1
|
Rosenblum LT, Sever RE, Gilbert R, Guerrero D, Vincze SR, Menendez DM, Birikorang PA, Rodgers MR, Jaswal AP, Vanover AC, Latoche JD, Cortez AG, Day KE, Foley LM, Sneiderman CT, Raphael I, Hitchens TK, Nedrow JR, Kohanbash G, Edwards WB, Malek MM. Dual-labeled anti-GD2 targeted probe for intraoperative molecular imaging of neuroblastoma. J Transl Med 2024; 22:940. [PMID: 39407274 PMCID: PMC11476241 DOI: 10.1186/s12967-024-05728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Surgical resection is integral for the treatment of neuroblastoma, the most common extracranial solid malignancy in children. Safely locating and resecting primary tumor and remote deposits of disease remains a significant challenge, resulting in high rates of complications and incomplete surgery, worsening outcomes. Intraoperative molecular imaging (IMI) uses targeted radioactive or fluorescent tracers to identify and visualize tumors intraoperatively. GD2 was selected as an IMI target, as it is highly overexpressed in neuroblastoma and minimally expressed in normal tissue. METHODS GD2 expression in neuroblastoma cell lines was measured by flow cytometry. DTPA and IRDye® 800CW were conjugated to anti-GD2 antibody to generate DTPA-αGD2-IR800. Binding affinity (Kd) of the antibody and the non-radiolabeled tracer were then measured by ELISA assay. Human neuroblastoma SK-N-BE(2) cells were surgically injected into the left adrenal gland of 3.5-5-week-old nude mice and the orthotopic xenograft tumors grew for 5 weeks. 111In-αGD2-IR800 or isotype control tracer was administered via tail vein injection. After 4 and 6 days, mice were euthanized and gamma and fluorescence biodistributions were measured using a gamma counter and ImageJ analysis of acquired SPY-PHI fluorescence images of resected organs (including tumor, contralateral adrenal, kidneys, liver, muscle, blood, and others). Organ uptake was compared by one-way ANOVA (with a separate analysis for each tracer/day combination), and if significant, Sidak's multiple comparison test was used to compare the uptake of each organ to the tumor. Handheld tools were also used to detect and visualize tumor in situ, and to assess for residual disease following non-guided resection. RESULTS 111In-αGD2-IR800 was successfully synthesized with 0.75-2.0 DTPA and 2-3 IRDye® 800CW per antibody and retained adequate antigen-binding (Kd = 2.39 nM for aGD2 vs. 21.31 nM for DTPA-aGD2-IR800). The anti-GD2 tracer demonstrated antigen-specific uptake in mice with human neuroblastoma xenografts (gamma biodistribution tumor-to-blood ratios of 3.87 and 3.88 on days 4 and 6 with anti-GD2 tracer), while isotype control tracer did not accumulate (0.414 and 0.514 on days 4 and 6). Probe accumulation in xenografts was detected and visualized using widely available operative tools (Neoprobe® and SPY-PHI camera) and facilitated detection ofputative residual disease in the resection cavity following unguided resection. CONCLUSIONS We have developed a dual-labeled anti-GD2 antibody-based tracer that incorporates In-111 and IRDye® 800CW for radio- and fluorescence-guided surgery, respectively. The tracer adequately binds to GD2, specifically accumulates in GD2-expressing xenograft tumors, and enables tumor visualization with a hand-held NIR camera. These results encourage the development of 111In-αGD2-IR800 for future use in children with neuroblastoma, with the goal of improving patient safety, completeness of resection, and overall patient outcomes.
Collapse
Affiliation(s)
- Lauren Taylor Rosenblum
- Department of General Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - ReidAnn E Sever
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Ryan Gilbert
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - David Guerrero
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Sarah R Vincze
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Dominic M Menendez
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Peggy A Birikorang
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Mikayla R Rodgers
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Ambika Parmar Jaswal
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Alexander C Vanover
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Joseph D Latoche
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Angel G Cortez
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Kathryn E Day
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Lesley M Foley
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Itay Raphael
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - T Kevin Hitchens
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Jessie R Nedrow
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA.
- Department of Immunology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - W Barry Edwards
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Marcus M Malek
- Department of General Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Department of Pediatric General Surgery, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Ave., Faculty Pavilion 7th Floor, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
2
|
Chen S, Li G, Pan R, Zhou K, Wen W, Tao J, Wang F, Han RPS, Pan H, Tu Y. Novel Near-Infrared Fluorescent Probe for Hepatocyte Growth Factor in Vivo Imaging in Surgical Navigation of Colorectal Cancer. Anal Chem 2024; 96:9016-9025. [PMID: 38780636 DOI: 10.1021/acs.analchem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Despite recent advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable primarily due to high recurrence and liver metastasis rates. Fluorescence molecular imaging technologies, combined with specific probes, have gained prominence in facilitating real-time tumor resection guided by fluorescence. Hepatocyte growth factor (HGF) is overexpressed in CRC, but the advancement of HGF fluorescent probes has been impeded by the absence of effective HGF-targeting small-molecular ligands. Herein, we present the targeted capabilities of the novel V-1-GGGK-MPA probe labeled with a near-infrared fluorescent dye, which targets HGF in CRC. The V-1-GGGK peptide exhibits high specificity and selectivity for HGF-positive in vitro tumor cells and in vivo tumors. Biodistribution analysis of V-1-GGGK-MPA revealed tumor-specific accumulation with low background uptake, yielding signal-to-noise ratio (SNR) values of tumor-to-colorectal >6 in multiple subcutaneous CRC models 12 h postinjection. Quantitative analysis confirmed the probe's high uptake in SW480 and HT29 orthotopic and liver metastatic models, with SNR values of tumor-to-colorectal and -liver being 5.6 ± 0.4, 4.6 ± 0.5, and 2.1 ± 0.3, 2.0 ± 0.5, respectively, enabling precise tumor visualization for surgical navigation. Pathological analysis demonstrated the excellent tumor boundaries discrimination capacity of the V-1-GGGK-MPA probe at the molecular level. With its rapid tumor targeting, sustained tumor retention, and precise tumor boundary delineation, V-1-GGGK-MPA merges as a promising HGF imaging agent, enriching the toolbox of intraoperative navigational fluorescent probes for CRC.
Collapse
Affiliation(s)
- Shuying Chen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ji Tao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Fang Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huaping Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Zhou K, Li G, Pan R, Xin S, Wen W, Wang H, Luo C, Han RPS, Gu Y, Tu Y. Preclinical evaluation of AGTR1-Targeting molecular probe for colorectal cancer imaging in orthotopic and liver metastasis mouse models. Eur J Med Chem 2024; 271:116452. [PMID: 38685142 DOI: 10.1016/j.ejmech.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.
Collapse
Affiliation(s)
- Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Sulin Xin
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiyi Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chao Luo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
4
|
Declerck NB, Huygen C, Mateusiak L, Stroet MCM, Hernot S. The GEM-handle as convenient labeling strategy for bimodal single-domain antibody-based tracers carrying 99mTc and a near-infrared fluorescent dye for intra-operative decision-making. Front Immunol 2023; 14:1285923. [PMID: 38035094 PMCID: PMC10684908 DOI: 10.3389/fimmu.2023.1285923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Intra-operative fluorescence imaging has demonstrated its ability to improve tumor lesion identification. However, the limited tissue penetration of the fluorescent signals hinders the detection of deep-lying or occult lesions. Integrating fluorescence imaging with SPECT and/or intra-operative gamma-probing synergistically combines the deep tissue penetration of gamma rays for tumor localization with the precision of fluorescence imaging for precise tumor resection. In this study, we detail the use of a genetically encoded multifunctional handle, henceforth referred to as a GEM-handle, for the development of fluorescent/radioactive bimodal single-domain antibody (sdAb)-based tracers. A sdAb that targets the urokinase plasminogen activator receptor (uPAR) was engineered to carry a GEM-handle containing a carboxy-terminal hexahistidine-tag and cysteine-tag. A two-step labeling strategy was optimized and applied to site-specifically label IRDye800CW and 99mTc to the sdAb. Bimodal labeling of the sdAbs proved straightforward and successful. 99mTc activity was however restricted to 18.5 MBq per nmol fluorescently-labeled sdAb to prevent radiobleaching of IRDye800CW without impeding SPECT/CT imaging. Subsequently, the in vivo biodistribution and tumor-targeting capacity of the bimodal tracer were evaluated in uPAR-positive tumor-bearing mice using SPECT/CT and fluorescence imaging. The bimodal sdAb showed expected renal background signals due to tracer clearance, along with slightly elevated non-specific liver signals. Four hours post-injection, both SPECT/CT and fluorescent images achieved satisfactory tumor uptake and contrast, with significantly higher values observed for the anti-uPAR bimodal sdAb compared to a control non-targeting sdAb. In conclusion, the GEM-handle is a convenient method for designing and producing bimodal sdAb-based tracers with adequate in vivo characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Sophie Hernot
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
5
|
Zaw Thin M, Moore C, Snoeks T, Kalber T, Downward J, Behrens A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nat Protoc 2023; 18:990-1015. [PMID: 36494493 DOI: 10.1038/s41596-022-00769-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features. For each animal, image acquisition takes 4-8 min, and data analysis typically requires 10-30 min. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK. .,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), University College London, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK. .,Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK.,Cancer Research UK Convergence Science Centre, Imperial College London, London, UK
| |
Collapse
|
6
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
7
|
Zheng F, Huang X, Ding J, Bi A, Wang S, Chen F, Zeng W. NIR-I Dye-Based Probe: A New Window for Bimodal Tumor Theranostics. Front Chem 2022; 10:859948. [PMID: 35402374 PMCID: PMC8984032 DOI: 10.3389/fchem.2022.859948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Near-infrared (NIR, 650-1700 nm) bioimaging has emerged as a powerful strategy in tumor diagnosis. In particular, NIR-I fluorescence imaging (650-950 nm) has drawn more attention, benefiting from the high quantum yield and good biocompatibility. Since their biomedical applications are slightly limited by their relatively low penetration depth, NIR-I fluorescence imaging probes have been under extensive development in recent years. This review summarizes the particular application of the NIR-I fluorescent dye-contained bimodal probes, with emphasis on related nanoprobes. These probes have enabled us to overcome the drawbacks of individual imaging modalities as well as achieve synergistic imaging. Meanwhile, the application of these NIR-I fluorescence-based bimodal probes for cancer theranostics is highlighted.
Collapse
Affiliation(s)
- Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shifen Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| |
Collapse
|
8
|
Turner MA, Lwin TM, Amirfakhri S, Nishino H, Hoffman RM, Yazaki PJ, Bouvet M. The Use of Fluorescent Anti-CEA Antibodies to Label, Resect and Treat Cancers: A Review. Biomolecules 2021; 11:1819. [PMID: 34944463 PMCID: PMC8699160 DOI: 10.3390/biom11121819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon's ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer.
Collapse
Affiliation(s)
- Michael A. Turner
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | | | - Siamak Amirfakhri
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Hiroto Nishino
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert M. Hoffman
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- AntiCancer Inc., San Diego, CA 92111, USA
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Michael Bouvet
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Stemler T, Hoffmann C, Hierlmeier IM, Maus S, Krause E, Ezziddin S, Jung G, Bartholomä MD. A Structure-Activity Relationship Study of Bimodal BODIPY-Labeled PSMA-Targeting Bioconjugates. ChemMedChem 2021; 16:2535-2545. [PMID: 33905162 PMCID: PMC8453963 DOI: 10.1002/cmdc.202100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to identify a high-affinity BODIPY peptidomimetic that targets the prostate-specific membrane antigen (PSMA) as a potential bimodal imaging probe for prostate cancer. For the structure-activity study, several BODIPY (difluoroboron dipyrromethene) derivatives with varying spacers between the BODIPY dye and the PSMA Glu-CO-Lys binding motif were prepared. Corresponding affinities were determined by competitive binding assays in PSMA-positive LNCaP cells. One compound was identified with comparable affinity (IC50 =21.5±0.1 nM) to Glu-CO-Lys-Ahx-HBED-CC (PSMA-11) (IC50 =18.4±0.2 nM). Radiolabeling was achieved by Lewis-acid-mediated 19 F/18 F exchange in moderate molar activities (∼0.7 MBq nmol-1 ) and high radiochemical purities (>99 %) with mean radiochemical yields of 20-30 %. Cell internalization of the 18 F-labeled high-affinity conjugate was demonstrated in LNCaP cells showing gradual increasing PSMA-mediated internalization over time. By fluorescence microscopy, localization of the high-affinity BODIPY-PSMA conjugate was found in the cell membrane at early time points and also in subcellular compartments at later time points. In summary, a high-affinity BODIPY-PSMA conjugate has been identified as a suitable candidate for the development of PSMA-specific dual-imaging agents.
Collapse
Affiliation(s)
- Tobias Stemler
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Caroline Hoffmann
- Department of Biophysical ChemistrySaarland UniversityCampus B2 266123SaarbrückenGermany
| | - Ina M. Hierlmeier
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Stephan Maus
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Elmar Krause
- Department of Cellular NeurophysiologyCenter for Integrative Physiology and Molecular Medicine (CIPMM)Saarland UniversityKirrbergerstrasse66421HomburgGermany
| | - Samer Ezziddin
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Gregor Jung
- Department of Biophysical ChemistrySaarland UniversityCampus B2 266123SaarbrückenGermany
| | - Mark D. Bartholomä
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| |
Collapse
|
10
|
Luciano MP, Dingle I, Nourian S, Schnermann MJ. Preferential Light-Chain Labeling of Native Monoclonal Antibodies Improves the Properties of Fluorophore Conjugates. Tetrahedron Lett 2021; 75. [PMID: 34321699 DOI: 10.1016/j.tetlet.2021.153211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Site specific labeling methods have significant potential to enhance the properties of antibody conjugates. While studied extensively in the context of antibody-drug conjugates (ADCs), few studies have examined the impact of homogenous labeling on the properties of antibody-fluorophore conjugates (AFCs). We report the application of pentafluorophenyl (PFP) esters, which had previously been shown to be reasonably selective for K188 of the kappa light chain of human IGG antibodies, toward producing AFCs. We show that simple replacement of N-hydroxy succinimide (NHS) with PFP dramatically increases the light-chain specificity of near-infrared (NIR) AFCs. Comparing the properties of AFCs labeled using NHS and PFP-activated esters reveals that the latter exhibits reduced aggregation and improved brightness, both in vitro and in vivo. Overall, the use of PFP esters provides a remarkably simple approach to provide selectively labeled antibodies with improved properties.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
11
|
Joo JI, Lim SW, Oh BY. Prognostic Impact of Carcinoembryonic Antigen Levels in Rectal Cancer Patients Who Had Received Neoadjuvant Chemoradiotherapy. Ann Coloproctol 2021; 37:179-185. [PMID: 33971705 PMCID: PMC8273711 DOI: 10.3393/ac.2020.11.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/27/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Carcinoembryonic antigen (CEA) is a useful marker for rectal cancer. The aim of this study was to investigate the prognostic impact of CEA level according to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer patients who underwent radical surgery. METHODS A total of 245 patients with rectal cancer who underwent radical surgery were retrospectively evaluated. Serum CEA level was measured preoperatively and postoperatively. We compared survival outcomes based on CEA level before and after surgery according to nCRT. RESULTS Of the 245 patients, elevation of CEA level was observed preoperatively in 79 and postoperatively in 30, respectively. Eighty-seven (35.5%) patients received nCRT, and elevated CEA level was a significant prognostic factor both before and after surgery. In patients who had not received nCRT, an elevated CEA level was a significant prognostic factor before surgery but was not significant after surgery. In a multivariate analysis for prognostic factors, elevation of preoperative CEA level was an independent prognostic factor of disease-free survival (DFS) regardless of nCRT. Postoperative CEA level was an independent prognostic factor of DFS in patients who had received nCRT but was not a factor in patients who had not received nCRT. CONCLUSION Serum CEA level was an independent prognostic factor both preoperatively and postoperatively in rectal cancer patients who had received nCRT.
Collapse
Affiliation(s)
- Jung Il Joo
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sang Woo Lim
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bo Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
12
|
Hollandsworth HM, Turner MA, Hoffman RM, Bouvet M. A review of tumor-specific fluorescence-guided surgery for colorectal cancer. Surg Oncol 2021; 36:84-90. [PMID: 33316684 PMCID: PMC7855598 DOI: 10.1016/j.suronc.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The present study reviews the use of tumor-specific antibodies conjugated to fluorescent dyes in preclinical and clinical studies to enhance visualization of primary tumors and metastases for fluorescence-guided surgery (FGS) in colorectal cancer (CRC). A search strategy was developed using the peer-reviewed National Center for Biotechnology Information (NCBI) database on PubMed. Studies using tumor-specific fluorescence imaging and FGS techniques on murine models of colorectal cell lines or patient-derived orthotopic xenograft (PDOX) colorectal cancer are reviewed. A total of 24 articles were identified that met the inclusion criteria, 21 preclinical and 3 clinical trials. The most widely used target antigen in preclinical and clinical trials was carcinoembryonic antigen (CEA). Mouse studies and clinical studies have demonstrated that the use of FGS in CRC can aid in decreased residual tumor and decreased rates of recurrence. As the mainstay of colorectal cancer treatment is surgery, the addition of intraoperative fluorescence imaging can help locate tumor margins, visualize occult micro-metastases, drive surgical decision making and improve patient outcomes.
Collapse
Affiliation(s)
- Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Michael A Turner
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; AntiCancer Inc., San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA; Moores Cancer Center, University of California San Diego, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
13
|
Debie P, Declerck NB, van Willigen D, Huygen CM, De Sloovere B, Mateusiak L, Bridoux J, Puttemans J, Devoogdt N, van Leeuwen FWB, Hernot S. The Design and Preclinical Evaluation of a Single-Label Bimodal Nanobody Tracer for Image-Guided Surgery. Biomolecules 2021; 11:biom11030360. [PMID: 33652977 PMCID: PMC7996797 DOI: 10.3390/biom11030360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
Intraoperative guidance using targeted fluorescent tracers can potentially provide surgeons with real-time feedback on the presence of tumor tissue in resection margins. To overcome the limited depth penetration of fluorescent light, combining fluorescence with SPECT/CT imaging and/or gamma-ray tracing has been proposed. Here, we describe the design and preclinical validation of a novel bimodal nanobody-tracer, labeled using a “multifunctional single attachment point” (MSAP) label, integrating a Cy5 fluorophore and a diethylenetriaminepentaacetic acid (DTPA) chelator into a single structure. After conjugation of the bimodal MSAP to primary amines of the anti-HER2 nanobody 2Rs15d and 111In-labeling of DTPA, the tracer’s characteristics were evaluated in vitro. Subsequently, its biodistribution and tumor targeting were assessed by SPECT/CT and fluorescence imaging over 24 h. Finally, the tracer’s ability to identify small, disseminated tumor lesions was investigated in mice bearing HER2-overexpressing SKOV3.IP1 peritoneal lesions. [111In]In-MSAP.2Rs15d retained its affinity following conjugation and remained stable for 24 h. In vivo SPECT/CT and fluorescence images showed specific uptake in HER2-overexpressing tumors with low background. High tumor-to-muscle ratios were obtained at 1h p.i. and remained 19-fold on SPECT/CT and 3-fold on fluorescence images over 24 h. In the intraperitoneally disseminated model, the tracer allowed detection of larger lesions via nuclear imaging, while fluorescence enabled accurate removal of submillimeter lesions. Bimodal nuclear/fluorescent nanobody-tracers can thus be conveniently designed by conjugation of a single-molecule MSAP-reagent carrying a fluorophore and chelator for radioactive labeling. Such tracers hold promise for clinical applications.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Noemi B. Declerck
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Danny van Willigen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University, 2311 Leiden, The Netherlands; (D.v.W.); (F.W.B.v.L.)
| | - Celine M. Huygen
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Bieke De Sloovere
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Lukasz Mateusiak
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Janik Puttemans
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
| | - Fijs W. B. van Leeuwen
- Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University, 2311 Leiden, The Netherlands; (D.v.W.); (F.W.B.v.L.)
| | - Sophie Hernot
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (P.D.); (N.B.D.); (C.M.H.); (B.D.S.); (L.M.); (J.B.); (J.P.); (N.D.)
- Correspondence: ; Tel.: +32-2477-4991
| |
Collapse
|
14
|
Kwon YD, Byun Y, Kim HK. 18F-labelled BODIPY dye as a dual imaging agent: Radiofluorination and applications in PET and optical imaging. Nucl Med Biol 2021; 93:22-36. [PMID: 33276283 DOI: 10.1016/j.nucmedbio.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Dual Positron emission tomography (PET)/optical imaging techniques have captured scientific interest for clinical applications due to their potential as an effective tool for visualizing in vivo information such as disease processes. 4,4'-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye has been considered an ideal platform strategy to achieve dual PET/optical imaging due to its photochemical nature and chemical structure. Various radiofluorination methods to prepare [18F]BODIPY dye have been developed and established, ranging from nucleophilic substitution reactions to isotope exchange reactions. In addition, 18F-labelled BODIPY dyes for biologically important targets have been used for in vivo and ex vivo studies. These studies proved the practicality of [18F]BODIPY dyes as a hybrid PET/optical imaging probe. In this review, recent advances in the synthesis and biological evaluation of 18F-labelled BODIPY dyes are described.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
15
|
Renard E, Collado Camps E, Canovas C, Kip A, Gotthardt M, Rijpkema M, Denat F, Goncalves V, van Lith SAM. Site-Specific Dual-Labeling of a VHH with a Chelator and a Photosensitizer for Nuclear Imaging and Targeted Photodynamic Therapy of EGFR-Positive Tumors. Cancers (Basel) 2021; 13:428. [PMID: 33498707 PMCID: PMC7865570 DOI: 10.3390/cancers13030428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Variable domains of heavy chain only antibodies (VHHs) are valuable agents for application in tumor theranostics upon conjugation to both a diagnostic probe and a therapeutic compound. Here, we optimized site-specific conjugation of the chelator DTPA and the photosensitizer IRDye700DX to anti-epidermal growth factor receptor (EGFR) VHH 7D12, for applications in nuclear imaging and photodynamic therapy. 7D12 was site-specifically equipped with bimodal probe DTPA-tetrazine-IRDye700DX using the dichlorotetrazine conjugation platform. Binding, internalization and light-induced toxicity of DTPA-IRDye700DX-7D12 were determined using EGFR-overexpressing A431 cells. Finally, ex vivo biodistribution of DTPA-IRDye700DX-7D12 in A431 tumor-bearing mice was performed, and tumor homing was visualized with SPECT and fluorescence imaging. DTPA-IRDye700DX-7D12 was retrieved with a protein recovery of 43%, and a degree of labeling of 0.56. Spectral properties of the IRDye700DX were retained upon conjugation. 111In-labeled DTPA-IRDye700DX-7D12 bound specifically to A431 cells, and they were effectively killed upon illumination. DTPA-IRDye700DX-7D12 homed to A431 xenografts in vivo, and this could be visualized with both SPECT and fluorescence imaging. In conclusion, the dichlorotetrazine platform offers a feasible method for site-specific dual-labeling of VHH 7D12, retaining binding affinity and therapeutic efficacy. The flexibility of the described approach makes it easy to vary the nature of the probes for other combinations of diagnostic and therapeutic compounds.
Collapse
Affiliation(s)
- Emma Renard
- Institute de Chimie Moléculaire de l’Université de Bourgogne ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, 21000 Dijon, France; (E.R.); (C.C.); (F.D.); (V.G.)
| | - Estel Collado Camps
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands;
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (A.K.); (M.G.); (M.R.)
| | - Coline Canovas
- Institute de Chimie Moléculaire de l’Université de Bourgogne ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, 21000 Dijon, France; (E.R.); (C.C.); (F.D.); (V.G.)
| | - Annemarie Kip
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (A.K.); (M.G.); (M.R.)
| | - Martin Gotthardt
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (A.K.); (M.G.); (M.R.)
| | - Mark Rijpkema
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (A.K.); (M.G.); (M.R.)
| | - Franck Denat
- Institute de Chimie Moléculaire de l’Université de Bourgogne ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, 21000 Dijon, France; (E.R.); (C.C.); (F.D.); (V.G.)
| | - Victor Goncalves
- Institute de Chimie Moléculaire de l’Université de Bourgogne ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, 21000 Dijon, France; (E.R.); (C.C.); (F.D.); (V.G.)
| | - Sanne A. M. van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (A.K.); (M.G.); (M.R.)
| |
Collapse
|
16
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine Conjugate-Based Biomedical Imaging Probes. Adv Healthc Mater 2020; 9:e2001327. [PMID: 33000915 DOI: 10.1002/adhm.202001327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Cyanine is a class of fluorescent dye with meritorious fluorescence properties and has motivated numerous researchers to explore its imaging capabilities by miscellaneous structural modification and functionalization strategies. The covalent conjugation with other functional molecules represents a distinctive design strategy and has shown immense potential in both basic and clinical research. This review article summarizes recent achievements in cyanine conjugate-based probes for biomedical imaging. Particular attention is paid to the conjugation with targeting warheads and other contrast agents for targeted fluorescence imaging and multimodal imaging, respectively. Additionally, their clinical potential in cancer diagnostics is highlighted and some concurrent impediments for clinical translation are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Yiming Zhou
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Xiuli Yue
- School of Environment Harbin Institute of Technology Harbin 150090 China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
17
|
Bajic D, Chester K, Neri D. An Antibody-Tumor Necrosis Factor Fusion Protein that Synergizes with Oxaliplatin for Treatment of Colorectal Cancer. Mol Cancer Ther 2020; 19:2554-2563. [PMID: 32999042 DOI: 10.1158/1535-7163.mct-19-0729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/18/2019] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
We have cloned and characterized a novel fusion protein (Sm3E-TNF), consisting of the mAb, S 6m3E, in single-chain Fv fragment format, fused to murine TNF. The protein, which was expressed in mammalian cells and purified as a noncovalent stable homotrimer, bound to the cognate carcinoembryonic antigen (CEA) and retained TNF activity. A quantitative biodistribution experiment, performed in immunocompetent mice with CT26 colon carcinomas transfected with human CEA, revealed that Sm3E-TNF was able to preferentially accumulate in the tumors with excellent selectivity (tumor:blood ratio = 56:1, 24 hours after intravenous administration). The fusion protein mediated a rapid hemorrhagic necrosis of a large portion of the tumor mass, but a rim survived and eventually regrew. Surprisingly, the combination of Sm3E-TNF with 5-fluorouracil led to a reduction of therapeutic activity, while a combination with oxaliplatin led to a prolonged stabilization, with complete tumor eradication in 40% of treated mice. These therapy results were confirmed in a second immunocompetent mouse model of colorectal cancer (CEA-transfected C51 tumors) and provide a rationale for the possible clinical use of oxaliplatin in combination with fully human antibody-TNF fusions.
Collapse
Affiliation(s)
- Davor Bajic
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kerry Chester
- UCL Cancer Institute, University College London, London, England, United Kingdom
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
18
|
Morlandt AB, Moore LS, Johnson AO, Smith CM, Stevens TM, Warram JM, MacDougall M, Rosenthal EL, Amm HM. Fluorescently Labeled Cetuximab-IRDye800 for Guided Surgical Excision of Ameloblastoma: A Proof of Principle Study. J Oral Maxillofac Surg 2020; 78:1736-1747. [PMID: 32554066 PMCID: PMC7541684 DOI: 10.1016/j.joms.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Fluorescently labeled epidermal growth factor receptor (EGFR) antibodies have successfully identified microscopic tumors in multiple in vivo models of human cancers with limited toxicity. The present study sought to demonstrate the ability of fluorescently labeled anti-EGFR, cetuximab-IRDye800, to localize to ameloblastoma (AB) tumor cells in vitro and in vivo. MATERIAL AND METHODS EGFR expression in AB cells was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry. Primary AB cells were labeled in vitro with cetuximab-IRDye800 or nonspecific IgG-IRDye800. An in vivo patient-derived xenograft (PDX) model of AB was developed. The tumor tissue from 3 patients was implanted subcutaneously into immunocompromised mice. The mice received an intravenous injection of cetuximab-IRDye800 or IgG-IRDye800 and underwent imaging to detect infrared fluorescence using a Pearl imaging system (LI-COR Biosciences, Lincoln, NE). After resection of the overlying skin, the tumor/background ratios (TBRs) were calculated and statistically analyzed using a paired t test. RESULTS EGFR expression was seen in all AB samples. Tumor-specific labeling was achieved, as evidenced by a positive fluorescence signal from cetuximab-IRDye800 binding to AB cells, with little staining seen in the negative controls treated with IgG-IRDye800. In the animal PDX model, imaging revealed that the TBRs produced by cetuximab were significantly greater than those produced by IgG on days 7 to 14 for AB-20 tumors. After skin flap removal to simulate a preresection state, the TBRs increased with cetuximab and were significantly greater than the TBRs with the IgG control for PDX tumors derived from the 3 patients with AB. The excised tissues were embedded in paraffin and examined to confirm the presence of tumor. CONCLUSIONS Fluorescently labeled anti-EGFR demonstrated specificity for AB cells and PDX tumors. The present study is the first report of tumor-specific, antibody-based imaging of odontogenic tumors, of which AB is one of the most clinically aggressive. We expect this technology will ultimately assist surgeons treating AB by helping to accurately assess the tumor margins during surgery, leading to improved long-term local tumor control and less surgical morbidity.
Collapse
Affiliation(s)
- Anthony B Morlandt
- Associate Professor and Section Chief, Division of Oral Oncology, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsay S Moore
- Resident, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Aubrey O Johnson
- Student, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Caris M Smith
- Researcher II, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Todd M Stevens
- Associate Professor, Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason M Warram
- Associate Professor, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary MacDougall
- Dean and Professor, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Eben L Rosenthal
- Professor, Division of Otolaryngology - Head and Neck Surgery, and Associate Director, Department of Clinical Care, Stanford Cancer Institute, Stanford University, Stanford, CA
| | - Hope M Amm
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
19
|
de Gooyer JM, Elekonawo FMK, Bos DL, van der Post RS, Pèlegrin A, Framery B, Cailler F, Vahrmeijer AL, de Wilt JHW, Rijpkema M. Multimodal CEA-Targeted Image-Guided Colorectal Cancer Surgery using 111In-Labeled SGM-101. Clin Cancer Res 2020; 26:5934-5942. [PMID: 32900795 DOI: 10.1158/1078-0432.ccr-20-2255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/09/2022]
Abstract
PURPOSE Intraoperative image guidance may aid in clinical decision-making during surgical treatment of colorectal cancer. We developed the dual-labeled carcinoembryonic antigen-targeting tracer, [111In]In-DTPA-SGM-101, for pre- and intraoperative imaging of colorectal cancer. Subsequently, we investigated the tracer in preclinical biodistribution and multimodal image-guided surgery studies, and assessed the clinical feasibility on patient-derived colorectal cancer samples, paving the way for rapid clinical translation. EXPERIMENTAL DESIGN SGM-101 was conjugated with p-isothiocyanatobenzyl-diethylenetriaminepentaacetic acid (DTPA) and labeled with Indium-111 (111In). The biodistribution of 3, 10, 30, and 100 μg [111In]In-DTPA-SGM-101 was assessed in a dose escalation study in BALB/c nude mice with subcutaneous LS174T human colonic tumors, followed by a study to determine the optimal timepoint for imaging. Mice with intraperitoneal LS174T tumors underwent micro-SPECT/CT imaging and fluorescence image-guided resection. In a final translational experiment, we incubated freshly resected human tumor specimens with the tracer and assessed the tumor-to-adjacent tissue ratio of both signals. RESULTS The optimal protein dose of [111In]In-DTPA-SGM-101 was 30 μg (tumor-to-blood ratio, 5.8 ± 1.1) and the optimal timepoint for imaging was 72 hours after injection (tumor-to-blood ratio, 5.1 ± 1.0). In mice with intraperitoneal tumors, [111In]In-DTPA-SGM-101 enabled preoperative SPECT/CT imaging and fluorescence image-guided resection. After incubation of human tumor samples, overall fluorescence and radiosignal intensities were higher in tumor areas compared with adjacent nontumor tissue (P < 0.001). CONCLUSIONS [111In]In-DTPA-SGM-101 showed specific accumulation in colorectal tumors, and enabled micro-SPECT/CT imaging and fluorescence image-guided tumor resection. Thus, [111In]In-DTPA-SGM-101 could be a valuable tool for preoperative SPECT/CT imaging and intraoperative radio-guided localization and fluorescence image-guided resection of colorectal cancer.
Collapse
Affiliation(s)
- Jan Marie de Gooyer
- Department of Radiology, Nuclear Medicine & Anatomy, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands. .,Department of Surgical Oncology, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Fortuné M K Elekonawo
- Department of Radiology, Nuclear Medicine & Anatomy, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands.,Department of Surgical Oncology, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Desirée L Bos
- Department of Radiology, Nuclear Medicine & Anatomy, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Johannes H W de Wilt
- Department of Surgical Oncology, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Mark Rijpkema
- Department of Radiology, Nuclear Medicine & Anatomy, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| |
Collapse
|
20
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
Ex Vivo Assessment of Tumor-Targeting Fluorescent Tracers for Image-Guided Surgery. Cancers (Basel) 2020; 12:cancers12040987. [PMID: 32316388 PMCID: PMC7226456 DOI: 10.3390/cancers12040987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023] Open
Abstract
Image-guided surgery can aid in achieving complete tumor resection. The development and assessment of tumor-targeted imaging probes for near-infrared fluorescence image-guided surgery relies mainly on preclinical models, but the translation to clinical use remains challenging. In the current study, we introduce and evaluate the application of a dual-labelled tumor-targeting antibody for ex vivo incubation of freshly resected human tumor specimens and assessed the tumor-to-adjacent tissue ratio of the detectable signals. Immediately after surgical resection, peritoneal tumors of colorectal origin were placed in cold medium. Subsequently, tumors were incubated with 111In-DOTA-hMN-14-IRDye800CW, an anti-carcinoembryonic antigen (CEA) antibody with a fluorescent and radioactive label. Tumors were then washed, fixed, and analyzed for the presence and location of tumor cells, CEA expression, fluorescence, and radioactivity. Twenty-six of 29 tumor samples obtained from 10 patients contained malignant cells. Overall, fluorescence intensity was higher in tumor areas compared to adjacent non-tumor tissue parts (p < 0.001). The average fluorescence tumor-to-background ratio was 11.8 ± 9.1:1. A similar ratio was found in the autoradiographic analyses. Incubation with a non-specific control antibody confirmed that tumor targeting of our tracer was CEA-specific. Our results demonstrate the feasibility of this tracer for multimodal image-guided surgery. Furthermore, this ex vivo incubation method may help to bridge the gap between preclinical research and clinical application of new agents for radioactive, near infrared fluorescence or multimodal imaging studies.
Collapse
|
22
|
Barth CW, Gibbs SL. Fluorescence Image-Guided Surgery - a Perspective on Contrast Agent Development. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222:112220J. [PMID: 32255887 PMCID: PMC7115043 DOI: 10.1117/12.2545292] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past several decades, a number of novel fluorescence image-guided surgery (FGS) contrast agents have been under development, with many in clinical translation and undergoing clinical trials. In this review, we have identified and summarized the contrast agents currently undergoing clinical translation. In total, 39 novel FGS contrast agents are being studied in 85 clinical trials. Four FGS contrast agents are currently being studied in phase III clinical trials and are poised to reach FDA approval within the next two to three years. Among all novel FGS contrast agents, a wide variety of probe types, targeting mechanisms, and fluorescence properties exists. Clinically available FGS imaging systems have been developed for FDA approved FGS contrast agents, and thus further clinical development is required to yield FGS imaging systems tuned for the variety of contrast agents in the clinical pipeline. Additionally, study of current FGS contrast agents for additional disease types and development of anatomy specific contrast agents is required to provide surgeons FGS tools for all surgical specialties and associated comorbidities. The work reviewed here represents a significant effort from many groups and further development of this promising technology will have an enormous impact on surgical outcomes across all specialties.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
23
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
24
|
Yazaki PJ, Lwin TM, Minnix M, Li L, Sherman A, Molnar J, Miller A, Frankel P, Chea J, Poku E, Bowles N, Hoffman RM, Shively JE, Bouvet M. Improved antibody-guided surgery with a near-infrared dye on a pegylated linker for CEA-positive tumors. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31254333 PMCID: PMC6978469 DOI: 10.1117/1.jbo.24.6.066012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 05/09/2023]
Abstract
Real-time intraoperative image-guided cancer surgery promises to improve oncologic outcomes. Tumor-specific antibodies conjugated with near-infrared (NIR) fluorophores have demonstrated the potential to enhance visualization of solid tumor margins and metastatic disease; however, multiple challenges remain, including improvement in probe development for clinical utility. We have developed an NIR-IR800 dye on a PEGylated linker (sidewinder) conjugated to the humanized anti-carcinoembryonic antigen (CEA) antibody (M5A) with extended in vivo serum and tumor persistence. The anti-CEA M5A-sidewinder has a high dye-to-antibody ratio (average of 7 per antibody) that allows, in an orthotopic implanted human pancreatic cancer mouse model increased tumor fluorescence, higher tumor-to-background ratio and extends the surgical scheduling window compared to current antibody dye conjugates. These preclinical results demonstrate the potential of this probe for fluorescence-guided surgery of CEA-positive gastrointestinal cancers.
Collapse
Affiliation(s)
- Paul J. Yazaki
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
- Address all correspondence to Paul J. Yazaki, E-mail:
| | - Thinzar M. Lwin
- University of California San Diego, Department of Surgery, La Jolla, California, United States
| | - Megan Minnix
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Lin Li
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Anakim Sherman
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Justin Molnar
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Aaron Miller
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Paul Frankel
- Beckman Research Institute, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, United States
| | - Junie Chea
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Erasmus Poku
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Nicole Bowles
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Robert M. Hoffman
- University of California San Diego, Department of Surgery, La Jolla, California, United States
- AntiCancer, Inc., San Diego, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
| | - John E. Shively
- Beckman Research Institute, Diabetes Metabolism Research Institute, Department of Molecular Imaging and Therapy, City of Hope, Duarte, California, United States
| | - Michael Bouvet
- University of California San Diego, Department of Surgery, La Jolla, California, United States
- VA San Diego Healthcare System, San Diego, California, United States
| |
Collapse
|
25
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Hernandez Vargas S, Ghosh SC, Azhdarinia A. New Developments in Dual-Labeled Molecular Imaging Agents. J Nucl Med 2019; 60:459-465. [PMID: 30733318 DOI: 10.2967/jnumed.118.213488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative detection of tumors has had a profound impact on how cancer surgery is performed and addresses critical unmet needs in surgical oncology. Tumor deposits, margins, and residual cancer can be imaged through the use of fluorescent contrast agents during surgical procedures to complement visual and tactile guidance. The combination of fluorescent and nuclear contrast into a multimodality agent builds on these capabilities by adding quantitative, noninvasive nuclear imaging capabilities to intraoperative imaging. This review focuses on new strategies for the development and evaluation of targeted dual-labeled molecular imaging agents while highlighting the successful first-in-human application of this technique.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sukhen C Ghosh
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ali Azhdarinia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
27
|
Debie P, Vanhoeij M, Poortmans N, Puttemans J, Gillis K, Devoogdt N, Lahoutte T, Hernot S. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model. Mol Imaging Biol 2019; 20:361-367. [PMID: 29090412 DOI: 10.1007/s11307-017-1134-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. PROCEDURES 0.5 × 106 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. RESULTS Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. CONCLUSIONS This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.
| | - Marian Vanhoeij
- Department of Oncological Surgery, UZ Brussel, Brussels, Belgium
| | | | - Janik Puttemans
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| | - Kris Gillis
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.,Department of Cardiology, UZ Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| | - Tony Lahoutte
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium.,Department of Nuclear Medicine, UZBrussel, Brussels, Belgium
| | - Sophie Hernot
- Laboratory for In vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laabeeklaan 103, 1090, Jette, Brussels, Belgium
| |
Collapse
|
28
|
Tsai WK, Zettlitz KA, Tavaré R, Kobayashi N, Reiter RE, Wu AM. Dual-Modality ImmunoPET/Fluorescence Imaging of Prostate Cancer with an Anti-PSCA Cys-Minibody. Am J Cancer Res 2018; 8:5903-5914. [PMID: 30613270 PMCID: PMC6299441 DOI: 10.7150/thno.27679] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Inadequate diagnostic methods for prostate cancer lead to over- and undertreatment, and the inability to intraoperatively visualize positive margins may limit the success of surgical resection. Prostate cancer visualization could be improved by combining the complementary modalities of immuno-positron emission tomography (immunoPET) for preoperative disease detection, and fluorescence imaging-guided surgery (FIGS) for real-time intraoperative tumor margin identification. Here, we report on the evaluation of dual-labeled humanized anti-prostate stem cell antigen (PSCA) cys-minibody (A11 cMb) for immunoPET/fluorescence imaging in subcutaneous and orthotopic prostate cancer models. Methods: A11 cMb was site-specifically conjugated with the near-infrared fluorophore Cy5.5 and radiolabeled with 124I or 89Zr. 124I-A11 cMb-Cy5.5 was used for successive immunoPET/fluorescence imaging of prostate cancer xenografts expressing high or moderate levels of PSCA (22Rv1-PSCA and PC3-PSCA). 89Zr-A11 cMb-Cy5.5 dual-modality imaging was evaluated in an orthotopic model. Ex vivo biodistribution at 24 h was used to confirm the uptake values, and tumors were visualized by post-mortem fluorescence imaging. Results: A11 cMb-Cy5.5 retained low nanomolar affinity for PSCA-positive cells. Conjugation conditions were established (dye-to-protein ratio of 0.7:1) that did not affect the biodistribution, pharmacokinetics, or clearance of A11 cMb. ImmunoPET using dual-labeled 124I-A11 cMb-Cy5.5 showed specific targeting to both 22Rv1-PSCA and PC3-PSCA s.c. xenografts in nude mice. Ex vivo biodistribution confirmed specific uptake to PSCA-expressing tumors with 22Rv1-PSCA:22Rv1 and PC3-PSCA:PC3 ratios of 13:1 and 5.6:1, respectively. Consistent with the immunoPET, fluorescence imaging showed a strong signal from both 22Rv1-PSCA and PC3-PSCA tumors compared with non-PSCA expressing tumors. In an orthotopic model, 89Zr-A11 cMb-Cy5.5 immunoPET was able to detect intraprostatically implanted 22Rv1-PSCA cells. Importantly, fluorescence imaging clearly distinguished the prostate tumor from surrounding seminal vesicles. Conclusion: Dual-labeled A11 cMb specifically visualized PSCA-positive tumor by successive immunoPET/fluorescence, which can potentially be translated for preoperative whole-body prostate cancer detection and intraoperative surgical guidance in patients.
Collapse
|
29
|
Zhang Y, Zhu X, Liu L, Hong S, Zuo Z, Wang P, Su D. Synthesis and In Vitro Study of a Dual-Mode Probe Targeting Integrin α vβ 3. NANOSCALE RESEARCH LETTERS 2018; 13:281. [PMID: 30203331 PMCID: PMC6134723 DOI: 10.1186/s11671-018-2695-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 06/01/2023]
Abstract
Malignant tumors constitute a serious disease that threaten human life, and early diagnosis and metastasis prediction are critical to the choice of treatment plan and the timing of treatment. Integrin αvβ3, which has received broad attention as a molecular marker of the tumor neovasculature, is an important target for monitoring tumorigenesis and progression in molecular imaging research. This study reports a magnetic resonance (MR)/fluorescence dual-mode molecular probe, cRGD-Gd-Cy5.5, which targets the integrin αvβ3 receptor and uses liposomes as carrier. The obtained nanoprobe had a size of 60.08 ± 0.45 nm, with good dispersion in water, a uniform distribution of sizes, desirable stability, and high relaxivity. Its r1 relaxation rate was 10.515 mM-1 s-1, much higher than that of other Gd chelates in clinical use. The probe showed no cytotoxicity at the tested concentrations in vitro, and its ability to target A549 cells and SUNE-1-5-8F cells was preliminarily evaluated through in vitro fluorescence imaging and MR imaging. The results demonstrated that the cRGD-Gd-Cy5.5 nanoprobe had good characteristics, showing desirable stability and biosafety, a high T1 relaxation rate, and strong targeting and binding to tumors with high expression of integrin αvβ3. Therefore, cRGD-Gd-Cy5.5 is a promising agent for the visual monitoring of tumor metastasis.
Collapse
Affiliation(s)
- Yali Zhang
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Xuna Zhu
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Lidong Liu
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Sen Hong
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhichao Zuo
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Wang
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Danke Su
- Departments of Radiology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|
30
|
Volpe A, Kurtys E, Fruhwirth GO. Cousins at work: How combining medical with optical imaging enhances in vivo cell tracking. Int J Biochem Cell Biol 2018; 102:40-50. [PMID: 29960079 PMCID: PMC6593261 DOI: 10.1016/j.biocel.2018.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Microscopy and medical imaging are related in their exploitation of electromagnetic waves, but were developed to satisfy differing needs, namely to observe small objects or to look inside subjects/objects, respectively. Together, these techniques can help elucidate complex biological processes and better understand health and disease. A current major challenge is to delineate mechanisms governing cell migration and tissue invasion in organismal development, the immune system and in human diseases such as cancer where the spatiotemporal tracking of small cell numbers in live animal models is extremely challenging. Multi-modal multi-scale in vivo cell tracking integrates medical and optical imaging. Fuelled by basic research in cancer biology and cell-based therapeutics, it has been enabled by technological advances providing enhanced resolution, sensitivity and multiplexing capabilities. Here, we review which imaging modalities have been successfully used for in vivo cell tracking and how this challenging task has benefitted from combining macroscopic with microscopic techniques.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH, London, UK
| | - Ewelina Kurtys
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH, London, UK
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH, London, UK.
| |
Collapse
|
31
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
32
|
Hekman MC, Rijpkema M, Muselaers CH, Oosterwijk E, Hulsbergen-Van de Kaa CA, Boerman OC, Oyen WJ, Langenhuijsen JF, Mulders PF. Tumor-targeted Dual-modality Imaging to Improve Intraoperative Visualization of Clear Cell Renal Cell Carcinoma: A First in Man Study. Theranostics 2018; 8:2161-2170. [PMID: 29721070 PMCID: PMC5928878 DOI: 10.7150/thno.23335] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Intraoperative imaging with antibodies labeled with both a radionuclide for initial guidance and a near-infrared dye for adequate tumor delineation may overcome the main limitation of fluorescence imaging: the limited penetration depth of light in biological tissue. In this study, we demonstrate the feasibility and safety of intraoperative dual-modality imaging with the carbonic anhydrase IX (CAIX)-targeting antibody 111In-DOTA-girentuximab-IRDye800CW in clear cell renal cell carcinoma (ccRCC) patients. Methods: A phase I protein dose escalation study was performed in patients with a primary renal mass who were scheduled for surgery. 111In-DOTA-girentuximab-IRDye800CW (5, 10, 30, or 50 mg, n=3 ccRCC patients per dose level) was administered intravenously and after 4 days SPECT/CT imaging was performed. Seven days after antibody injection, surgery was performed with the use of a gamma probe and near-infrared fluorescence camera. Results: In total, fifteen patients were included (12 ccRCC, 3 CAIX-negative tumors). No study-related serious adverse events were observed. All ccRCC were visualized by SPECT/CT and localized by intraoperative gamma probe detection (mean tumor-to-normal kidney (T:N) ratio 2.5 ± 0.8), while the T:N ratio was 1.0 ± 0.1 in CAIX-negative tumors. ccRCC were hyperfluorescent at all protein doses and fluorescence imaging could be used for intraoperative tumor delineation, assessment of the surgical cavity and detection of (positive) surgical margins. The radiosignal was crucial for tumor localization in case of overlying fat tissue. Conclusion: This first in man study shows that tumor-targeted dual-modality imaging using 111In-DOTA-girentuximab-IRDye800CW is safe and can be used for intraoperative guidance of ccRCC resection.
Collapse
|
33
|
Boogerd LSF, Hoogstins CES, Schaap DP, Kusters M, Handgraaf HJM, van der Valk MJM, Hilling DE, Holman FA, Peeters KCMJ, Mieog JSD, van de Velde CJH, Farina-Sarasqueta A, van Lijnschoten I, Framery B, Pèlegrin A, Gutowski M, Nienhuijs SW, de Hingh IHJT, Nieuwenhuijzen GAP, Rutten HJT, Cailler F, Burggraaf J, Vahrmeijer AL. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol 2018; 3:181-191. [PMID: 29361435 DOI: 10.1016/s2468-1253(17)30395-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumour-targeted fluorescence imaging has the potential to advance current practice of oncological surgery by selectively highlighting malignant tissue during surgery. Carcinoembryonic antigen (CEA) is overexpressed in 90% of colorectal cancers and is a promising target for colorectal cancer imaging. We aimed to assess the tolerability of SGM-101, a fluorescent anti-CEA monoclonal antibody, and to investigate the feasibility to detect colorectal cancer with intraoperative fluorescence imaging. METHODS We did an open-label, pilot study in two medical centres in the Netherlands. In the dose-escalation cohort, we included patients (aged ≥18 years) with primary colorectal cancer with increased serum CEA concentrations (upper limit of normal of ≥3 ng/mL) since diagnosis, who were scheduled for open or laparoscopic tumour resection. In the expansion cohort, we included patients (aged ≥18 years) with recurrent or peritoneal metastases of colorectal cancer, with increasing serum concentrations of CEA since diagnosis, who were scheduled for open surgical resection. We did not mask patients, investigators, or anyone from the health-care team. We assigned patients using a 3 + 3 dose design to 5 mg, 7·5 mg, or 10 mg of SGM-101 in the dose-escalation cohort. In the expansion cohort, patients received a dose that was considered optimal at that moment of the study but not higher than the dose used in the dose-escalation cohort. SGM-101 was administered intravenously for 30 min to patients 2 or 4 days before surgery. Intraoperative imaging was done to identify near-infrared fluorescent lesions, which were resected and assessed for fluorescence. The primary outcome was tolerability and safety of SGM-101, assessed before administration and continued up to 12 h after dosing, on the day of surgery, the first postoperative day, and follow-up visits at the day of discharge and the first outpatient clinic visit. Secondary outcomes were effectiveness of SGM-101 for detection of colorectal cancer, assessed by tumour-to-background ratios (TBR); concordance between fluorescent signal and tumour status of resected tissue; and diagnostic accuracy in both cohorts. This trial is registered with the Nederlands Trial Register, number NTR5673, and ClinicalTrials.gov, number NCT02973672. FINDINGS Between January, 2016, and February, 2017, 26 patients (nine in the dose-escalation cohort and 17 in the expansion cohort) were included in this study. SGM-101 did not cause any treatment-related adverse events, although three possibly related mild adverse events were reported in three (33%) of nine patients in the dose-escalation cohort and five were reported in three (18%) of 17 patients in the expansion cohort. Five moderate adverse events were reported in three (18%) patients in the expansion cohort, but they were deemed unrelated to SGM-101. No changes in vital signs, electrocardiogram, or laboratory results were found after administration of the maximum dose of 10 mg of SGM-101 in both cohorts. A dose of 10 mg, administered 4 days before surgery, showed the highest TBR (mean TBR 6·10 [SD 0·42] in the dose-escalation cohort). In the expansion cohort, 19 (43%) of 43 lesions were detected using fluorescence imaging and were not clinically suspected before fluorescent detection, which changed the treatment strategy in six (35%) of 17 patients. Sensitivity was 98%, specificity was 62%, and accuracy of fluorescence intensity was 84% in the expansion cohort. INTERPRETATION This study presents the first clinical use of CEA-targeted detection of colorectal cancer and shows that SGM-101 is safe and can influence clinical decision making during the surgical procedure for patients with colorectal cancer. FUNDING Surgimab.
Collapse
Affiliation(s)
- Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dennis P Schaap
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Miranda Kusters
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands; Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | | | | | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Fabian A Holman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Koen C M J Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France; INSERM, U1194, Montpellier, France; Université de Montpellier, Montpellier, France; Institut régional du Cancer de Montpellier, ICM, Montpellier, France
| | - Marian Gutowski
- Institut régional du Cancer de Montpellier, ICM, Montpellier, France
| | - Simon W Nienhuijs
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | | | | | - Harm J T Rutten
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands; GROW, School Of Oncology and Developmental Biology, University of Maastricht, Maastricht, Netherlands
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, Netherlands; Leiden Academic Center for Drug Research, Leiden, Netherlands
| | | |
Collapse
|