associated inflammation. CONCLUSIONS Ga-68-Trivehexin is a valuable probe for imaging of αvβ6-integrin expression in human cancers.
Collapse
Affiliation(s)
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sebastian Hoberück
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Norbert Czech
- Center of Nuclear Medicine and PET/CT Bremen, Bremen, Germany
| | | | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum rechts der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Marc Pretze
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Frauke Richter
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Christian Pox
- Clinic of Internal Medicine, Hospital St. Joseph-Stift Bremen, Bremen, Germany
| | - Jörg Kotzerke
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Johannes Notni
- Institute of Pathology, Technische Universität München, Munich, Germany.
- Experimental Radiopharmacy, Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
17
|
Huynh TT, Sreekumar S, Mpoy C, Rogers BE. Therapeutic Efficacy of 177Lu-Labeled A20FMDV2 Peptides Targeting ανβ6. Pharmaceuticals (Basel) 2022; 15:ph15020229. [PMID: 35215341 PMCID: PMC8876964 DOI: 10.3390/ph15020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Integrin ανβ6 promotes migration and invasion of cancer cells, and its overexpression often correlates with poor survival. Therefore, targeting ανβ6 with radioactive peptides would be beneficial for cancer imaging and therapy. Previous studies have successfully developed radiotracers based on the peptide A20FMDV2 that showed good binding specificity for ανβ6. However, one concern of these ανβ6 integrin-targeting probes is that their rapid blood clearance and low tumor uptake would preclude them from being used for therapeutic purposes. In this study, albumin binders were used to increase tumor uptake for therapeutic applications while the non-albumin peptide was evaluated as a potential positron emission tomography (PET) imaging agent. All peptides used the DOTA chelator for radiolabeling with either 68Ga for imaging or 177Lu for therapy. PET imaging with [68Ga]Ga-DOTA-(PEG28)2-A20FMDV2 revealed specific tumor uptake in ανβ6-positive tumors. Albumin-binding peptides EB-DOTA-(PEG28)2-A20FMDV2 and IBA-DOTA-(PEG28)2-A20FMDV2 were radiolabeled with 177Lu. Biodistribution studies in normal mice showed longer blood circulation times for the albumin binding peptides compared to the non-albumin peptide. Therapy studies in mice demonstrated that both 177Lu-labeled albumin binding peptides resulted in significant tumor growth inhibition. We believe these are the first studies to demonstrate the therapeutic efficacy of a radiolabeled peptide targeting an ανβ6-positive tumor.
Collapse
Affiliation(s)
- Truc Thao Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
| | - Buck Edward Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; (T.T.H.); (S.S.); (C.M.)
- Correspondence:
| |
Collapse
|
18
|
Ganguly T, Bauer N, Davis RA, Hausner SH, Tang SY, Sutcliffe JL. Evaluation of Copper-64-Labeled α vβ 6-Targeting Peptides: Addition of an Albumin Binding Moiety to Improve Pharmacokinetics. Mol Pharm 2021; 18:4437-4447. [PMID: 34783573 DOI: 10.1021/acs.molpharmaceut.1c00632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incorporation of non-covalent albumin binding moieties (ABMs) into radiotracers results in increased circulation time, leading to a higher uptake in the target tissues such as the tumor, and, in some cases, reduced kidney retention. We previously developed [18F]AlF NOTA-K(ABM)-αvβ6-BP, where αvβ6-BP is a peptide with high affinity for the cell surface receptor integrin αvβ6 that is overexpressed in several cancers, and the ABM is an iodophenyl-based moiety. [18F]AlF NOTA-K(ABM)-αvβ6-BP demonstrated prolonged blood circulation compared to the non-ABM parent peptide, resulting in high, αvβ6-targeted uptake with continuously improving detection of αvβ6(+) tumors using PET/CT. To further extend the imaging window beyond that of fluorine-18 (t1/2 = 110 min) and to investigate the pharmacokinetics at later time points, we radiolabeled the αvβ6-BP with copper-64 (t1/2 = 12.7 h). Two peptides were synthesized without (1) and with (2) the ABM and radiolabeled with copper-64 to yield [64Cu]1 and [64Cu]2, respectively. The affinity of [natCu]1 and [natCu]2 for the integrin αvβ6 was assessed by enzyme-linked immunosorbent assay. [64Cu]1 and [64Cu]2 were evaluated in vitro (cell binding and internalization) using DX3puroβ6 (αvβ6(+)), DX3puro (αvβ6(-)), and pancreatic BxPC-3 (αvβ6(+)) cells, in an albumin binding assay, and for stability in both mouse and human serum. In vivo (PET/CT imaging) and biodistribution studies were done in mouse models bearing either the paired DX3puroβ6/DX3puro or BxPC-3 xenograft tumors. [64Cu]1 and [64Cu]2 were synthesized in ≥97% radiochemical purity. In vitro, [natCu]1 and [natCu]2 maintained low nanomolar affinity for integrin αvβ6 (IC50 = 28 ± 3 and 19 ± 5 nM, respectively); [64Cu]1 and [64Cu]2 showed comparable binding to αvβ6(+) cells (DX3puroβ6: ≥70%, ≥42% internalized; BxPC-3: ≥19%, ≥12% internalized) and ≤3% to the αvβ6(-) DX3puro cells. Both radiotracers were ≥98% stable in human serum at 24 h, and [64Cu]2 showed a 6-fold higher binding to human serum protein than [64Cu]1. In vivo, selective uptake in the αvβ6(+) tumors was observed with tumor visualization up to 72 h for [64Cu]2. A 3-5-fold higher αvβ6(+) tumor uptake of [64Cu]2 vs [64Cu]1 was observed throughout, at least 2.7-fold improved BxPC-3-to-kidney and BxPC-3-to-blood ratios, and 2-fold improved BxPC-3-to-stomach ratios were noted for [64Cu]2 at 48 h. Incorporation of an iodophenyl-based ABM into the αvβ6-BP ([64Cu]2) prolonged circulation time and resulted in improved pharmacokinetics, including increased uptake in αvβ6(+) tumors that enabled visualization of αvβ6(+) tumors up to 72 h by PET/CT imaging.
Collapse
Affiliation(s)
- Tanushree Ganguly
- Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817, United States
| | - Nadine Bauer
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States
| | - Ryan A Davis
- Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817, United States
| | - Sven H Hausner
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States
| | - Sarah Y Tang
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States
| | - Julie L Sutcliffe
- Department of Biomedical Engineering, University of California Davis, Sacramento, California 95817, United States.,Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, California 95817, United States.,Center for Molecular and Genomic Imaging, University of California Davis, Sacramento, California 95817, United States
| |
Collapse
|
19
|
Kossatz S, Beer AJ, Notni J. It's Time to Shift the Paradigm: Translation and Clinical Application of Non-αvβ3 Integrin Targeting Radiopharmaceuticals. Cancers (Basel) 2021; 13:cancers13235958. [PMID: 34885066 PMCID: PMC8657165 DOI: 10.3390/cancers13235958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancer cells often present a different set of proteins on their surface than normal cells. This also applies to integrins, a class of 24 cell surface receptors which mainly are responsible for physically anchoring cells in tissues, but also fulfil a plethora of other functions. If a certain integrin is found on tumor cells but not on normal ones, radioactive molecules (named tracers) that specifically bind to this integrin will accumulate in the cancer lesion if injected into the blood stream. The emitted radiation can be detected from outside the body and allows for localization and thus, diagnosis, of cancer. Only one of the 24 integrins, the subtype αvβ3, has hitherto been thoroughly investigated in this context. We herein summarize the most recent, pertinent research on other integrins, and argue that some of these approaches might ultimately improve the clinical management of the most lethal cancers, such as pancreatic carcinoma. Abstract For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvβ3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvβ3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5β1, αvβ6, αvβ8, α6β1, α6β4, α3β1, α4β1, and αMβ2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvβ6, αvβ8, and α6β1/β4, were subsequently translated into humans during the last few years. αvβ6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvβ6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvβ3 by αvβ6 as the most popular integrin in theranostics.
Collapse
Affiliation(s)
- Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | | | - Johannes Notni
- Department of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- TRIMT GmbH, 01454 Radeberg, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-6949
| |
Collapse
|
20
|
Steiger K, Quigley NG, Groll T, Richter F, Zierke MA, Beer AJ, Weichert W, Schwaiger M, Kossatz S, Notni J. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Res 2021; 11:106. [PMID: 34636990 PMCID: PMC8506476 DOI: 10.1186/s13550-021-00842-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.
Collapse
Affiliation(s)
- Katja Steiger
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Neil Gerard Quigley
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Tanja Groll
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Frauke Richter
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | | | | | - Wilko Weichert
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Susanne Kossatz
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Johannes Notni
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany. .,Experimental Radiopharmacy, Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
21
|
Li D, Dong C, Ma X, Zhao X. Integrin α vβ 6-targeted MR molecular imaging of breast cancer in a xenograft mouse model. Cancer Imaging 2021; 21:44. [PMID: 34187570 PMCID: PMC8244136 DOI: 10.1186/s40644-021-00411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The motif RXDLXXL-based nanoprobes allow specific imaging of integrin αvβ6, a protein overexpressed during tumorigenesis and tumor progression of various tumors. We applied a novel RXDLXXL-coupled cyclic arginine-glycine-aspartate (RGD) nonapeptide conjugated with ultrasmall superparamagnetic iron oxide nanoparticles (referred to as cFK-9-USPIO) for the application of integrin αvβ6-targeted magnetic resonance (MR) molecular imaging for breast cancer. METHODS A novel MR-targeted nanoprobe, cFK-9-USPIO, was synthesized by conjugating integrin αvβ6-targeted peptide cFK-9 to N-amino (-NH2)-modified USPIO nanoparticles via a dehydration esterification reaction. Integrin αvβ6-positive mouse breast cancer (4 T1) and integrin αvβ6 negative human embryonic kidney 293 (HEK293) cell lines were incubated with cFK-9-AbFlour 647 (blocking group) or cFK-9-USPIO (experimental group), and subsequently imaged using laser scanning confocal microscopy (LSCM) and 3.0 Tesla magnetic resonance imaging (MRI) system. The affinity of cFK-9 targeting αvβ6 was analyzed by calculating the mean fluorescent intensity in cells, and the nanoparticle targeting effect was measured by the reduction of T2 values in an in vitro MRI. The in vivo MRI capability of cFK-9-USPIO was investigated in 4 T1 xenograft mouse models. Binding of the targeted nanoparticles to αvβ6-positive 4 T1 tumors was determined by ex vivo histopathology. RESULTS In vitro laser scanning confocal microscopy (LSCM) imaging showed that the difference in fluorescence intensity between the targeting and blocking groups of 4 T1 cells was significantly greater than that in HEK293 cells (P < 0.05). The in vitro MRI demonstrated a more remarkable T2 reduction in 4 T1 cells than in HEK293 cells (P < 0.001). The in vivo MRI of 4 T1 xenograft tumor-bearing nude mice showed significant T2 reduction in tumors compared to controls. Prussian blue staining further confirmed that αvβ6 integrin-targeted nanoparticles were specifically accumulated in 4 T1 tumors and notably fewer nanoparticles were detected in 4 T1 tumors of mice injected with control USPIO and HEK293 tumors of mice administered cFK-9-USPIO. CONCLUSIONS Integrin αvβ6-targeted nanoparticles have great potential for use in the detection of αvβ6-overexpressed breast cancer with MR molecular imaging.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | | | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| |
Collapse
|
22
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Zhao H, Gao H, Luo C, Yang G, Zhao X, Gao S, Ma Q, Jia B, Shi J, Wang F. An Integrin-α vβ 6/α 5β 1-Bitargeted Probe for the SPECT Imaging of Pancreatic Adenocarcinoma in Preclinical and Primary Clinical Studies. Bioconjug Chem 2021; 32:1298-1305. [PMID: 34137602 DOI: 10.1021/acs.bioconjchem.1c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancreatic adenocarcinoma (PA) is one of the deadliest human malignancies. However, early detection, prediction of surgical resectability, and prognosis of PA are challenging with current conventional imaging technologies in the clinic. Molecular imaging technologies combined with novel imaging probes could be useful for early detection and accurate staging of PA. Integrin αvβ6 and α5β1 are found to be overexpressed in PA. In this study, integrin αvβ6/α5β1-bitargeted probes 99mTc-HYNIC-isoDGR (99mTc-isoDGR) and 99mTc-HYNIC-PEG4-PisoDGR2 (99mTc-3PisoDGR2) were prepared and evaluated in the BxPC-3 human pancreatic tumor model. Both subcutaneous and in situ BxPC-3 tumors could be clearly visualized by 99mTc-isoDGR nanoScan SPECT/CT imaging with a high ratio of tumor to background. The blocking study with excess nonradioactive peptide showed a significantly reduced tumor uptake, which confirmed the specificity of 99mTc-isoDGR. Biodistribution results confirmed the imaging results. The dimer tracer 99mTc-3PisoDGR2 significantly enhanced tumor uptake compared with 99mTc-isoDGR, and the spontaneous PA lesion in the mouse model could be clearly visualized by 99mTc-3PisoDGR2. The primary clinical study also verified the ability of 99mTc-3PisoDGR2 for detection of PA. Therefore, SPECT/CT imaging using the integrin αvβ6/α5β1-bitargeted 99mTc-3PisoDGR2 provided a potential approach for the noninvasive detection of PA.
Collapse
Affiliation(s)
- Haitao Zhao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guangjie Yang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyu Zhao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, Jilin 130021, China
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, Jilin 130021, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Chen D, Fan Q, Xu T, Dong J, Cui J, Wang Z, Wang J, Meng Q, Li S. Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators. Anticancer Agents Med Chem 2021; 22:261-269. [PMID: 33820523 DOI: 10.2174/1871520621666210405091645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cytochrome P450 1B1 (CYP1B1) is specifically expressed in a variety of tumors which makes it a promise imaging target of tumor. OBJECTIVE We aimed to design and synthesize CYP1B1 targeted chelators for the potential application in positron emission tomography (PET) imaging of tumor. METHODS 1,4,7-triazacyclononane-1,4-diiacetic acid (NODA) was connected to the CYP1B1 selective inhibitor we developed before through polyethylene glycol (PEG) linkers with different lengths. The inhibitory activities of chelators 6a-c against CYP1 family were evaluated by 7-ethoxyresorufin o-deethylation (EROD) assay. The manual docking between the chelators and the CYP1B1 are conducted subsequently. To determine the binding affinities of 6a-c to CYP1B1 in cells, we further performed a competition study at the cell level. RESULTS Among three chelators, 6a with the shortest linker showed the best inhibitory activity against CYP1B1. In the following molecular simulation study, protein-inhibitor complex of 6a showed the nearest F-heme distance which is consistent with the results of enzymatic assay. Finally, the cell based competitive assay proved the binding affinity of 6a-c to CYP1B1 enzyme. CONCLUSION We designed and synthesized a series of chelators which can bind to CYP1B1 enzyme in cancer cells.To our knowledge, this work is the first attempt to construct CYP1B1 targeted chelators for radiolabeling and we hope it will prompt the application of CYP1B1 imaging in tumor detection.
Collapse
Affiliation(s)
- Dongmei Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Qiqi Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Ting Xu
- Department of Breast Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030. China
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jie Wang
- Department of Breast Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030. China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| |
Collapse
|
25
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
26
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
27
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
28
|
Urquiza M, Guevara V, Diaz-Sana E, Mora F. The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidic and non-peptidic αvβ6 integrin-binding molecules have been used in
the clinic for detection and treatment of tumors expressing αvβ6 integrin, because this protein
is expressed in malignant epithelial cells of the oral cavity, pancreas, breast, ovary,
colon and stomach carcinomas but it is not expressed in healthy adult tissue except during
wound healing and inflammation. This review focuses on the landscape of αvβ6 integrinbinding
molecules and their use in cancer treatment and detection, and discusses recent
designs for tumor detection, treatment, and immunotherapy. In the last ten years, several
reviews abamp;#945;vβ6 integrin-binding molecules and their role in cancer detection and treatment.
Firstly, this review describes the role of the αvβ6 integrin in normal tissues, how the expression
of this protein is correlated with cancer severity and its role in cancer development. Taking into account
the potential of αvβ6 integrin-binding molecules in detection and treatment of specific tumors, special
attention is given to several high-affinity αvβ6 integrin-binding peptides used for tumor imaging; particularly,
the αvβ6-binding peptide NAVPNLRGDLQVLAQKVART [A20FMDV2], derived from the foot and mouth
disease virus. This peptide labeled with either 18F, 111In or with 68Ga has been used for PET imaging of αvβ6
integrin-positive tumors. Moreover, αvβ6 integrin-binding peptides have been used for photoacoustic and fluorescence
imaging and could potentially be used in clinical application in cancer diagnosis and intraoperative
imaging of αvβ6-integrin positive tumors. Additionally, non-peptidic αvβ6-binding molecules have been designed
and used in the clinic for the detection and treatment of αvβ6-expressing tumors. Anti-αvβ6 integrin antibodies
are another useful tool for selective identification and treatment of αvβ6 (+) tumors. The utility of
these αvβ6 integrin-binding molecules as a tool for tumor detection and treatment is discussed, considering
specificity, sensitivity and serum stability. Another use of the αvβ6 integrin-binding peptides is to modify the
Ad5 cell tropism for inducing oncolytic activity of αvβ6-integrin positive tumor cells by expressing
A20FMDV2 peptide within the fiber knob protein (Ad5NULL-A20). The newly designed oncolytic
Ad5NULL-A20 virotherapy is promising for local and systemic targeting of αvβ6-overexpressing cancers. Finally,
new evidence has emerged, indicating that chimeric antigen receptor (CAR) containing the αvβ6 integrin-
binding peptide on top of CD28+CD3 endodomain displays a potent therapeutic activity in a diverse
repertoire of solid tumor models.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Valentina Guevara
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Erika Diaz-Sana
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Felipe Mora
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| |
Collapse
|
29
|
Sani S, Messe M, Fuchs Q, Pierrevelcin M, Laquerriere P, Entz-Werle N, Reita D, Etienne-Selloum N, Bruban V, Choulier L, Martin S, Dontenwill M. Biological Relevance of RGD-Integrin Subtype-Specific Ligands in Cancer. Chembiochem 2020; 22:1151-1160. [PMID: 33140906 DOI: 10.1002/cbic.202000626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Integrins are heterodimeric transmembrane proteins able to connect cells with the micro-environment. They represent a family of receptors involved in almost all the hallmarks of cancer. Integrins recognizing the Arg-Gly-Asp (RGD) peptide in their natural extracellular matrix ligands have been particularly investigated as tumoral therapeutic targets. In the last 30 years, intense research has been dedicated to designing specific RGD-like ligands able to discriminate selectively the different RGD-recognizing integrins. Chemists' efforts have led to the proposition of modified peptide or peptidomimetic libraries to be used for tumor targeting and/or tumor imaging. Here we review, from the biological point of view, the rationale underlying the need to clearly delineate each RGD-integrin subtype by selective tools. We describe the complex roles of RGD-integrins (mainly the most studied αvβ3 and α5β1 integrins) in tumors, the steps towards selective ligands and the current usefulness of such ligands. Although the impact of integrins in cancer is well acknowledged, the biological characteristics of each integrin subtype in a specific tumor are far from being completely resolved. Selective ligands might help us to reconsider integrins as therapeutic targets in specific clinical settings.
Collapse
Affiliation(s)
- Saidu Sani
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Cancer and Diabetic Research Group, Department of Biochemistry and Molecular Biology, Faculty of Science, Federal University Ndufu-Alike Ikwo, P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Mélissa Messe
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Quentin Fuchs
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Marina Pierrevelcin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Patrice Laquerriere
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Natacha Entz-Werle
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Pediatric Onco-Hematology Department, Pediatrics, University Hospital of Strasbourg, 1 avenue Molière, 67098, Strasbourg, France
| | - Damien Reita
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Department of Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, France
| | - Nelly Etienne-Selloum
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut du Cancer Strasbourg Europe (ICANS), Service de Pharmacie, 17 rue Albert Calmette, 67200 Strasbourg, France
| | - Véronique Bruban
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Laurence Choulier
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| |
Collapse
|
30
|
Quigley NG, Steiger K, Richter F, Weichert W, Hoberück S, Kotzerke J, Notni J. Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-Triveoctin. EJNMMI Res 2020; 10:133. [PMID: 33128636 PMCID: PMC7603442 DOI: 10.1186/s13550-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose As a major activator of transforming growth factor β (TGF-β), the RGD receptor αvβ8-integrin is involved in pathogenic processes related to TGF-β dysregulation, such as tumor growth, invasion, and radiochemoresistance, metastasis and tumor cell stemness, as well as epithelial-mesenchymal transition. The novel positron emission tomography (PET) radiopharmaceutical Ga-68-Triveoctin for in vivo mapping of αvβ8-integrin expression might enhance the prognosis of certain tumor entities, as well as support and augment TGF-β-targeted therapeutic approaches. Methods Monomeric and trimeric conjugates of cyclo(GLRGDLp(NMe)K(pent-4-ynoic amide)) were synthesized by click chemistry (CuAAC), labeled with Ga-68, and evaluated in MeWo (human melanoma) xenografted SCID mice by means of PET and ex-vivo biodistribution. αvβ8-integrin expression in murine tissues was determined by β8-IHC. A human subject received a single injection of 173 MBq of Ga-68-Triveoctin and underwent 3 subsequent PET/CT scans at 25, 45, and 90 min p.i.. Results The trimer Ga-68-Triveoctin exhibits a 6.7-fold higher αvβ8-integrin affinity than the monomer (IC50 of 5.7 vs. 38 nM, respectively). Accordingly, biodistribution showed a higher tumor uptake (1.9 vs. 1.0%IA/g, respectively) but a similar baseline upon blockade (0.25%IA/g for both). IHC showed an intermediate β8-expression in the tumor while most organs and tissues were found β8-negative. Low non-target tissue uptakes (< 0.4%IA/g) confirmed a low degree of unspecific binding. Due to its hydrophilicity (log D = − 3.1), Ga-68-Triveoctin is excreted renally and shows favorable tumor/tissue ratios in mice (t/blood: 6.7; t/liver: 6.8; t/muscle: 29). A high kidney uptake in mice (kidney-to-blood and -to-muscle ratios of 126 and 505, respectively) is not reflected by human PET (corresponding values are 15 and 30, respectively), which furthermore showed notable uptakes in coeliac and choroid plexus (SUVmean 6.1 and 9.7, respectively, 90 min p.i.). Conclusion Ga-68-Triveoctin enables sensitive in-vivo imaging αvβ8-integrin expression in murine tumor xenografts. PET in a human subject confirmed a favorable biodistribution, underscoring the potential of Ga-68-Triveoctin for mapping of αvβ8-integrin expression in a clinical setting.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Katja Steiger
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Frauke Richter
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Wilko Weichert
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Sebastian Hoberück
- Klinik Und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Klinik Und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Johannes Notni
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany.
| |
Collapse
|
31
|
Quigley NG, Tomassi S, di Leva FS, Di Maro S, Richter F, Steiger K, Kossatz S, Marinelli L, Notni J. Click-Chemistry (CuAAC) Trimerization of an α v β 6 Integrin Targeting Ga-68-Peptide: Enhanced Contrast for in-Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. Chembiochem 2020; 21:2836-2843. [PMID: 32359011 PMCID: PMC7586803 DOI: 10.1002/cbic.202000200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Indexed: 12/21/2022]
Abstract
αv β6 Integrin is an epithelial transmembrane protein that recognizes latency-associated peptide (LAP) and primarily activates transforming growth factor beta (TGF-β). It is overexpressed in carcinomas (most notably, pancreatic) and other conditions associated with αv β6 integrin-dependent TGF-β dysregulation, such as fibrosis. We have designed a trimeric Ga-68-labeled TRAP conjugate of the αv β6 -specific cyclic pentapeptide SDM17 (cyclo[RGD-Chg-E]-CONH2 ) to enhance αv β6 integrin affinity as well as target-specific in-vivo uptake. Ga-68-TRAP(SDM17)3 showed a 28-fold higher αv β6 affinity than the corresponding monomer Ga-68-NOTA-SDM17 (IC50 of 0.26 vs. 7.4 nM, respectively), a 13-fold higher IC50 -based selectivity over the related integrin αv β8 (factors of 662 vs. 49), and a threefold higher tumor uptake (2.1 vs. 0.66 %ID/g) in biodistribution experiments with H2009 tumor-bearing SCID mice. The remarkably high tumor/organ ratios (tumor-to-blood 11.2; -to-liver 8.7; -to-pancreas 29.7) enabled high-contrast tumor delineation in PET images. We conclude that Ga-68-TRAP(SDM17)3 holds promise for improved clinical PET diagnostics of carcinomas and fibrosis.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Stefano Tomassi
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Francesco Saverio di Leva
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e FarmaceuticheUniversità degli Studi della Campania “Luigi Vanvitelli”Via A. Vivaldi 4381100CasertaItaly
| | - Frauke Richter
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Katja Steiger
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Susanne Kossatz
- Klinik für Nuklearmedizin and TranslaTUMCentral Institute for Translational Cancer ResearchTechnische Universität MünchenIsmaninger Str. 2281675MünchenGermany
| | - Luciana Marinelli
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Johannes Notni
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| |
Collapse
|
32
|
Bugatti K, Bruno A, Arosio D, Sartori A, Curti C, Augustijn L, Zanardi F, Battistini L. Shifting Towards α
V
β
6
Integrin Ligands Using Novel Aminoproline‐Based Cyclic Peptidomimetics. Chemistry 2020; 26:13468-13475. [DOI: 10.1002/chem.202002554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Kelly Bugatti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27A 43124 Parma Italy
| | - Agostino Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27A 43124 Parma Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta” CNR, Consiglio Nazionale delle Ricerche Via C. Golgi 19 20133 Milano Italy
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27A 43124 Parma Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27A 43124 Parma Italy
| | - Lisa Augustijn
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) Division of Medicinal Chemistry Vrije Universiteit Amsterdam De Boelelaan 1108, 1081 HZ Amsterdam Noord-Holland The Netherlands
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27A 43124 Parma Italy
| | - Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27A 43124 Parma Italy
| |
Collapse
|
33
|
Gillies RJ, Schabath MB. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol Biomarkers Prev 2020; 29:2556-2567. [PMID: 32917666 DOI: 10.1158/1055-9965.epi-20-0075] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/18/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
Imaging is a key technology in the early detection of cancers, including X-ray mammography, low-dose CT for lung cancer, or optical imaging for skin, esophageal, or colorectal cancers. Historically, imaging information in early detection schema was assessed qualitatively. However, the last decade has seen increased development of computerized tools that convert images into quantitative mineable data (radiomics), and their subsequent analyses with artificial intelligence (AI). These tools are improving diagnostic accuracy of early lesions to define risk and classify malignant/aggressive from benign/indolent disease. The first section of this review will briefly describe the various imaging modalities and their use as primary or secondary screens in an early detection pipeline. The second section will describe specific use cases to illustrate the breadth of imaging modalities as well as the benefits of quantitative image analytics. These will include optical (skin cancer), X-ray CT (pancreatic and lung cancer), X-ray mammography (breast cancer), multiparametric MRI (breast and prostate cancer), PET (pancreatic cancer), and ultrasound elastography (liver cancer). Finally, we will discuss the inexorable improvements in radiomics to build more robust classifier models and the significant limitations to this development, including access to well-annotated databases, and biological descriptors of the imaged feature data.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
34
|
Nakamura S, Matsuno A, Ueda M. Improvement of biodistribution profile of a radiogallium-labeled, αvβ6 integrin-targeting peptide probe by incorporation of negatively charged amino acids. Ann Nucl Med 2020; 34:575-582. [DOI: 10.1007/s12149-020-01483-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/01/2020] [Indexed: 11/24/2022]
|
35
|
Feng X, Wang Y, Lu D, Xu X, Zhou X, Zhang H, Zhang T, Zhu H, Yang Z, Wang F, Li N, Liu Z. Clinical Translation of a 68Ga-Labeled Integrin α vβ 6-Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. J Nucl Med 2020; 61:1461-1467. [PMID: 32086242 DOI: 10.2967/jnumed.119.237347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive PET imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (2 women and 3 men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry were calculated. PET/CT imaging of 2 patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing-at least in part-to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-FDG for diagnostic imaging and postsurgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and a favorable dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring.
Collapse
Affiliation(s)
- Xun Feng
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Dehua Lu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huiyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; and
| |
Collapse
|
36
|
Zheng Y, Leftheris K. Insights into Protein–Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J Med Chem 2020; 63:5675-5696. [DOI: 10.1021/acs.jmedchem.9b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yajun Zheng
- Pliant Therapeutics, South San Francisco, California 94080, United States
| | - Katerina Leftheris
- Pliant Therapeutics, South San Francisco, California 94080, United States
| |
Collapse
|
37
|
Ui T, Ueda M, Higaki Y, Kamino S, Sano K, Kimura H, Saji H, Enomoto S. Development and characterization of a 68Ga-labeled A20FMDV2 peptide probe for the PET imaging of αvβ6 integrin-positive pancreatic ductal adenocarcinoma. Bioorg Med Chem 2020; 28:115189. [PMID: 31740201 DOI: 10.1016/j.bmc.2019.115189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 01/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known to be one of the most lethal cancers. Since the majority of patients are diagnosed at an advanced stage, development of a detection method for PDAC at an earlier stage of disease progression is strongly desirable. Integrin αVβ6 is a promising target for early PDAC detection because its expression increases during precancerous changes. The present study aimed to develop an imaging probe for positron emission tomography (PET) which targets αVβ6 integrin-positive PDAC. We selected A20FMDV2 peptide, which binds specifically to αvβ6 integrin, as a probe scaffold, and 68Ga as a radioisotope. A20FMDV2 peptide has not been previously labeled with 68Ga. A cysteine residue was introduced to the N-terminus of the probe at a site-specific conjugation of maleimide-NOTA (mal-NOTA) chelate. Different numbers of glycine residues were also introduced between cysteine and the A20FMDV2 sequence as a spacer in order to reduce the steric hindrance of the mal-NOTA on the binding probe to αVβ6 integrin. In vitro, the competitive binding assay revealed that probes containing a 6-glycine linker ([natGa]CG6 and [natGa]Ac-CG6) showed high affinity to αVβ6 integrin. Both probes could be labeled by 67/68Ga with high radiochemical yield (>50%) and purity (>98%). On biodistribution analysis, [67Ga]Ac-CG6 showed higher tumor accumulation, faster blood clearance, and lower accumulation in the surrounding organs of pancreas than did [67Ga]CG6. The αVβ6 integrin-positive xenografts were clearly visualized by PET imaging with [68Ga]Ac-CG6. The intratumoral distribution of [68Ga]Ac-CG6 coincided with the αVβ6 integrin-positive regions detected by immunohistochemistry. Thus, [68Ga]Ac-CG6 is a useful peptide probe for the imaging of αVβ6 integrin in PDAC.
Collapse
Affiliation(s)
- Takashi Ui
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masashi Ueda
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Yusuke Higaki
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shinichiro Kamino
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kohei Sano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuichi Enomoto
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
38
|
Combined Tissue-Fluid Proteomics to Unravel Phenotypic Variability in Amyotrophic Lateral Sclerosis. Sci Rep 2019; 9:4478. [PMID: 30872628 PMCID: PMC6418138 DOI: 10.1038/s41598-019-40632-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of biomarkers for early diagnosis, clinical stratification and to monitor treatment response has hampered the development of new therapies for amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disorder with a variable site of disease initiation and rate of progression. To identify new biomarkers and therapeutic targets, two separate proteomic workflows were applied to study the immunological response and the plasma/brain proteome in phenotypic variants of ALS. Conventional multiplex (TMT) proteomic analysis of peripheral blood mononuclear cells (PBMCs) was performed alongside a recently introduced method to profile neuronal-derived proteins in plasma using brain tissue-enhanced isobaric tagging (TMTcalibrator). The combined proteomic analysis allowed the detection of regulated proteins linked to ALS pathogenesis (RNA-binding protein FUS, superoxide dismutase Cu-Zn and neurofilaments light polypeptide) alongside newly identified candidate biomarkers (myosin-9, fructose-bisphosphate aldolase and plectin). In line with the proteomic results, orthogonal immunodetection showed changes in neurofilaments and ApoE in bulbar versus limb onset fast progressing ALS. Functional analysis of significantly regulated features showed enrichment of pathways involved in regulation of the immune response, Rho family GTPases, semaphorin and integrin signalling. Our cross-phenotype investigation of PBMCs and plasma/brain proteins provides a more sensitive biomarker exploratory platform than conventional case-control studies in a single matrix. The reported regulated proteins may represent novel biomarker candidates and potentially druggable targets.
Collapse
|
39
|
|
40
|
Reichart F, Maltsev OV, Kapp TG, Räder AFB, Weinmüller M, Marelli UK, Notni J, Wurzer A, Beck R, Wester HJ, Steiger K, Di Maro S, Di Leva FS, Marinelli L, Nieberler M, Reuning U, Schwaiger M, Kessler H. Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. J Med Chem 2019; 62:2024-2037. [DOI: 10.1021/acs.jmedchem.8b01588] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Oleg V. Maltsev
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Tobias G. Kapp
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andreas F. B. Räder
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michael Weinmüller
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Alexander Wurzer
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Roswitha Beck
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie, Technische Universität München, Walther-Meißner Straße 3, 85748 Garching, Germany
| | - Katja Steiger
- Department of Pathology, Technische Universität München, Trogerstraße 18, 81675 München, Germany
| | - Salvatore Di Maro
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, University Hospital Rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81679 München, Germany
| | | | | | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
41
|
Wurzer A, Pollmann J, Schmidt A, Reich D, Wester HJ, Notni J. Molar Activity of Ga-68 Labeled PSMA Inhibitor Conjugates Determines PET Imaging Results. Mol Pharm 2018; 15:4296-4302. [PMID: 30011372 DOI: 10.1021/acs.molpharmaceut.8b00602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiopharmaceuticals targeting the enzyme prostate-specific membrane antigen (PSMA; synonyms: glutamate carboxypeptidase II, NAALADase; EC 3.4.17.21) have recently emerged as powerful agents for diagnosis and therapy (theranostics) of prostate carcinoma (PCa). The radiation doses for therapeutic application of such compounds are limited by substantial uptakes in kidneys and salivary glands, with excess doses reportedly leading to radiotoxicity-related adverse effects, such as kidney insufficiency or xenostomia. On the basis of the triazacyclononane-triphosphinate (TRAP) chelator, monomeric to trimeric conjugates of the PSMA inhibitor motif lysine-urea-glutamic acid (KuE) were synthesized by means of Cu(I)-mediated (CuAAC) or 5-aza-dibenzocyclooctyne (DBCO)-driven, strain-promoted click chemistry (SPAAC), which were labeled with gallium-68 for application in positron emission tomography (PET), and characterized in terms of PSMA affinity (determined in cellular displacement assays against I-125-BA) and lipophilicity (expressed as log D). Using subcutaneous murine LNCaP (PSMA-positive human prostate carcinoma) xenografts, the influence of ligand multiplicity, affinity, polarity, and molar activity (i.e., mass dose) on the uptakes in tumor, kidney, salivary, and background (muscle) was analyzed by means of region-of-interest (ROI) based quantification of small-animal PET imaging data. As expected, trimerization of the KuE motif resulted in high PSMA affinities (IC50 ranging from 6.0-1.5 nM). Of all parameters, molar activity/cold mass had the most pronounced influence on PET uptakes. Because accumulation in nontumor tissues was effected to a larger extent than tumor uptakes, lower molar activities resulted in substantially better tumor-to-organ ratios. For example, for one trimer, 68Ga-AhxKuE3 (IC50 = 1.5 ± 0.3 nM, log D = -3.8 ± 0.1), a higher overall amount of active compound (12 pmol vs 2 nmol, equivalent to molar activities of 1200 and 8 MBq/nmol) resulted in a remarkable reduction of the kidney-to-tumor ratio from 11.4 to 1.4, respectively, at 60 min p.i. Our study suggests that, for PSMA-targeting radiopharmaceuticals, molar activity has a more pronounced influence on small-animal PET imaging results than structural or in vitro parameters.
Collapse
Affiliation(s)
- Alexander Wurzer
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Julia Pollmann
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Alexander Schmidt
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Dominik Reich
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Johannes Notni
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| |
Collapse
|
42
|
Abstract
Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
Collapse
Affiliation(s)
- Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
43
|
Wang X, Jaraquemada-Peláez MDG, Cao Y, Pan J, Lin KS, Patrick BO, Orvig C. H2hox: Dual-Channel Oxine-Derived Acyclic Chelating Ligand for 68Ga Radiopharmaceuticals. Inorg Chem 2018; 58:2275-2285. [DOI: 10.1021/acs.inorgchem.8b01208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yang Cao
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jinhe Pan
- BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Brian O. Patrick
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
44
|
Di Leva FS, Tomassi S, Di Maro S, Reichart F, Notni J, Dangi A, Marelli UK, Brancaccio D, Merlino F, Wester HJ, Novellino E, Kessler H, Marinelli L. Von einer Helix zu einem kleinen Ring: Metadynamik-inspirierte, selektive Liganden für αvβ6-Integrin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Francesco Saverio Di Leva
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Stefano Tomassi
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italien
| | - Salvatore Di Maro
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italien
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Deutschland
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune Indien
| | - Udaya Kiran Marelli
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune Indien
| | - Diego Brancaccio
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Francesco Merlino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Deutschland
| | - Ettore Novellino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Luciana Marinelli
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italien
| |
Collapse
|
45
|
Di Leva FS, Tomassi S, Di Maro S, Reichart F, Notni J, Dangi A, Marelli UK, Brancaccio D, Merlino F, Wester HJ, Novellino E, Kessler H, Marinelli L. From a Helix to a Small Cycle: Metadynamics-Inspired αvβ6 Integrin Selective Ligands. Angew Chem Int Ed Engl 2018; 57:14645-14649. [DOI: 10.1002/anie.201803250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Francesco Saverio Di Leva
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Stefano Tomassi
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italy
| | - Salvatore Di Maro
- DiSTABiF; Università degli Studi della Campania Luigi Vanvitelli; Via Vivaldi 43 81100 Caserta Italy
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Germany
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Udaya Kiran Marelli
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
- Central NMR Facility and Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Diego Brancaccio
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Francesco Merlino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Hans-Jürgen Wester
- Lehrstuhl für Pharmazeutische Radiochemie; Technische Universität München; Walther-Meißner Straße 3 85748 Garching Germany
| | - Ettore Novellino
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science; Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Germany
| | - Luciana Marinelli
- Dipartimento di Farmacia; Università degli Studi di Napoli Federico II; Via D. Montesano 49 80131 Naples Italy
| |
Collapse
|
46
|
Färber S, Wurzer A, Reichart F, Beck R, Kessler H, Wester HJ, Notni J. Therapeutic Radiopharmaceuticals Targeting Integrin αvβ6. ACS OMEGA 2018; 3:2428-2436. [PMID: 30023833 PMCID: PMC6045477 DOI: 10.1021/acsomega.8b00035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 05/08/2023]
Abstract
The epithelial integrin αvβ6 is expressed by many malignant carcinoma cell types, including pancreatic cancer, and thus represents a promising target for radionuclide therapy. The peptide cyclo(FRGDLAFp(NMe)K) was decorated with different chelators (DOTPI, DOTAGA, and DOTA). The Lu(III) complexes of these conjugates exhibited comparable αvβ6 integrin affinities (IC50 ranging from 0.3 to 0.8 nM) and good selectivities against other integrins (IC50 for αvβ8 >43 nM; for α5β1 >238 nM; and for αvβ3, αvβ5, and αIIbβ3 >1000 nM). Although different formal charges of the Lu(III) chelates (ranging from 0 to 4) resulted in strongly varying degrees of hydrophilicity (log D ranging from -3.0 to -4.1), biodistributions in murine H2009 xenografts of the Lu-177-labeled compounds (except the DOTPI derivative) were quite similar and comparable to our previously reported αvβ6 integrin positron emission tomography tracer Ga-68-avebehexin. Hence, combinations of existing Ga-68- and Lu-177-labeled c(FRGDLAFp(NMe)K) derivatives could be utilized for αvβ6 integrin-targeted theranostics, whereas our data nonetheless suggest that further improvement of pharmacokinetics might be necessary to ensure clinical success.
Collapse
Affiliation(s)
- Stefanie
Felicitas Färber
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
| | - Alexander Wurzer
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
| | - Florian Reichart
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
| | - Roswitha Beck
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
| | - Horst Kessler
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
| | - Hans-Jürgen Wester
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
| | - Johannes Notni
- Lehrstuhl für
Pharmazeutische Radiochemie and Institute for Advanced Study and
Center of Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, Garching D-85748, Germany
- E-mail: , http://www.prc.ch.tum.de (J.N.)
| |
Collapse
|
47
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
48
|
Tornesello AL, Buonaguro L, Tornesello ML, Buonaguro FM. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:1282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| |
Collapse
|
49
|
Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors. Pharmaceuticals (Basel) 2017; 10:ph10010029. [PMID: 28287433 PMCID: PMC5374433 DOI: 10.3390/ph10010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial.
Collapse
|
50
|
Steiger K, Schlitter AM, Weichert W, Esposito I, Wester HJ, Notni J. Perspective of αvβ6-Integrin Imaging for Clinical Management of Pancreatic Carcinoma and Its Precursor Lesions. Mol Imaging 2017; 16:1536012117709384. [PMID: 28627323 PMCID: PMC5480625 DOI: 10.1177/1536012117709384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022] Open
Abstract
ß6-integrin immunohistochemistry analysis of a large number of pancreatic ductal adenocarcinoma (PDAC, 383 primary tumors, 7 lymph node, and 8 distant metastases) and 34 pancreatic intraepithelial neoplasia (PanIN) specimens revealed a high prevalence of αvß6-integrin expression in PDAC primaries (88%) and in almost all metastases, as well as in PanIN (57%). These findings underscore the high potential of a novel αvß6-integrin targeting positron emission tomography (PET) radiopharmaceutical, Ga-68-Avebehexin, for early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Katja Steiger
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Wilko Weichert
- Institute of Pathology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Universitätsklinikum Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| | - Johannes Notni
- Chair of Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| |
Collapse
|