1
|
Vaishya R, Amarnath J, Rana P, Botchu R, Vaish A. Role of Positron Emission Tomography (PET) in the Diagnosis of Musculoskeletal Disorders. J Clin Med 2025; 14:3080. [PMID: 40364111 PMCID: PMC12072455 DOI: 10.3390/jcm14093080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Musculoskeletal disorders (MSDs) represent a broad spectrum of diseases and injuries that significantly affect the musculoskeletal system and impose a considerable burden on global public health. This review focuses on the landscape of MSD diagnoses and emphasizes the high prevalence of these conditions. Additionally, it recognizes the inadequacies of conventional evaluation methods, including radiography and subjective assessments, when addressing their complex pathophysiology. It also attempts to highlight the promise of positron emission tomography (PET), which offers quantitative insights into metabolic and molecular activities before structural changes become evident. The review focuses on key radiotracers, specifically, fluorodeoxyglucose ([18F]-FDG) and sodium fluoride ([18F]-NaF), discussing their efficacy in assessing inflammatory processes and bone metabolism. By exploring the abilities of these advanced imaging modalities, we aim to identify the potential of using PET in the early detection and more accurate assessment of MSDs. Furthermore, we provide a brief outline of directions for future research, advocating for the development of novel radiotracers, the integration of multiple imaging modalities, and the application of artificial intelligence in imaging analysis. This review contributes to a deeper understanding of MSDs and underscores the urgent need for innovative diagnostic strategies to improve patient care and outcomes in musculoskeletal health.
Collapse
Affiliation(s)
- Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi 110076, India
| | - Jena Amarnath
- Department of PET Imaging, Indraprastha Apollo Hospitals, New Delhi 110076, India; (J.A.); (P.R.)
| | - Prerana Rana
- Department of PET Imaging, Indraprastha Apollo Hospitals, New Delhi 110076, India; (J.A.); (P.R.)
| | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham B31 2A, UK;
| | - Abhishek Vaish
- Department of Orthopaedic and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi 110076, India;
| |
Collapse
|
2
|
Bai P, Gomm A, Yoo CH, Mondal P, Lobo FM, Meng H, Zhou Y, Xie W, Wey HY, Tanzi RE, Zhang C, Wang C, Lan Y. Development of Carbon-11 Labeled Pyrimidine Derivatives as Novel Positron Emission Tomography (PET) Agents Enabling Brain Sigma-1 Receptor Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414827. [PMID: 40245194 DOI: 10.1002/advs.202414827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/06/2025] [Indexed: 04/19/2025]
Abstract
The sigma-1 receptor (σ1R) is a stress-activated chaperone protein that has emerged as a significant therapeutic target for neurodegenerative disorders. Developing effective positron emission tomography (PET) imaging probes targeting σ1R is crucial for visualizing its distribution and function in the brain, as well as facilitating related drug development. In this study, two novel 11C-labeled PET probes based on the structure of a potent σ1R ligand Lan-0101 are designed and synthesized. PET imaging studies in mice reveal that [11C]CNY-01 exhibits good brain uptake and binding specificity. Subsequent evaluation in non-human primates further demonstrates that [11C]CNY-01 displays favorable brain penetration, slow clearance kinetics, and characteristics of irreversible binding to its target in blockage experiments. To assess the clinical potential of the probe, both in vitro experiments and in vivo PET imaging using [11C]CNY-01 are conducted in Alzheimer's disease (AD) transgenic mouse models. These studies reveal a significant decrease in σ1R expression in the brain under conditions of AD amyloid pathology and microglial activation, highlighting the probe's sensitivity to disease-related receptor changes. This work establishes [11C]CNY-01 as a promising tool for investigating the relationship between σ1R and neurological disorders, potentially advancing the understanding of σ1R's role in disease pathophysiology and therapeutic interventions.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Fleur Marie Lobo
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Hui Meng
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Weiyao Xie
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
3
|
Wang T, Sun N, Ma Y, Zhang S. Recent Advances in the Development of Sigma Receptor (Radio)Ligands and Their Application in Tumors. ACS Pharmacol Transl Sci 2025; 8:951-977. [PMID: 40242588 PMCID: PMC11997895 DOI: 10.1021/acsptsci.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer ranks among the top triumvirate leading causes of human deaths worldwide. The pathological mechanisms are notably intricate, demonstrating proliferative and metastatic capabilities, which complicate therapeutic interventions. The sigma-1 receptor (σ1R) plays a crucial role in tumor survival and migration, while the sigma-2 receptor (σ2R) is intimately associated with tumor proliferation. This review encapsulated the investigation concerning σ1R and σ2R in neoplasms and rigorously summarized the ligands and radio-ligands development and their tumor applications, such as antitumor cell proliferation and PET/SPECT imaging in tumors. A comprehensive classification discussion was undertaken regarding the chemical structures and emphasized the possibility of dual/multitargeted ligands. Ultimately, we discussed the effects of chiral structures and the pharmacological characteristics of ligands on affinity and pharmacokinetic features in vivo, particularly concerning radiopharmaceuticals. This review functions as a beneficial resource, fostering ligand deployment and stimulating the generation of innovative ideas for developing innovative radiopharmaceuticals.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
- School
of Medical Imaging, North Sichuan Medical
College, NanChong 637100, China
- Department
of Nuclear Medicine, Affiliated Hospital
of North Sichuan Medical College, North Sichuan Medical College, NanChong 637000, China
| | - Na Sun
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Yanxi Ma
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Song Zhang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| |
Collapse
|
4
|
Kogan F, Yoon D, Teeter MG, Chaudhari AJ, Hales L, Barbieri M, Gold GE, Vainberg Y, Goyal A, Watkins L. Multimodal positron emission tomography (PET) imaging in non-oncologic musculoskeletal radiology. Skeletal Radiol 2024; 53:1833-1846. [PMID: 38492029 DOI: 10.1007/s00256-024-04640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Musculoskeletal (MSK) disorders are associated with large impacts on patient's pain and quality of life. Conventional morphological imaging of tissue structure is limited in its ability to detect pain generators, early MSK disease, and rapidly assess treatment efficacy. Positron emission tomography (PET), which offers unique capabilities to evaluate molecular and metabolic processes, can provide novel information about early pathophysiologic changes that occur before structural or even microstructural changes can be detected. This sensitivity not only makes it a powerful tool for detection and characterization of disease, but also a tool able to rapidly assess the efficacy of therapies. These benefits have garnered more attention to PET imaging of MSK disorders in recent years. In this narrative review, we discuss several applications of multimodal PET imaging in non-oncologic MSK diseases including arthritis, osteoporosis, and sources of pain and inflammation. We also describe technical considerations and recent advancements in technology and radiotracers as well as areas of emerging interest for future applications of multimodal PET imaging of MSK conditions. Overall, we present evidence that the incorporation of PET through multimodal imaging offers an exciting addition to the field of MSK radiology and will likely prove valuable in the transition to an era of precision medicine.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Daehyun Yoon
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA
| | - Matthew G Teeter
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | - Laurel Hales
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Yael Vainberg
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ananya Goyal
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Lauren Watkins
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Bai P, Bagdasarian FA, Xu Y, Wang Y, Wang Y, Gomm A, Zhou Y, Wu R, Wey HY, Tanzi RE, Zhang C, Lan Y, Wang C. Molecular Imaging of Alzheimer's Disease-Related Sigma-1 Receptor in the Brain via a Novel Ru-Mediated Aromatic 18F-deoxyfluorination Probe. J Med Chem 2024; 67:6207-6217. [PMID: 38607332 DOI: 10.1021/acs.jmedchem.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Frederick A Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
6
|
Knowles LG, Armanious AJ, Peng Y, Welsh WJ, James MH. Recent advances in drug discovery efforts targeting the sigma 1 receptor system: Implications for novel medications designed to reduce excessive drug and food seeking. ADDICTION NEUROSCIENCE 2023; 8:100126. [PMID: 37753198 PMCID: PMC10519676 DOI: 10.1016/j.addicn.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Psychiatric disorders characterized by uncontrolled reward seeking, such as substance use disorders (SUDs), alcohol use disorder (AUD) and some eating disorders, impose a significant burden on individuals and society. Despite their high prevalence and substantial morbidity and mortality rates, treatment options for these disorders remain limited. Over the past two decades, there has been a gradual accumulation of evidence pointing to the sigma-1 receptor (S1R) system as a promising target for therapeutic interventions designed to treat these disorders. S1R is a chaperone protein that resides in the endoplasmic reticulum, but under certain conditions translocates to the plasma membrane. In the brain, S1Rs are expressed in several regions important for reward, and following translocation, they physically associate with several reward-related GPCRs, including dopamine receptors 1 and 2 (D1R and D2R). Psychostimulants, alcohol, as well as palatable foods, all alter expression of S1R in regions important for motivated behavior, and S1R antagonists generally decrease behavioral responses to these rewards. Recent advances in structural modeling have permitted the development of highly-selective S1R antagonists with favorable pharmacokinetic profiles, thus providing a therapeutic avenue for S1R-based medications. Here, we provide an up-to-date overview of work linking S1R with motivated behavior for drugs of abuse and food, as well as evidence supporting the clinical utility of S1R antagonists to reduce their excessive consumption. We also highlight potential challenges associated with targeting the S1R system, including the need for a more comprehensive understanding of the underlying neurobiology and careful consideration of the pharmacological properties of S1R-based drugs.
Collapse
Affiliation(s)
- Liam G. Knowles
- Harpur School of Arts and Sciences, Binghamton University, Vestal, NY, USA
| | - Abanoub J. Armanious
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Youyi Peng
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - William J. Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
7
|
Shen B, Yoon D, Castillo J, Biswal S. A Practical Guide to Sigma-1 Receptor Positron Emission Tomography/Magnetic Resonance Imaging: A New Clinical Molecular Imaging Method to Identify Peripheral Pain Generators in Patients with Chronic Pain. Semin Musculoskelet Radiol 2023; 27:601-617. [PMID: 37935207 PMCID: PMC10629991 DOI: 10.1055/s-0043-1775744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurately identifying the peripheral pain generator in patients with chronic pain remains a major challenge for modern medicine. Millions of patients around the world suffer endlessly from difficult-to-manage debilitating pain because of very limited diagnostic tests and a paucity of pain therapies. To help these patients, we have developed a novel clinical molecular imaging approach, and, in its early stages, it has been shown to accurately identify the exact site of pain generation using an imaging biomarker for the sigma-1 receptor and positron emission tomography/magnetic resonance imaging. We hope the description of the work in this article can help others begin their own pain imaging programs at their respective institutions.
Collapse
Affiliation(s)
- Bin Shen
- Cyclotron Radiochemistry Facility, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Daehyun Yoon
- Department of Radiology, University of California San Francisco School of Medicine, San Francisco, California
| | - Jessa Castillo
- Radiochemistry Facility, University of California San Francisco School of Medicine, San Francisco, California
| | - Sandip Biswal
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
8
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
9
|
Katal S, Taubman K, Han J, Gholamrezanezhad A. Aging Muscles, Myositis, Pain, and Peripheral Neuropathies: PET Manifestations in the Elderly. PET Clin 2023; 18:149-160. [DOI: 10.1016/j.cpet.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Modulation of Secondary Cancer Risks from Radiation Exposure by Sex, Age and Gonadal Hormone Status: Progress, Opportunities and Challenges. J Pers Med 2022; 12:jpm12050725. [PMID: 35629147 PMCID: PMC9146871 DOI: 10.3390/jpm12050725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Available data on cancer secondary to ionizing radiation consistently show an excess (2-fold amount) of radiation-attributable solid tumors in women relative to men. This excess risk varies by organ and age, with the largest sex differences (6- to more than 10-fold) found in female thyroid and breasts exposed between birth until menopause (~50 years old) relative to age-matched males. Studies in humans and animals also show large changes in cell proliferation rates, radiotracer accumulation and target density in female reproductive organs, breast, thyroid and brain in conjunction with physiological changes in gonadal hormones during the menstrual cycle, puberty, lactation and menopause. These sex differences and hormonal effects present challenges as well as opportunities to personalize radiation-based treatment and diagnostic paradigms so as to optimize the risk/benefit ratios in radiation-based cancer therapy and diagnosis. Specifically, Targeted Radionuclide Therapy (TRT) is a fast-expanding cancer treatment modality utilizing radiopharmaceuticals with high avidity to specific molecular tumor markers, many of which are influenced by sex and gonadal hormone status. However, past and present dosimetry studies of TRT agents do not stratify results by sex and hormonal environment. We conclude that cancer management using ionizing radiation should be personalized and informed by the patient sex, age and hormonal status.
Collapse
|
11
|
Wang T, Zhang Y, Zhang X, Chen L, Zheng MQ, Zhang J, Brust P, Deuther-Conrad W, Huang Y, Jia H. Synthesis and characterization of the two enantiomers of a chiral sigma-1 receptor radioligand: (S)-(+)- and (R)-(-)-[18F]FBFP. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Yoon D, Fast AM, Cipriano P, Shen B, Castillo JB, McCurdy CR, Mari Aparici C, Lum D, Biswal S. Sigma-1 Receptor Changes Observed in Chronic Pelvic Pain Patients: A Pilot PET/MRI Study. FRONTIERS IN PAIN RESEARCH 2021; 2:711748. [PMID: 35295458 PMCID: PMC8915714 DOI: 10.3389/fpain.2021.711748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Chronic pelvic pain is a highly prevalent pain condition among women, but identifying the exact cause of pelvic pain remains a significant diagnostic challenge. In this study, we explored a new diagnostic approach with PET/MRI of the sigma-1 receptor, a chaperone protein modulating ion channels for activating nociceptive processes. Methods: Our approach is implemented by a simultaneous PET/MRI scan with a novel radioligand [18F]FTC-146, which is highly specific to the sigma-1 receptor. We recruited 5 chronic pelvic pain patients and 5 healthy volunteers and compared our PET/MRI findings between these two groups. Results: All five patients showed abnormally increased radioligand uptake on PET compared to healthy controls at various organs, including the uterus, vagina, pelvic bowel, gluteus maximus muscle, and liver. However, on MRI, only 2 patients showed abnormalities that could be potentially associated with the pain symptoms. For a subset of patients, the association of pain and the abnormally increased radioligand uptake was further validated by successful pain relief outcomes following surgery or trigger point injections to the identified abnormalities. Conclusion: In this preliminary study, sigma-1 receptor PET/MRI demonstrated potential for identifying abnormalities associated with chronic pelvic pain. Future studies will need to correlate samples with imaging findings to further validate the correlation between S1R distribution and pathologies of chronic pelvic pain. Trial Registration: The clinical trial registration date is June 2, 2018, and the registration number of the study is NCT03195270 (https://clinicaltrials.gov/ct2/show/NCT03556137).
Collapse
Affiliation(s)
- Daehyun Yoon
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Angela M. Fast
- Diagnostic, Molecular and Interventional Radiology, The Mount Sinai Hospital, New York, NY, United States
| | - Peter Cipriano
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bin Shen
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jessa B. Castillo
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Carina Mari Aparici
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Deirdre Lum
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Sandip Biswal
| | - Sandip Biswal
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Deirdre Lum
| |
Collapse
|
13
|
Reyes ST, Deacon RMJ, Guo SG, Altimiras FJ, Castillo JB, van der Wildt B, Morales AP, Park JH, Klamer D, Rosenberg J, Oberman LM, Rebowe N, Sprouse J, Missling CU, McCurdy CR, Cogram P, Kaufmann WE, Chin FT. Effects of the sigma-1 receptor agonist blarcamesine in a murine model of fragile X syndrome: neurobehavioral phenotypes and receptor occupancy. Sci Rep 2021; 11:17150. [PMID: 34433831 PMCID: PMC8387417 DOI: 10.1038/s41598-021-94079-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/21/2021] [Indexed: 11/08/2022] Open
Abstract
Fragile X syndrome (FXS), a disorder of synaptic development and function, is the most prevalent genetic form of intellectual disability and autism spectrum disorder. FXS mouse models display clinically-relevant phenotypes, such as increased anxiety and hyperactivity. Despite their availability, so far advances in drug development have not yielded new treatments. Therefore, testing novel drugs that can ameliorate FXS' cognitive and behavioral impairments is imperative. ANAVEX2-73 (blarcamesine) is a sigma-1 receptor (S1R) agonist with a strong safety record and preliminary efficacy evidence in patients with Alzheimer's disease and Rett syndrome, other synaptic neurodegenerative and neurodevelopmental disorders. S1R's role in calcium homeostasis and mitochondrial function, cellular functions related to synaptic function, makes blarcamesine a potential drug candidate for FXS. Administration of blarcamesine in 2-month-old FXS and wild type mice for 2 weeks led to normalization in two key neurobehavioral phenotypes: open field test (hyperactivity) and contextual fear conditioning (associative learning). Furthermore, there was improvement in marble-burying (anxiety, perseverative behavior). It also restored levels of BDNF, a converging point of many synaptic regulators, in the hippocampus. Positron emission tomography (PET) and ex vivo autoradiographic studies, using the highly selective S1R PET ligand [18F]FTC-146, demonstrated the drug's dose-dependent receptor occupancy. Subsequent analyses also showed a wide but variable brain regional distribution of S1Rs, which was preserved in FXS mice. Altogether, these neurobehavioral, biochemical, and imaging data demonstrates doses that yield measurable receptor occupancy are effective for improving the synaptic and behavioral phenotype in FXS mice. The present findings support the viability of S1R as a therapeutic target in FXS, and the clinical potential of blarcamesine in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Samantha T Reyes
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Robert M J Deacon
- FRAXA-DVI, FRAXA, Santiago, Chile
- IEB, Faculty of Science, University of Chile, Santiago, Chile
- Fraunhofer Chile Research, Center for Systems Biotechnology, Santiago, Chile
| | - Scarlett G Guo
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Francisco J Altimiras
- FRAXA-DVI, FRAXA, Santiago, Chile
- Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile
| | - Jessa B Castillo
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Aimara P Morales
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Klamer
- Anavex Life Sciences Corp., New York, NY, 10019, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Lindsay M Oberman
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nell Rebowe
- Anavex Life Sciences Corp., New York, NY, 10019, USA
| | | | | | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Patricia Cogram
- FRAXA-DVI, FRAXA, Santiago, Chile
- IEB, Faculty of Science, University of Chile, Santiago, Chile
- Fraunhofer Chile Research, Center for Systems Biotechnology, Santiago, Chile
| | - Walter E Kaufmann
- Anavex Life Sciences Corp., New York, NY, 10019, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
15
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
16
|
Identifying Musculoskeletal Pain Generators Using Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Yoon D, Kogan F, Gold GE, Biswal S. Identifying Musculoskeletal Pain Generators Using Clinical PET. Semin Musculoskelet Radiol 2020; 24:441-450. [DOI: 10.1055/s-0040-1713607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractIdentifying the source of a person's pain is a significant clinical challenge because the physical sensation of pain is believed to be subjective and difficult to quantify. The experience of pain is not only modulated by the individual's threshold to painful stimuli but also a product of the person's affective contributions, such as fear, anxiety, and previous experiences. Perhaps then to quantify pain is to examine the degree of nociception and pro-nociceptive inflammation, that is, the extent of cellular, chemical, and molecular changes that occur in pain-generating processes. Measuring changes in the local density of receptors, ion channels, mediators, and inflammatory/immune cells that are involved in the painful phenotype using targeted, highly sensitive, and specific positron emission tomography (PET) radiotracers is therefore a promising approach toward objectively identifying peripheral pain generators. Although several preclinical radiotracer candidates are being developed, a growing number of ongoing clinical PET imaging approaches can measure the degree of target concentration and thus serve as a readout for sites of pain generation. Further, when PET is combined with the spatial and contrast resolution afforded by magnetic resonance imaging, nuclear medicine physicians and radiologists can potentially identify pain drivers with greater accuracy and confidence. Clinical PET imaging approaches with fluorine-18 fluorodeoxyglucose, fluorine-18 sodium fluoride, and sigma-1 receptor PET radioligand and translocator protein radioligands to isolate the source of pain are described here.
Collapse
Affiliation(s)
- Daehyun Yoon
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Feliks Kogan
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Garry E. Gold
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Sandip Biswal
- Division of Musculoskeletal Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Tian J, He Y, Deuther-Conrad W, Fu H, Xie F, Zhang Y, Wang T, Zhang X, Zhang J, Brust P, Huang Y, Jia H. Synthesis and evaluation of new 1-oxa-8-azaspiro[4.5]decane derivatives as candidate radioligands for sigma-1 receptors. Bioorg Med Chem 2020; 28:115560. [PMID: 32616183 DOI: 10.1016/j.bmc.2020.115560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023]
Abstract
We report the design, synthesis, and evaluation of a series of 1-oxa-8-azaspiro[4.5]decane and 1,5-dioxa-9-azaspiro[5.5]undecane derivatives as selective σ1 receptor ligands. All seven ligands exhibited nanomolar affinity for σ1 receptors (Ki(σ1) = 0.47 - 12.1 nM) and moderate selectivity over σ2 receptors (Ki(σ2)/ Ki(σ1) = 2 - 44). Compound 8, with the best selectivity among these ligands, was selected for radiolabeling and further evaluation. Radioligand [18F]8 was prepared via nucleophilic 18F-substitution of the corresponding tosylate precursor, with an overall isolated radiochemical yield of 12-35%, a radiochemical purity of greater than 99%, and molar activity of 94 - 121 GBq/μmol. Biodistribution studies of [18F]8 in mice demonstrated high initial brain uptake at 2 min. Pretreatment with SA4503 resulted in significantly reduced brain-to-blood ratio (70% - 75% at 30 min). Ex vivo autoradiography in ICR mice demonstrated high accumulation of the radiotracer in σ1 receptor-rich brain areas. These findings suggest that [18F]8 could be a lead compound for further structural modifications to develop potential brain imaging agents for σ1 receptors.
Collapse
Affiliation(s)
- Jiale Tian
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Zhang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing 100853, China.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Intagliata S, Agha H, Kopajtic TA, Katz JL, Kamble SH, Sharma A, Avery BA, McCurdy CR. Exploring 1-adamantanamine as an alternative amine moiety for metabolically labile azepane ring in newly synthesized benzo[ d]thiazol-2(3 H)one σ receptor ligands. Med Chem Res 2020; 29:1697-1706. [PMID: 33584084 DOI: 10.1007/s00044-020-02597-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we report the structure-activity relationships, binding properties, and metabolic stability studies of a series of benzo[d]thiazol-2(3H)one as sigma receptors (σRs) ligands. Specifically, to improve the metabolic stability of the cyclic amine fragment of our lead compound (SN56), the metabolically unstable azepane ring was replaced with a 1-adatamantamine moiety. Within the synthesized analogs, compound 12 had low nanomolar affinity for the σ1R (K i = 7.2 nM) and moderate preference (61-fold) over the σ2R. In vitro metabolic stability studies showed a slight improvement of the metabolic stability for 7-12, even though an extensive metabolism in rat liver microsomes is being observed. Furthermore, metabolic soft spot identification of 12 suggested that the N-methyl group of the adamantyl moiety is a major site of metabolism.
Collapse
Affiliation(s)
- Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.,Department of BioMolecular Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | - Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Theresa A Kopajtic
- Psychobiology Section, Intramural Research Program, Department of Health and Human Services, NIDA, NIH, Baltimore, MD 21224, USA
| | - Jonathan L Katz
- Psychobiology Section, Intramural Research Program, Department of Health and Human Services, NIDA, NIH, Baltimore, MD 21224, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Bonnie A Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.,Department of BioMolecular Science, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
20
|
Lepelletier FX, Vandesquille M, Asselin MC, Prenant C, Robinson AC, Mann DMA, Green M, Barnett E, Banister SD, Mottinelli M, Mesangeau C, McCurdy CR, Fricke IB, Jacobs AH, Kassiou M, Boutin H. Evaluation of 18F-IAM6067 as a sigma-1 receptor PET tracer for neurodegeneration in vivo in rodents and in human tissue. Theranostics 2020; 10:7938-7955. [PMID: 32724451 PMCID: PMC7381740 DOI: 10.7150/thno.47585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/06/2020] [Indexed: 01/30/2023] Open
Abstract
The sigma 1 receptor (S1R) is widely expressed in the CNS and is mainly located on the endoplasmic reticulum. The S1R is involved in the regulation of many neurotransmission systems and, indirectly, in neurodegenerative diseases. The S1R may therefore represent an interesting neuronal biomarker in neurodegenerative diseases such as Parkinson's (PD) or Alzheimer's diseases (AD). Here we present the characterisation of the S1R-specific 18F-labelled tracer 18F-IAM6067 in two animal models and in human brain tissue. Methods: Wistar rats were used for PET-CT imaging (60 min dynamic acquisition) and metabolite analysis (1, 2, 5, 10, 20, 60 min post-injection). To verify in vivo selectivity, haloperidol, BD1047 (S1R ligand), CM398 (S2R ligand) and SB206553 (5HT2B/C antagonist) were administrated for pre-saturation studies. Excitotoxic lesions induced by intra-striatal injection of AMPA were also imaged by 18F-IAM6067 PET-CT to test the sensitivity of the methods in a well-established model of neuronal loss. Tracer brain uptake was also verified by autoradiography in rats and in a mouse model of PD (intrastriatal 6-hydroxydopamine (6-OHDA) unilateral lesion). Finally, human cortical binding was investigated by autoradiography in three groups of subjects (control subjects with Braak ≤2, and AD patients, Braak >2 & ≤4 and Braak >4 stages). Results: We demonstrate that despite rapid peripheral metabolism of 18F-IAM6067, radiolabelled metabolites were hardly detected in brain samples. Brain uptake of 18F-IAM6067 showed differences in S1R anatomical distribution, namely from high to low uptake: pons-raphe, thalamus medio-dorsal, substantia nigra, hypothalamus, cerebellum, cortical areas and striatum. Pre-saturation studies showed 79-90% blockade of the binding in all areas of the brain indicated above except with the 5HT2B/C antagonist SB206553 and S2R ligand CM398 which induced no significant blockade, indicating good specificity of 18F-IAM6067 for S1Rs. No difference between ipsi- and contralateral sides of the brain in the mouse model of PD was detected. AMPA lesion induced a significant 69% decrease in 18F-IAM6067 uptake in the globus pallidus matching the neuronal loss as measured by NeuN, but only a trend to decrease (-16%) in the caudate putamen despite a significant 91% decrease in neuronal count. Moreover, no difference in the human cortical binding was shown between AD groups and controls. Conclusion: This work shows that 18F-IAM6067 is a specific and selective S1R radiotracer. The absence or small changes in S1R detected here in animal models and human tissue warrants further investigations and suggests that S1R might not be the anticipated ideal biomarker for neuronal loss in neurodegenerative diseases such as AD and PD.
Collapse
Affiliation(s)
- François-Xavier Lepelletier
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Matthias Vandesquille
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Marie-Claude Asselin
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Christian Prenant
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew C Robinson
- Salford Royal NHS Foundation Trust, Department of Clinical & Cognitive Neurosciences, Clinical Sciences Building, Salford, United Kingdom
| | - David M A Mann
- Salford Royal NHS Foundation Trust, Department of Clinical & Cognitive Neurosciences, Clinical Sciences Building, Salford, United Kingdom
| | - Michael Green
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth Barnett
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christophe Mesangeau
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- UF Translational Drug Development Core, University of Florida, Gainesville, FL 32610, USA
| | - Inga B Fricke
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU), Münster, Germany
- Department of Geriatrics and Neurology, Johanniter Hospital, Bonn, Germany
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Hervé Boutin
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Jia H, Cai Z, Holden D, He Y, Lin SF, Li S, Baum E, Shirali A, Kapinos M, Gao H, Ropchan J, Huang Y. Positron Emission Tomography Imaging Evaluation of a Novel 18F-Labeled Sigma-1 Receptor Radioligand in Cynomolgus Monkeys. ACS Chem Neurosci 2020; 11:1673-1681. [PMID: 32356969 DOI: 10.1021/acschemneuro.0c00171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a convenient radiosynthesis and the first positron emission tomography (PET) imaging evaluation of [18F]FBFP as a potent sigma-1 (σ1) receptor radioligand with advantageous characteristics. [18F]FBFP was synthesized in one step from an iodonium ylide precursor. In cynomolgus monkeys, [18F]FBFP displayed high brain uptake and suitable tissue kinetics for quantitative analysis. It exhibited heterogeneous distribution with higher regional volume of distribution (VT) values in the amygdala, hippocampus, insula, and frontal cortex. Pretreatment with the σ1 receptor agonist SA4503 (0.5 mg/kg) significantly reduced radioligand uptake in the monkey brain (>95%), indicating high binding specificity of [18F]FBFP in vivo. Compared with (S)-[18F]fluspidine, [18F]FBFP possessed higher regional nondisplaceable binding potential (BPND) values across the brain regions. These findings demonstrate that [18F]FBFP is a highly promising PET radioligand for imaging and quantification of σ1 receptors in humans.
Collapse
Affiliation(s)
- Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Fei Lin
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Evan Baum
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Anupama Shirali
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Hong Gao
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Abstract
Nerve imaging is an important component in the assessment of patients presenting with suspected peripheral nerve pathology. Although magnetic resonance neurography and ultrasound are the most commonly utilized techniques, several promising new modalities are on the horizon. Nerve imaging is useful in localizing the nerve injury, determining the severity, providing prognostic information, helping establish the diagnosis, and helping guide surgical decision making. The focus of this article is imaging of damaged nerves, focusing on nerve injuries and entrapment neuropathies.
Collapse
Affiliation(s)
- David A Purger
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sarada Sakamuri
- Department of Neurology and Neurological Sciences, 213 Quarry Road, MC 5979, Palo Alto, CA 94304, USA
| | - Nicholas F Hug
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sandip Biswal
- Department of Radiology, Stanford University, 300 Pasteur Drive, S-068B, Stanford, CA 94305, USA
| | - Thomas J Wilson
- Department of Neurosurgery, Stanford University, 300 Pasteur Drive, R293, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Human biodistribution and radiation dosimetry of [ 18F]DASA-23, a PET probe targeting pyruvate kinase M2. Eur J Nucl Med Mol Imaging 2020; 47:2123-2130. [PMID: 31938892 DOI: 10.1007/s00259-020-04687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To assess the safety, biodistribution, and radiation dosimetry of the novel positron emission tomography (PET) radiopharmaceutical 1-((2-fluoro-6-[[18F]]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in healthy volunteers. METHODS We recruited 5 healthy volunteers who provided a written informed consent. Volunteers were injected with 295.0 ± 8.2 MBq of [18F]DASA-23 intravenously. Immediately following injection, a dynamic scan of the brain was acquired for 15 min. This was followed by serial whole-body PET/MRI scans acquired up to 3 h post-injection. Blood samples were collected at regular intervals, and vital signs monitored pre- and post-radiotracer administration. Regions of interest were drawn around multiple organs, time-activity curves were calculated, and organ uptake and dosimetry were estimated with OLINDA/EXM (version 1.1) software. RESULTS All subjects tolerated the PET/MRI examination, without adverse reactions to [18F]DASA-23. [18F]DASA-23 passively crossed the blood-brain barrier, followed by rapid clearance from the brain. High accumulation of [18F]DASA-23 was noted in organs such as the gallbladder, liver, small intestine, and urinary bladder, suggesting hepatobiliary and urinary clearance. The effective dose of [18F]DASA-23 was 23.5 ± 5.8 μSv/MBq. CONCLUSION We successfully completed a pilot first-in-human study of [18F]DASA-23. Our results indicate that [18F]DASA-23 can be used safely in humans to evaluate pyruvate kinase M2 levels. Ongoing studies are evaluating the ability of [18F]DASA-23 to visualize intracranial malignancies, NCT03539731. TRIAL REGISTRATION ClinicalTrials.gov , NCT03539731 (registered 28 May 2018).
Collapse
|
24
|
Lan Y, Bai P, Chen Z, Neelamegam R, Placzek MS, Wang H, Fiedler SA, Yang J, Yuan G, Qu X, Schmidt HR, Song J, Normandin MD, Ran C, Wang C. Novel radioligands for imaging sigma-1 receptor in brain using positron emission tomography (PET). Acta Pharm Sin B 2019; 9:1204-1215. [PMID: 31867166 PMCID: PMC6900558 DOI: 10.1016/j.apsb.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
The sigma-1 receptor (σ 1R) is a unique intracellular protein. σ 1R plays a major role in various pathological conditions in the central nervous system (CNS), implicated in several neuropsychiatric disorders. Imaging of σ 1R in the brain using positron emission tomography (PET) could serve as a noninvasively tool for enhancing the understanding of the disease's pathophysiology. Moreover, σ 1R PET tracers can be used for target validation and quantification in diagnosis. Herein, we describe the radiosynthesis, in vivo PET/CT imaging of novel σ 1R 11C-labeled radioligands based on 6-hydroxypyridazinone, [11C]HCC0923 and [11C]HCC0929. Two radioligands have high affinities to σ 1R, with good selectivity. In mice PET/CT imaging, both radioligands showed appropriate kinetics and distributions. Additionally, the specific interactions of two radioligands were reduced by compounds 13 and 15 (self-blocking). Of the two, [11C]HCC0929 was further investigated in positive ligands blocking studies, using classic σ 1R agonist SA 4503 and σ 1R antagonist PD 144418. Both σ 1R ligands could extensively decreased the uptake of [11C]HCC0929 in mice brain. Besides, the biodistribution of major brain regions and organs of mice were determined in vivo. These studies demonstrated that two radioligands, especially [11C]HCC0929, possessed ideal imaging properties and might be valuable tools for non-invasive quantification of σ 1R in brain.
Collapse
Key Words
- 11C-labeled radioligand
- 3D, three-dimensional
- 6-Hydroxypyridazinone
- AF, ammonium formate
- BBB, brain blood barrier
- BP, binding potential
- Brain imaging
- CNS, center nervous systems
- CRPS, complex regional pain syndrome
- DMF, dimethyl formamide
- DMSO, dimethylsulfoxide
- ER, endoplasmic reticulum
- LCP, lipidic cubic phase
- MAM, mitochondria-associated ER membrane
- PCP, phencyclidine
- PET
- PET, positron emission tomography
- TFA, trifluoroacetic acid
- σ1R
- σ1R, sigma-1 receptor
- σ2R, sigma-2 receptor
Collapse
Affiliation(s)
- Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephanie A. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hayden R. Schmidt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02129, USA
| | - Jinchun Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
25
|
Kogan F, Broski SM, Yoon D, Gold GE. Applications of PET-MRI in musculoskeletal disease. J Magn Reson Imaging 2019; 48:27-47. [PMID: 29969193 DOI: 10.1002/jmri.26183] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
New integrated PET-MRI systems potentially provide a complete imaging modality for diagnosis and evaluation of musculoskeletal disease. MRI is able to provide excellent high-resolution morphologic information with multiple contrast mechanisms that has made it the imaging modality of choice in evaluation of many musculoskeletal disorders. PET offers incomparable abilities to provide quantitative information about molecular and physiologic changes that often precede structural and biochemical changes. In combination, hybrid PET-MRI can enhance imaging of musculoskeletal disorders through early detection of disease as well as improved diagnostic sensitivity and specificity. The purpose of this article is to review emerging applications of PET-MRI in musculoskeletal disease. Both clinical applications of malignant musculoskeletal disease as well as new opportunities to incorporate the molecular capabilities of nuclear imaging into studies of nononcologic musculoskeletal disease are discussed. Lastly, we discuss some of the technical considerations and challenges of PET-MRI as they specifically relate to musculoskeletal disease. LEVEL OF EVIDENCE 5 TECHNICAL EFFICACY: Stage 3 J. Magn. Reson. Imaging 2018;48:27-47.
Collapse
Affiliation(s)
- Feliks Kogan
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Daehyun Yoon
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
26
|
Horsager J, Fedorova TD, Berge NVD, Klinge MW, Knudsen K, Hansen AK, Alstrup AKO, Krogh K, Gormsen L, Borghammer P. Cardiac 11C-Donepezil Binding Increases With Age in Healthy Humans: Potentially Signifying Sigma-1 Receptor Upregulation. J Cardiovasc Pharmacol Ther 2019; 24:365-370. [PMID: 30913922 DOI: 10.1177/1074248419838509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Donepezil may have cardioprotective properties, but the mechanism is unclear. Using positron-emission tomography (PET), we explored 11C-donepezil uptake in the heart of humans in relation to age. The results are discussed in the context of the cardioprotective property of donepezil. METHODS We included data from 57 patients with cardiac 11C-donepezil PET scans. Linear regression analyses were performed to explore the correlation between cardiac 11C-donepezil standardized uptake value (SUV) and age. Subgroup analyses were performed for healthy controls, patients with prodromal or diagnosed Parkinson disease (PD), males, and females. RESULTS In the total group of 57 patients, linear regression analysis revealed a significant positive correlation between cardiac 11C-donepezil uptake and age ( r2 = .63, P < .0001). The average increase was ≈1.25 SUV per decade and a 2-fold increase in SUV from age 30 to 65 years. Subgroup analyses also showed significant correlations: healthy control patients alone (n = 28, r2 = .73, P < .0001), prodromal or diagnosed PD (n = 29, r2 = .28, P = .03), male patients (n = 34, r2 = .49, P < .0001), and female patients (n = 23, r2 = .82, P < .0001). No other organs showed increased 11C-donepezil binding with age. CONCLUSIONS 11C-donepezil SUV increases robustly with age in the normal human heart. We speculate that the increased donepezil binding is caused primarily by sigma-1 receptor upregulation. If our interpretation is correct, it shows that sigma-1 receptors are dynamically regulated and may represent an overlooked target for pharmacological intervention studies.
Collapse
Affiliation(s)
- Jacob Horsager
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie V D Berge
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Mette W Klinge
- 2 Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Aage K O Alstrup
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Krogh
- 2 Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Gormsen
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- 1 Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
27
|
Ye J, Wang L, Deuther-Conrad W, Chen Y, Zhang X, Zhang J, Huang Y, Brust P, Jia H. 18 F-Labeled benzylpiperazine derivatives as highly selective ligands for imaging σ 1 receptor with positron emission tomography. J Labelled Comp Radiopharm 2019; 62:425-437. [PMID: 30991462 DOI: 10.1002/jlcr.3738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/07/2022]
Abstract
We report the design, synthesis, and evaluation of a new series of benzylpiperazine derivatives as selective σ1 receptor ligands. All seven ligands possessed low nanomolar affinity for σ1 receptors (Ki (σ1 ) = 0.31-4.19 nM) and high subtype selectivity (Ki (σ2 )/Ki (σ1 ) = 50-2448). The fluoroethoxy analogues also exhibited high selectivity toward the vesicular acetylcholine transporter (Ki (VAChT)/Ki (σ1 ) = 99-18252). The corresponding radiotracers [18 F]13, [18 F]14, and [18 F]16 with high selectivity (Ki (σ2 )/Ki (σ1 ) > 100, Ki (VAChT)/Ki (σ1 ) > 1000) were prepared in 42% to 55% radiochemical yields (corrected for decay), greater than 99% radiochemical purity (RCP), and molar activity of about 120 GBq/μmol at the end of synthesis (EOS). All three radiotracers showed high initial brain uptake in mouse (8.37-11.48% ID/g at 2 min), which was not affected by pretreatment with cyclosporine A, suggesting that they are not substrates for permeability-glycoprotein (P-gp). Pretreatment with SA4503 or haloperidol resulted in significantly reduced brain uptake (35%-62% decrease at 30 min). In particular, [18 F]16 displayed high brain-to-blood ratios and high in vivo metabolic stability. Although it may not be an optimal neuroimaging agent because of its slow kinetics in the mouse brain, [18 F]16 can serve as a lead compound for further structural modifications to explore new potential radiotracers for σ1 receptors.
Collapse
Affiliation(s)
- Jiajun Ye
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Liang Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Yuanyuan Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xiaojun Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing, China
| | - Jinming Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing, China
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
28
|
Cirino TJ, Eans SO, Medina JM, Wilson LL, Mottinelli M, Intagliata S, McCurdy CR, McLaughlin JP. Characterization of Sigma 1 Receptor Antagonist CM-304 and Its Analog, AZ-66: Novel Therapeutics Against Allodynia and Induced Pain. Front Pharmacol 2019; 10:678. [PMID: 31258480 PMCID: PMC6586922 DOI: 10.3389/fphar.2019.00678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Sigma-1 receptors (S1R) and sigma-2 receptors (S2R) may modulate nociception without the liabilities of opioids, offering a promising therapeutic target to treat pain. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity of two novel sigma receptor antagonists, the S1R-selective CM-304 and its analog the non-selective S1R/S2R antagonist AZ-66. Inhibition of thermal, induced chemical or inflammatory pain, as well as the allodynia resulting from chronic nerve constriction injury (CCI) and cisplatin exposure as models of neuropathic pain were assessed in male mice. Both sigma receptor antagonists dose-dependently (10–45 mg/kg, i.p.) reduced allodynia in the CCI and cisplatin neuropathic pain models, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg, i.p.), although AZ-66 demonstrated a much longer duration of action. Both CM-304 and AZ-66 produced antinociception in the writhing test [0.48 (0.09–1.82) and 2.31 (1.02–4.81) mg/kg, i.p., respectively] equivalent to morphine [1.75 (0.31–7.55) mg/kg, i.p.]. Likewise, pretreatment (i.p.) with either sigma-receptor antagonist dose-dependently produced antinociception in the formalin paw assay of inflammatory pain. However, CM-304 [17.5 (12.7–25.2) mg/kg, i.p.) and AZ-66 [11.6 (8.29–15.6) mg/kg, i.p.) were less efficacious than morphine [3.87 (2.85–5.18) mg/kg, i.p.] in the 55°C warm-water tail-withdrawal assay. While AZ-66 exhibited modest sedative effects in a rotarod assay and conditioned place aversion, CM-304 did not produce significant effects in the place conditioning assay. Overall, these results demonstrate the S1R selective antagonist CM-304 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, supporting the use of S1R antagonists as potential treatments for chronic pain.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Jessica M Medina
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Lisa L Wilson
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Marco Mottinelli
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Yoder JS, Kogan F, Gold GE. Applications of PET-Computed Tomography-Magnetic Resonance in the Management of Benign Musculoskeletal Disorders. PET Clin 2019; 14:1-15. [PMID: 30420212 PMCID: PMC6245663 DOI: 10.1016/j.cpet.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although computed tomography (CT) and MR imaging alone have been used extensively to evaluate various musculoskeletal disorders, hybrid imaging modalities of PET-CT and PET-MR imaging were recently developed, combining the advantages of each method: molecular information from PET and anatomical information from CT or MR imaging. Furthermore, different radiotracers can be used in PET to uncover different disease mechanisms. In this article, potential applications of PET-CT and PET-MR imaging for benign musculoskeletal disorders are organized by benign cell proliferation/dysplasia, diabetic foot complications, joint prostheses, degeneration, inflammation, and trauma, metabolic bone disorders, and pain (acute and chronic) and peripheral nerve imaging.
Collapse
Affiliation(s)
- James S Yoder
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Cipriano PW, Lee SW, Yoon D, Shen B, Tawfik VL, Curtin CM, Dragoo JL, James ML, McCurdy CR, Chin FTN, Biswal S. Successful treatment of chronic knee pain following localization by a sigma-1 receptor radioligand and PET/MRI: a case report. J Pain Res 2018; 11:2353-2357. [PMID: 30349360 PMCID: PMC6190812 DOI: 10.2147/jpr.s167839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The ability to accurately diagnose and objectively localize pain generators in chronic pain sufferers remains a major clinical challenge since assessment relies on subjective patient complaints and relatively non-specific diagnostic tools. Developments in clinical molecular imaging, including advances in imaging technology and radiotracer design, have afforded the opportunity to identify tissues involved in pain generation based on their pro-nociceptive condition. The sigma-1 receptor (S1R) is a pro-nociceptive receptor upregulated in painful, inflamed tissues, and it can be imaged using the highly specific radioligand 18F-FTC-146 with PET. Case presentation A 50-year-old woman with a 7-year history of refractory, left-knee pain of unknown origin was referred to our pain management team. Over the past several years, she had undergone multiple treatments, including a lateral retinacular release, radiofrequency ablation of a peripheral nerve, and physical therapy. While certain treatments provided partial relief, her pain would inevitably return to its original state. Using simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) with the novel radiotracer 18F-FTC-146, imaging showed increased focal uptake of 18F-FTC-146 in the intercondylar notch, corresponding to an irregular but equivocal lesion identified in the simultaneously acquired MRI. These imaging results prompted surgical removal of the lesion, which upon resection was identified as an inflamed, intraarticular synovial lipoma. Removal of the lesion relieved the patient's pain, and to date the pain has not recurred. Conclusion We present a case of chronic, debilitating knee pain that resolved with surgery following identification of the pathology with a novel clinical molecular imaging approach that detects chronic pain generators at the molecular and cellular level. This approach has the potential to identify and localize pain-associated pathology in a variety of chronic pain syndromes.
Collapse
Affiliation(s)
| | - Sheen-Woo Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, , .,Department of Radiology, Gachon University Gil Hospital, Incheon, South Korea
| | - Daehyun Yoon
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| | - Bin Shen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| | - Vivianne Lily Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine Mills Curtin
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason L Dragoo
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Louise James
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| | - Christopher Robert McCurdy
- Clinical and Translational Science Institute, Translational Drug Development Core, University of Florida, Gainesville, FL, USA
| | | | - Sandip Biswal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA, ,
| |
Collapse
|
31
|
Biegon A, Franceschi D, Schweitzer ME. Nuclear Medicine Procedures in Women: Unappreciated Risks to Reproductive Organs? Radiology 2018; 289:25-27. [PMID: 29989525 DOI: 10.1148/radiol.2018172344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anat Biegon
- From the Department of Radiology, Stony Brook University School of Medicine, 100 Nicols Rd, HSC 4-106F, Psychology A 350, Stony Brook NY 11794-2565
| | - Dinko Franceschi
- From the Department of Radiology, Stony Brook University School of Medicine, 100 Nicols Rd, HSC 4-106F, Psychology A 350, Stony Brook NY 11794-2565
| | - Mark E Schweitzer
- From the Department of Radiology, Stony Brook University School of Medicine, 100 Nicols Rd, HSC 4-106F, Psychology A 350, Stony Brook NY 11794-2565
| |
Collapse
|
32
|
Imaging sigma receptors in the brain: New opportunities for diagnosis of Alzheimer's disease and therapeutic development. Neurosci Lett 2018; 691:3-10. [PMID: 30040970 DOI: 10.1016/j.neulet.2018.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The sigma-1 (σ1) receptor is a chaperone protein located on the mitochondria-associated membrane of the endoplasmic reticulum, while the sigma-2 receptor (σ2) is an endoplasmic reticulum-resident membrane protein. Recent evidence indicates that both of these receptors figure prominently in the pathophysiology of Alzheimer's disease (AD) and thus are targets for the development of novel, disease-modifying therapeutic strategies. Radioligand-based molecular imaging technique such as positron emission tomography (PET) imaging is a powerful tool for the investigation of protein target expression and function in living subjects. In this review, we survey the development of PET radioligands for the σ1 or σ2 receptors and assess their potential for human imaging applications. The availability of PET imaging with σ1 or σ2 receptor-specific radioligands in humans will allow the investigation of these receptors in vivo and lead to further understanding of their respective roles in AD pathogenesis and progression. Moreover, PET imaging can be used in target occupancy studies to assess target engagement and correlate receptor occupancy and therapeutic response of σ1 receptor agonists and σ2 receptor antagonists currently in clinical trials. It is expected that neuroimaging of σ1 and σ2 receptors in the brain will shed new light on AD pathophysiology and may provide us with new biomarkers for diagnosis of AD and efficacy monitoring of emerging AD therapeutic strategies.
Collapse
|
33
|
Spinelli F, Haider A, Toscano A, Pati ML, Keller C, Berardi F, Colabufo NA, Abate C, Ametamey SM. Synthesis, radiolabelling, and evaluation of [ 11C]PB212 as a radioligand for imaging sigma-1 receptors using PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:32-40. [PMID: 29531859 PMCID: PMC5840321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 03/17/2024]
Abstract
The Sigma-1 receptor (Sig-1R) has been described as a pluripotent modulator of distinct physiological functions and its involvement in various central and peripheral pathological disorders has been demonstrated. However, further investigations are required to understand the complex role of the Sig-1R as a molecular chaperon. A specific PET radioligand would provide a powerful tool in Sig-1R related studies. As part of our efforts to develop a Sig-1R PET radioligand that shows antagonistic properties, we investigated the suitability of 1-(4-(6-methoxynaphthalen-1-yl)butyl)-4-methylpiperidine (designated PB212) for imaging Sig-1R. PB212 is a Sig-1R antagonist and exhibits subnanomolar affinity (Ki = 0.030 nM) towards Sig-1R as well as good to excellent selectivity over Sig-2R. The radiolabelling of [11C]PB212 was accomplished by O-methylation of the phenolic precursor using [11C]MeI. In vitro autoradiography with [11C]PB212 on WT and Sig-1R KO mouse brain tissues revealed high non-specific binding, however using rat spleen tissues from CD1 mice and Wistar rats, high specific binding was observed. The spleen is known to have a high expression of Sig-1R. In vivo PET experiments in Wistar rats also showed high accumulation of [11C]PB212 in the spleen. Injection of Sig-1R binding compounds, haloperidol (1 mg/kg) or fluspidine (1 mg/kg) shortly before [11C]PB212 administration induced a drastic reduction of radiotracer accumulation, confirming the specificity of [11C]PB212 towards Sig-1R in the spleen. The results obtained herein indicate that although [11C]PB212 is not suitable for imaging Sig-1R in the brain, it is a promising candidate for the detection and quantification of Sig-1Rs in the periphery.
Collapse
Affiliation(s)
- Francesco Spinelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| | - Ahmed Haider
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| | - Annamaria Toscano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Claudia Keller
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro70125, Bari, Italy
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, ETH ZurichCH-8093, Zurich, Switzerland
| |
Collapse
|
34
|
Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, Biskup S, Biswal S, Bitzer M, Boellaard R, Braren RF, Brendle C, Brindle K, Chiti A, la Fougère C, Gillies R, Goh V, Goyen M, Hacker M, Heukamp L, Knudsen GM, Krackhardt AM, Law I, Morris JC, Nikolaou K, Nuyts J, Ordonez AA, Pantel K, Quick HH, Riklund K, Sabri O, Sattler B, Troost EGC, Zaiss M, Zender L, Beyer T. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 2018; 20:4-20. [PMID: 28971346 PMCID: PMC5775351 DOI: 10.1007/s11307-017-1123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls-Universität, Tübingen, Germany
| | - B Gückel
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - G Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - H Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Z M Bhujwalla
- Division of Cancer Imaging Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S Biskup
- Praxis für Humangenetik Tübingen, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | - S Biswal
- Molecular Imaging Program at Stanford (MIPS) and Bio-X, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Bitzer
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - R Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R F Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - K Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - A Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Nuclear Medicine, Humanitas Research Hospital, Milan, Italy
| | - C la Fougère
- Department of Radiology, Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-Universität, Tübingen, Germany
| | - R Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33621, USA
| | - V Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' Hospitals London, London, UK
| | - M Goyen
- GE Healthcare GmbH, Beethovenstrasse 239, Solingen, Germany
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - I Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - J Nuyts
- Nuclear Medicine & Molecular Imaging, KU Leuven, Leuven, Belgium
| | - A A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - K Riklund
- Department of Radiation Sciences, Umea University, Umea, Sweden
| | - O Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - B Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - E G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - M Zaiss
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - L Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Beyer
- QIMP Group, Center for Medical Physics and Biomedical Engineering General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|