1
|
Kiyokawa M, Kang HG, Yamaya T. Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top versus a tapered top. Biomed Phys Eng Express 2025; 11:025032. [PMID: 39842042 DOI: 10.1088/2057-1976/adaced] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously. We compared a novel tapered U-shaped crystal design with a conventional flat-top geometry for PET detectors. Each crystal had outer dimensions of 5.85 × 2.75 × 15 mm3, with a 0.2 mm central gap forming physically isolated bottom surfaces (2.85 × 2.75 mm2). The novel U-shape crystal design with a tapered top roof resulted in the best CTR of 201 ± 3 ps, and DOI resolution of 3.1 ± 0.6 mm, which were better than flat top geometry. In the next study, we plan to optimize the crystal surface treatment and reflector to further improve the CTR and DOI resolution.
Collapse
Affiliation(s)
- Miho Kiyokawa
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
- Department of Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
2
|
Liu Z, Mungai S, Kuang Z, Ren N, Xie S, Peng Q, Williams C, Yang Y. High-resolution TOF-DOI PET detectors through the implementation of dual-ended readout with SiPM arrays of different pixel sizes on the two ends. Med Phys 2025; 52:867-879. [PMID: 39607086 DOI: 10.1002/mp.17544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND An organ-specific Positron emission tomography (PET) scanner can achieve the same sensitivity with much fewer detectors as compared to a whole-body PET scanner, thereby substantially reducing the system cost. It can also achieve much better spatial resolution as compared to a whole-body PET scanner since the photon noncollinearity effect is reduced by using smaller detector ring diameter. Consequently, the development of organ-specific PET scanners with high spatial resolution, high sensitivity, and low cost has been a major focus of international research in PET instrument development for many years. PURPOSE The focus of this work is to develop high-resolution depth encoding PET detectors with high timing resolution and a reduced number of signal processing electronic channels. Consequently, PET scanners tailored for specific organs can be developed with high spatial and timing resolutions, enhanced sensitivity, and affordable cost. METHODS An 8 × 8 silicon photomultiplier (SiPM) array with a pixel size of 3 × 3 mm2 and a multiplexed signal readout circuit is coupled to one end of the lutetium yttrium orthosilicate (LYSO) array with a glass light guide between them to achieve a good crystal identification of small crystals by using only four position-encoding energy signals. A 4 × 4 SiPM array with a pixel size of 6 × 6 mm2 and an individual readout circuit is coupled to the other end of the crystal array without a light guide to achieve a good coincidence timing resolution (CTR). The depth of interaction (DOI) of the detector is measured by ratio of the energies measured by the two SiPM arrays and can be used to correct the depth dependency of the timing. The flood histograms, energy resolutions (ERs), DOI resolutions, and CTRs of two detectors utilizing LYSO arrays with different crystal sizes were measured with each of the two SiPM arrays alternately placed at the front of the detectors. RESULTS A better flood histogram was obtained by placing the 8 × 8 SiPM array in front of the detector. The depth dependency of timing was larger when the 4 × 4 SiPM array was placed at the front of the detector. A better CTR was obtained by placing the 4 × 4 SiPM array at the back of the detector as compared to placing it at the front of the detector if the depth-dependent timing correction was not performed. If the depth-dependent timing correction was performed, a better CTR can be obtained by placing the 4 × 4 SiPM array at the front of the detector. The first detector using a 12 × 12 LYSO crystal array with a crystal size of 1.95 × 1.95 × 20 mm3 provided a flood histogram with all crystals clearly resolved, an ER of 11.7%, a DOI resolution of 2.9 mm, and a CTR of 275 ps with the depth-dependent timing correction. The second detector using a 23 × 23 LYSO crystal array with a crystal size of 0.95 × 0.95 × 20 mm3 provided a flood histogram with all but the edge crystals clearly resolved, an ER of 17.6%, a DOI resolution of 2.3 mm, and a CTR of 293 ps with the depth-dependent timing correction. CONCLUSIONS PET detectors with small crystal cross-sectional sizes, good DOI and timing resolutions and a reduced number of electronics channels were developed. The detectors can be used to develop high performance organ-specific PET scanners.
Collapse
Affiliation(s)
- Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Samuel Mungai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Crispin Williams
- European Centre for Nuclear Research (CERN), Geneva, Switzerland
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Yamada T, Hanaoka K, Morimoto-Ishikawa D, Yamakawa Y, Kumakawa S, Ohtani A, Mizuta T, Kaida H, Ishii K. Crossover evaluation of time-of-flight-based attenuation correction in brain 18F-FDG and 18F-flutemetamol PET. Ann Nucl Med 2025; 39:189-198. [PMID: 39347876 DOI: 10.1007/s12149-024-01986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Brain-dedicated positron emission tomography (PET) systems offer high spatial resolution and sensitivity for accurate clinical assessments. Attenuation correction (AC) is important in PET imaging, particularly in brain studies. This study assessed the reproducibility of attenuation maps (µ-maps) generated by a specialized time-of-flight (TOF) brain-dedicated PET system for imaging using different PET tracers. METHODS Twelve subjects underwent both 18F-fluorodeoxyglucose (FDG)-PET and 18F-flutemetamol (FMM) amyloid-PET scans. Images were reconstructed with µ-maps obtained by a maximum likelihood-based AC method. Voxel-based and region-based analyses were used to compare µ-maps obtained with FDG-PET versus FMM-PET; FDG-PET images reconstructed using an FDG-PET µ-map (FDG × FDG) versus those reconstructed with an FMM-PET µ-map (FDG × FMM); and FMM-PET images reconstructed using an FDG-PET µ-map (FMM × FDG) versus those reconstructed with an FMM-PET µ-map (FMM × FMM). RESULTS Small but significant differences in µ-maps were observed between tracers, primarily in bone regions. In the comparison between the µ-maps obtained with FDG-PET and FMM-PET, the µ-maps obtained with FDG-PET had higher µ-values than those obtained with FMM-PET in the parietal regions of the head and skull, in a portion of the cerebellar dentate nucleus and on the surface of the frontal lobe. The comparison between FDG and FDG × FMM values in different regions yielded findings similar to those of the µ-maps comparison. FDG × FMM values were significantly higher than FDG values in the bilateral temporal bones and a small part of the temporal lobe. Similarly, FMM values were significantly higher than FMM × FDG values in the bilateral temporal bones. FMM × FDG values were significantly higher than FMM values in a small area of the right cerebellar hemisphere. However, the relative errors in these µ-maps were within ± 4%, suggesting that they are clinically insignificant. In PET images reconstructed with the original and swapped µ-maps, the relative errors were within ± 7% and the quality was nearly equivalent. CONCLUSION These findings suggest the clinical reliability of the AC method without an external radiation source in TOF brain-dedicated PET systems.
Collapse
Affiliation(s)
- Takahiro Yamada
- Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka, Japan.
| | - Kohei Hanaoka
- Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka, Japan
| | - Daisuke Morimoto-Ishikawa
- Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka, Japan
| | | | - Shiho Kumakawa
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Atsushi Ohtani
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Tetsuro Mizuta
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Hayato Kaida
- Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka, Japan
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazunari Ishii
- Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka, Japan
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
4
|
Ninatti G, Pini C, Lazar A, Gelardi F. The wings of progress: technological and radiopharmaceutical innovations in nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 51:3815-3821. [PMID: 39264424 DOI: 10.1007/s00259-024-06913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Gaia Ninatti
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Alexandra Lazar
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Fabrizia Gelardi
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Shanina E, Spencer BA, Li T, Huang B, Qi J, Cherry SR. PICASSO: a universal brain phantom for positron emission tomography based on the activity painting technique. Phys Med Biol 2024; 69:215022. [PMID: 39378896 DOI: 10.1088/1361-6560/ad84b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Objective. This study presents a universal phantom for positron emission tomography (PET) that allows arbitrary static and dynamic activity distributions of various complexities to be generated using a single PET acquisition.Approach. We collected a high-statistics dataset (with a total of 22.4 × 109prompt coincidences and an event density of 2.75 × 106events mm-3) by raster-scanning a single plane with a22Na point source mounted on a robotic arm in the field-of-view of the uEXPLORER PET/CT scanner. The source position was determined from the reconstructed dynamic frames. Uniquely, true coincidences were separated from scattered and random events based on the distance between their line-of-response and the known source location. Finally, we randomly sampled the dataset to generate the desired activity distributions modeling several different phantoms.Main results. Overall, the target and the reconstructed phantom images had good agreement. The analysis of a simple geometric distribution showed high quantitative accuracy of the phantom, with mean error of <-3.0% relative to the ground truth for activity concentrations ranging from 5.3 to 47.7 kBq ml-1. The model of a high-resolution18F-fluorodeoxyglucose distribution in the brain illustrates the usefulness of the technique in simulating realistic static neuroimaging studies. A dynamic18F-florbetaben study was modeled based on the time-activity curves of a human study and a segmented brain phantom with no coincidences repeating between frames. For all time points, the mean voxel-wise errors ranged from -4.4% to -0.7% in grey matter and from -3.9% to +2.8% in white matter.Significance. The proposed phantom technique is highly flexible and allows modeling of static and dynamic brain PET studies with high quantitative accuracy. It overcomes several key limitations of the existing phantoms and has many promising applications for the purposes of image reconstruction, data correction methods, and system performance evaluation, particularly for new high-performance dedicated brain PET scanners.
Collapse
Affiliation(s)
- Ekaterina Shanina
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Benjamin A Spencer
- Department of Radiology, University of California, Davis, Sacramento, CA, United States of America
| | - Tiantian Li
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
- United Imaging Healthcare, Houston, TX, United States of America
| | - Bangyan Huang
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
- Department of Radiology, University of California, Davis, Sacramento, CA, United States of America
| |
Collapse
|
6
|
Ko GB, Kwak D, Lee JS. Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:6520. [PMID: 39460003 PMCID: PMC11511292 DOI: 10.3390/s24206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.
Collapse
Affiliation(s)
| | | | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul 04782, Republic of Korea; (G.B.K.); (D.K.)
| |
Collapse
|
7
|
Yoshida E, Yamaya T. PET detectors with depth-of-interaction and time-of-flight capabilities. Radiol Phys Technol 2024; 17:596-609. [PMID: 38888821 DOI: 10.1007/s12194-024-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
In positron emission tomography (PET), measurements of depth-of-interaction (DOI) information and time-of-flight (TOF) information are important. DOI information reduces the parallax error, and TOF information reduces noise by measuring the arrival time difference of the annihilation photons. Historically, these have been studied independently, and there has been less implementation of both DOI and TOF capabilities because previous DOI detectors did not have good TOF resolution. However, recent improvements in PET detector performance have resulted in commercial PET scanners achieving a coincidence resolving time of around 200 ps, which result in an effect even for small objects. This means that TOF information can now be utilized even for a brain PET scanner, which also requires DOI information. Therefore, various methods have been proposed to obtain better DOI and TOF information. In addition, the cost of PET detectors is also an important factor to consider, since several hundred detectors are used per PET scanner. In this paper, we review the latest DOI-TOF detectors including the history of detector development. When put into practical use, these DOI-TOF detectors are expected to contribute to the improvement of imaging performance in brain PET scanners.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
8
|
Li H, Badawi RD, Cherry SR, Fontaine K, He L, Henry S, Hillmer AT, Hu L, Khattar N, Leung EK, Li T, Li Y, Liu C, Liu P, Lu Z, Majewski S, Matuskey D, Morris ED, Mulnix T, Omidvari N, Samanta S, Selfridge A, Sun X, Toyonaga T, Volpi T, Zeng T, Jones T, Qi J, Carson RE. Performance Characteristics of the NeuroEXPLORER, a Next-Generation Human Brain PET/CT Imager. J Nucl Med 2024; 65:1320-1326. [PMID: 38871391 PMCID: PMC11294061 DOI: 10.2967/jnumed.124.267767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.5 cm) to enhance sensitivity. Here, we present the physical characterization, performance evaluation, and first human images of the NeuroEXPLORER. Methods: Measurements of spatial resolution, sensitivity, count rate performance, energy and timing resolution, and image quality were performed adhering to the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard. The system's performance was demonstrated through imaging studies of the Hoffman 3-dimensional brain phantom and the mini-Derenzo phantom. Initial 18F-FDG images from a healthy volunteer are presented. Results: With filtered backprojection reconstruction, the radial and tangential spatial resolutions (full width at half maximum) averaged 1.64, 2.06, and 2.51 mm, with axial resolutions of 2.73, 2.89, and 2.93 mm for radial offsets of 1, 10, and 20 cm, respectively. The average time-of-flight resolution was 236 ps, and the energy resolution was 10.5%. NEMA sensitivities were 46.0 and 47.6 kcps/MBq at the center and 10-cm offset, respectively. A sensitivity of 11.8% was achieved at the FOV center. The peak noise-equivalent count rate was 1.31 Mcps at 58.0 kBq/mL, and the scatter fraction at 5.3 kBq/mL was 36.5%. The maximum count rate error at the peak noise-equivalent count rate was less than 5%. At 3 iterations, the NEMA image-quality contrast recovery coefficients varied from 74.5% (10-mm sphere) to 92.6% (37-mm sphere), and background variability ranged from 3.1% to 1.4% at a contrast of 4.0:1. An example human brain 18F-FDG image exhibited very high resolution, capturing intricate details in the cortex and subcortical structures. Conclusion: The NeuroEXPLORER offers high sensitivity and high spatial resolution. With its long axial length, it also enables high-quality spinal cord imaging and image-derived input functions from the carotid arteries. These performance enhancements will substantially broaden the range of human brain PET paradigms, protocols, and thereby clinical research applications.
Collapse
Affiliation(s)
- Hongdi Li
- United Imaging Healthcare North America, Houston, Texas
| | | | | | | | - Liuchun He
- United Imaging Healthcare, Shanghai, China
| | | | | | - Lingzhi Hu
- United Imaging Healthcare North America, Houston, Texas
| | | | - Edwin K Leung
- United Imaging Healthcare North America, Houston, Texas
- University of California, Davis, Davis, California
| | - Tiantian Li
- United Imaging Healthcare North America, Houston, Texas
- University of California, Davis, Davis, California
| | - Yusheng Li
- United Imaging Healthcare North America, Houston, Texas
| | - Chi Liu
- Yale University, New Haven, Connecticut; and
| | - Peng Liu
- United Imaging Healthcare, Shanghai, China
| | - Zhenrui Lu
- United Imaging Healthcare, Shanghai, China
| | | | | | | | - Tim Mulnix
- Yale University, New Haven, Connecticut; and
| | | | | | - Aaron Selfridge
- United Imaging Healthcare North America, Houston, Texas
- University of California, Davis, Davis, California
| | - Xishan Sun
- United Imaging Healthcare North America, Houston, Texas
| | | | | | - Tianyi Zeng
- Yale University, New Haven, Connecticut; and
| | - Terry Jones
- University of California, Davis, Davis, California
| | - Jinyi Qi
- University of California, Davis, Davis, California
| | | |
Collapse
|
9
|
Zhu Y, Tran Q, Wang Y, Badawi RD, Cherry SR, Qi J, Abbaszadeh S, Wang G. Optimization-derived blood input function using a kernel method and its evaluation with total-body PET for brain parametric imaging. Neuroimage 2024; 293:120611. [PMID: 38643890 PMCID: PMC11251003 DOI: 10.1016/j.neuroimage.2024.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Dynamic PET allows quantification of physiological parameters through tracer kinetic modeling. For dynamic imaging of brain or head and neck cancer on conventional PET scanners with a short axial field of view, the image-derived input function (ID-IF) from intracranial blood vessels such as the carotid artery (CA) suffers from severe partial volume effects. Alternatively, optimization-derived input function (OD-IF) by the simultaneous estimation (SIME) method does not rely on an ID-IF but derives the input function directly from the data. However, the optimization problem is often highly ill-posed. We proposed a new method that combines the ideas of OD-IF and ID-IF together through a kernel framework. While evaluation of such a method is challenging in human subjects, we used the uEXPLORER total-body PET system that covers major blood pools to provide a reference for validation. METHODS The conventional SIME approach estimates an input function using a joint estimation together with kinetic parameters by fitting time activity curves from multiple regions of interests (ROIs). The input function is commonly parameterized with a highly nonlinear model which is difficult to estimate. The proposed kernel SIME method exploits the CA ID-IF as a priori information via a kernel representation to stabilize the SIME approach. The unknown parameters are linear and thus easier to estimate. The proposed method was evaluated using 18F-fluorodeoxyglucose studies with both computer simulations and 20 human-subject scans acquired on the uEXPLORER scanner. The effect of the number of ROIs on kernel SIME was also explored. RESULTS The estimated OD-IF by kernel SIME showed a good match with the reference input function and provided more accurate estimation of kinetic parameters for both simulation and human-subject data. The kernel SIME led to the highest correlation coefficient (R = 0.97) and the lowest mean absolute error (MAE = 10.5 %) compared to using the CA ID-IF (R = 0.86, MAE = 108.2 %) and conventional SIME (R = 0.57, MAE = 78.7 %) in the human-subject evaluation. Adding more ROIs improved the overall performance of the kernel SIME method. CONCLUSION The proposed kernel SIME method shows promise to provide an accurate estimation of the blood input function and kinetic parameters for brain PET parametric imaging.
Collapse
Affiliation(s)
- Yansong Zhu
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Quyen Tran
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Yiran Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Simon R Cherry
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Shiva Abbaszadeh
- Department of Electrical and Computer Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Kuhl Y, Mueller F, Naunheim S, Bovelett M, Lambertus J, Schug D, Weissler B, Gegenmantel E, Gebhardt P, Schulz V. A finely segmented semi-monolithic detector tailored for high-resolution PET. Med Phys 2024; 51:3421-3436. [PMID: 38214395 DOI: 10.1002/mp.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Preclinical research and organ-dedicated applications use and require high (spatial-)resolution positron emission tomography (PET) detectors to visualize small structures (early) and understand biological processes at a finer level of detail. Researchers seeking to improve detector and image spatial resolution have explored various detector designs. Current commercial high-resolution systems often employ finely pixelated or monolithic scintillators, each with its limitations. PURPOSE We present a semi-monolithic detector, tailored for high-resolution PET applications with a spatial resolution in the range of 1 mm or better, merging concepts of monolithic and pixelated crystals. The detector features LYSO slabs measuring (24 × 10 × 1) mm3, coupled to a 12 × 12 readout channel photosensor with 4 mm pitch. The slabs are grouped in two arrays of 44 slabs each to achieve a higher optical photon density despite the fine segmentation. METHODS We employ a fan beam collimator for fast calibration to train machine-learning-based positioning models for all three dimensions, including slab identification and depth-of-interaction (DOI), utilizing gradient tree boosting (GTB). The data for all dimensions was acquired in less than 2 h. Energy calculation was based on a position-dependent energy calibration. Using an analytical timing calibration, time skews were corrected for coincidence timing resolution (CTR) estimation. RESULTS Leveraging machine-learning-based calibration in all three dimensions, we achieved high detector spatial resolution: down to 1.18 mm full width at half maximum (FWHM) detector spatial resolution and 0.75 mm mean absolute error (MAE) in the planar-monolithic direction, and 2.14 mm FWHM and 1.03 mm MAE for DOI at an energy window of (435-585) keV. Correct slab interaction identification in planar-segmented direction exceeded 80%, alongside an energy resolution of 12.7% and a CTR of 450 ps FWHM. CONCLUSIONS The introduced finely segmented, high-resolution slab detector demonstrates appealing performance characteristics suitable for high-resolution PET applications. The current benchtop-based detector calibration routine allows these detectors to be used in PET systems.
Collapse
Affiliation(s)
- Yannick Kuhl
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Florian Mueller
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Stephan Naunheim
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Matthias Bovelett
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Janko Lambertus
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - David Schug
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - Bjoern Weissler
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | | | - Pierre Gebhardt
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
- Physics Institute III B, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Gandia-Ferrero MT, Torres-Espallardo I, Martínez-Sanchis B, Muñoz E, Morera-Ballester C, Sopena-Novales P, Álvarez-Sánchez L, Baquero-Toledo M, Martí-Bonmatí L. Amyloid brain-dedicated PET images can diagnose Alzheimer's pathology with Centiloid Scale. Phys Med 2024; 121:103345. [PMID: 38581963 DOI: 10.1016/j.ejmp.2024.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
PURPOSE To evaluate whether the Centiloid Scale may be used to diagnose Alzheimer's Disease (AD) pathology effectively with the only use of amyloid PET imaging modality from a brain-dedicated PET scanner. METHODS This study included 26 patients with amyloid PET images with 3 different radiotracers. All patients were acquired both on a PET/CT and a brain-dedicated PET scanner (CareMiBrain, CMB), from which 4 different reconstructions were implemented. A new pipeline was proposed and used for the PET image analysis based on the original Centiloid Scale processing pipeline, but with only PET images. The Youden's Index was employed to calculate the optimal cutoffs for diagnosis and evaluated by the AUC, accuracy, precision, and recall metrics. RESULTS The Centiloid Scale (CL) processing pipeline was validated with and without the use of MR images. The CL cutoffs for AD pathology diagnosis on the PET/CT and the 4 CMB reconstructions were 34.4 ± 2.2, 43.5 ± 3.5, 51.9 ± 12.5, 57.5 ± 6.8 and 41.8 ± 1.2 respectively. Overall, for these cutoffs all metrics obtained the maximum score. CONCLUSION The Centiloid scale applied to PET images allows for AD pathology diagnosis. The CMB scanner can be used with the Centiloid scale to automatically assist in the diagnosis of AD pathology, relieving the large burden of neurodegenerative diseases on a traditional PET/CT.
Collapse
Affiliation(s)
- Maria Teresa Gandia-Ferrero
- Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain.
| | - Irene Torres-Espallardo
- Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain; Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Begoña Martínez-Sanchis
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Enrique Muñoz
- Oncovision, Carrer de Jeroni de Montsoriu, 92, València 46022, Spain
| | | | - Pablo Sopena-Novales
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Lourdes Álvarez-Sánchez
- Neurology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Miquel Baquero-Toledo
- Neurology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain; Radiology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| |
Collapse
|
12
|
Saaidi R, Rodríguez-Villafuerte M, Alva-Sánchez H, Martínez-Dávalos A. Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system. PLoS One 2024; 19:e0297829. [PMID: 38427663 PMCID: PMC10906883 DOI: 10.1371/journal.pone.0297829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Positron Emission Mammography (PEM) is a valuable molecular imaging technique for breast studies using pharmaceuticals labeled with positron emitters and dual-panel detectors. PEM scanners normally use large scintillation crystals coupled to sensitive photodetectors. Multiple interactions of the 511 keV annihilation photons in the crystals can result in event mispositioning leading to a negative impact in radiopharmaceutical uptake quantification. In this work, we report the study of crystal scatter effects of a large-area dual-panel PEM system designed with either monolithic or pixelated lutetium yttrium orthosilicate (LYSO) crystals using the Monte Carlo simulation platform GATE. The results show that only a relatively small fraction of coincidences (~20%) arise from events where both coincidence photons undergo single interactions (mostly through photoelectric absorption) in the crystals. Most of the coincidences are events where at least one of the annihilation photons undergoes a chain of Compton scatterings: approximately 79% end up in photoelectric absorption while the rest (<1%) escape the detector. Mean positioning errors, calculated as the distance between first hit and energy weighted (assigned) positions of interaction, were 1.70 mm and 1.92 mm for the monolithic and pixelated crystals, respectively. Reconstructed spatial resolution quantification with a miniDerenzo phantom and a list mode iterative reconstruction algorithm shows that, for both crystal types, 2 mm diameter hot rods were resolved, indicating a relatively small effect in spatial resolution. A drastic reduction in peak-to-valley ratios for the same hot-rod diameters was observed, up to a factor of 14 for the monolithic crystals and 7.5 for the pixelated ones.
Collapse
Affiliation(s)
- Rahal Saaidi
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | | | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | - Arnulfo Martínez-Dávalos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| |
Collapse
|
13
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
14
|
Galve P, Arias-Valcayo F, Villa-Abaunza A, Ibáñez P, Udías JM. UMC-PET: a fast and flexible Monte Carlo PET simulator. Phys Med Biol 2024; 69:035018. [PMID: 38198727 DOI: 10.1088/1361-6560/ad1cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Objective.The GPU-based Ultra-fast Monte Carlo positron emission tomography simulator (UMC-PET) incorporates the physics of the emission, transport and detection of radiation in PET scanners. It includes positron range, non-colinearity, scatter and attenuation, as well as detector response. The objective of this work is to present and validate UMC-PET as a a multi-purpose, accurate, fast and flexible PET simulator.Approach.We compared UMC-PET against PeneloPET, a well-validated MC PET simulator, both in preclinical and clinical scenarios. Different phantoms for scatter fraction (SF) assessment following NEMA protocols were simulated in a 6R-SuperArgus and a Biograph mMR scanner, comparing energy histograms, NEMA SF, and sensitivity for different energy windows. A comparison with real data reported in the literature on the Biograph scanner is also shown.Main results.NEMA SF and sensitivity estimated by UMC-PET where within few percent of PeneloPET predictions. The discrepancies can be attributed to small differences in the physics modeling. Running in a 11 GB GeForce RTX 2080 Ti GPU, UMC-PET is ∼1500 to ∼2000 times faster than PeneloPET executing in a single core Intel(R) Xeon(R) CPU W-2155 @ 3.30 GHz.Significance.UMC-PET employs a voxelized scheme for the scanner, patient adjacent objects (such as shieldings or the patient bed), and the activity distribution. This makes UMC-PET extremely flexible. Its high simulation speed allows applications such as MC scatter correction, faster SRM estimation for complex scanners, or even MC iterative image reconstruction.
Collapse
Affiliation(s)
- Pablo Galve
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Fernando Arias-Valcayo
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Amaia Villa-Abaunza
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
15
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
16
|
He W, Zhao Y, Huang W, Zhao X, Niu M, Yang H, Zhang L, Ren Q, Gu Z. A multi-resolution TOF-DOI detector for human brain dedicated PET scanner. Phys Med Biol 2024; 69:025023. [PMID: 38181423 DOI: 10.1088/1361-6560/ad1b6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Objective. We propose a single-ended readout, multi-resolution detector design that can achieve high spatial, depth-of-interaction (DOI), and time-of-flight (TOF) resolutions, as well as high sensitivity for human brain-dedicated positron emission tomography (PET) scanners.Approach. The detector comprised two layers of LYSO crystal arrays and a lightguide in between. The top (gamma ray entrance) layer consisted of a 16 × 16 array of 1.53 × 1.53 × 6 mm3LYSO crystals for providing high spatial resolution. The bottom layer consisted of an 8 × 8 array of 3.0 × 3.0 × 15 mm3LYSO crystals that were one-to-one coupled to an 8 × 8 multipixel photon counter (MPPC) array for providing high TOF resolution. The 2 mm thick lightguide introduces inter-crystal light sharing that causes variations of the light distribution patterns for high DOI resolution. The detector was read out by a PETsys TOFPET2 application-specific integrated circuit.Main result. The top and bottom layers were distinguished by a convolutional neural network with 97% accuracy. All crystals in the top and bottom layers were resolved. The inter-crystal scatter (ICS) events in the bottom layer were identified, and the measured average DOI resolution of the bottom layer was 4.1 mm. The coincidence time resolution (CTR) for the top-top, top-bottom, and bottom-bottom coincidences was 476 ps, 405 ps, and 298 ps, respectively. When ICS events were excluded from the bottom layer, the CTR of the bottom-bottom coincidence was 277 ps.Significance. The top layer of the proposed two-layer detector achieved a high spatial resolution and the bottom layer achieved a high TOF resolution. Together with its high DOI resolution and detection efficiency, the proposed detector is well suited for next-generation high-performance brain-dedicated PET scanners.
Collapse
Affiliation(s)
- Wen He
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Yangyang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Wenjie Huang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Xin Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Ming Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Hang Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Lei Zhang
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Qiushi Ren
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Zheng Gu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| |
Collapse
|
17
|
Fang L, Zhang B, Li B, Zhang X, Zhou X, Yang J, Li A, Shi X, Liu Y, Kreissl M, D'Ascenzo N, Xiao P, Xie Q. Development and evaluation of a new high-TOF-resolution all-digital brain PET system. Phys Med Biol 2024; 69:025019. [PMID: 38100841 DOI: 10.1088/1361-6560/ad164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Objective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.
Collapse
Affiliation(s)
- Lei Fang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ang Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuqing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Michael Kreissl
- Division of Nuclear Medicine, Deprtment of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| | - Peng Xiao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| |
Collapse
|
18
|
Lorenz EA, Su X, Skjæret-Maroni N. A review of combined functional neuroimaging and motion capture for motor rehabilitation. J Neuroeng Rehabil 2024; 21:3. [PMID: 38172799 PMCID: PMC10765727 DOI: 10.1186/s12984-023-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Technological advancements in functional neuroimaging and motion capture have led to the development of novel methods that facilitate the diagnosis and rehabilitation of motor deficits. These advancements allow for the synchronous acquisition and analysis of complex signal streams of neurophysiological data (e.g., EEG, fNIRS) and behavioral data (e.g., motion capture). The fusion of those data streams has the potential to provide new insights into cortical mechanisms during movement, guide the development of rehabilitation practices, and become a tool for assessment and therapy in neurorehabilitation. RESEARCH OBJECTIVE This paper aims to review the existing literature on the combined use of motion capture and functional neuroimaging in motor rehabilitation. The objective is to understand the diversity and maturity of technological solutions employed and explore the clinical advantages of this multimodal approach. METHODS This paper reviews literature related to the combined use of functional neuroimaging and motion capture for motor rehabilitation following the PRISMA guidelines. Besides study and participant characteristics, technological aspects of the used systems, signal processing methods, and the nature of multimodal feature synchronization and fusion were extracted. RESULTS Out of 908 publications, 19 were included in the final review. Basic or translation studies were mainly represented and based predominantly on healthy participants or stroke patients. EEG and mechanical motion capture technologies were most used for biomechanical data acquisition, and their subsequent processing is based mainly on traditional methods. The system synchronization techniques at large were underreported. The fusion of multimodal features mainly supported the identification of movement-related cortical activity, and statistical methods were occasionally employed to examine cortico-kinematic relationships. CONCLUSION The fusion of motion capture and functional neuroimaging might offer advantages for motor rehabilitation in the future. Besides facilitating the assessment of cognitive processes in real-world settings, it could also improve rehabilitative devices' usability in clinical environments. Further, by better understanding cortico-peripheral coupling, new neuro-rehabilitation methods can be developed, such as personalized proprioceptive training. However, further research is needed to advance our knowledge of cortical-peripheral coupling, evaluate the validity and reliability of multimodal parameters, and enhance user-friendly technologies for clinical adaptation.
Collapse
Affiliation(s)
- Emanuel A Lorenz
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Xiaomeng Su
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nina Skjæret-Maroni
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med 2024; 38:31-70. [PMID: 37952197 PMCID: PMC10766666 DOI: 10.1007/s12149-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
20
|
Taha A, Alassi A, Gjedde A, Wong DF. Transforming Neurology and Psychiatry: Organ-specific PET Instrumentation and Clinical Applications. PET Clin 2024; 19:95-103. [PMID: 37813719 DOI: 10.1016/j.cpet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
PET technology has immense potential for furthering understanding of the brain and associated disorders, including advancements in high-resolution tomographs and hybrid imaging modalities. Novel radiotracers targeting specific neurotransmitter systems and molecular markers provide opportunities to unveil intricate mechanisms underlying neurologic and psychiatric conditions. As PET imaging techniques and analysis methods continue to be refined, the field is poised to make significant contributions to personalized medicine for more targeted and effective interventions. PET instrumentation has advanced the fields of neurology and psychiatry, providing insights into pathophysiology and development of effective treatments.
Collapse
Affiliation(s)
- Ahmed Taha
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Amer Alassi
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Albert Gjedde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Neuroscience, University of Copenhagen, Denmark
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St Louis, Saint Louis, MO, USA.
| |
Collapse
|
21
|
Allen MS, Scipioni M, Catana C. New Horizons in Brain PET Instrumentation. PET Clin 2024; 19:25-36. [PMID: 37806894 PMCID: PMC10840690 DOI: 10.1016/j.cpet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Dedicated brain PET scanners are optimized to provide high sensitivity and high spatial resolution compared with existing whole-body PET systems, and they can be much cheaper to produce and install in various clinical and research settings. Advancements in detector technology over the past few years have placed several standalone PET, PET/computed tomography, and PET/MR systems on or near the commercial market; the features and capabilities of these systems will be reviewed here.
Collapse
Affiliation(s)
- Magdelena S Allen
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Department of Physics, Massachusetts Institute of Technology
| | - Michele Scipioni
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Harvard Medical School
| | - Ciprian Catana
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Harvard Medical School.
| |
Collapse
|
22
|
Kanel P, Carli G, Vangel R, Roytman S, Bohnen NI. Challenges and innovations in brain PET analysis of neurodegenerative disorders: a mini-review on partial volume effects, small brain region studies, and reference region selection. Front Neurosci 2023; 17:1293847. [PMID: 38099203 PMCID: PMC10720329 DOI: 10.3389/fnins.2023.1293847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Positron Emission Tomography (PET) brain imaging is increasingly utilized in clinical and research settings due to its unique ability to study biological processes and subtle changes in living subjects. However, PET imaging is not without its limitations. Currently, bias introduced by partial volume effect (PVE) and poor signal-to-noise ratios of some radiotracers can hamper accurate quantification. Technological advancements like ultra-high-resolution scanners and improvements in radiochemistry are on the horizon to address these challenges. This will enable the study of smaller brain regions and may require more sophisticated methods (e.g., data-driven approaches like unsupervised clustering) for reference region selection and to improve quantification accuracy. This review delves into some of these critical aspects of PET molecular imaging and offers suggested strategies for improvement. This will be illustrated by showing examples for dopaminergic and cholinergic nerve terminal ligands.
Collapse
Affiliation(s)
- Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Giulia Carli
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Robert Vangel
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Yoshida E, Obata F, Yamaya T. Calibration method of crosshair light sharing PET detector with TOF and DOI capabilities. Biomed Phys Eng Express 2023; 9:055031. [PMID: 37586333 DOI: 10.1088/2057-1976/acf0c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Objective. A crosshair light sharing (CLS) PET detector as a TOF-DOI PET detector with high spatial resolution has been developed. To extend that work, a detector calibration method was developed to achieve both higher coincidence resolving time (CRT) and DOI resolution.Approach. The CLS PET detector uses a three-layer reflective material in a two-dimensional crystal array to form a loop structure within a pair of crystals, enabling a CRT of about 300 ps and acquisition of DOI from multi-pixel photon counter (MPPC) output ratios. The crystals were 1.45 × 1.45 × 15 mm3fast LGSO, and the crystal array was optically coupled to an MPPC array. It is important to reduce as many inter-crystal scattering (ICS) events as possible in advance for the accurate detector calibration. DOI information is also expected to improve the CRT because it can estimate the time delay due to the detection depth of crystals.Main results. Using crystal identification and light collection rate of the highest MPPC output reduces the number of ICS events, and CRT is improved by 26%. In addition, CRT is further improved by 13% with a linear correction of time delay as a function of energy. The DOI is ideally estimated from the output ratio of only the MPPC pairs optically coupled to the interacted crystals, which is highly accurate, but the error is large due to light leakage in actual use. The previous method, which also utilizes light leakage to calculate the output ratio, is less accurate, but the error can be reduced. Using the average of the two methods, it is possible to improve the DOI resolution by 12% while maintaining the smaller error.Significance. By applying the developed calibration method, the CLS PET detector achieves the CRT of 251 ps and the DOI resolution of 3.3 mm.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Fujino Obata
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
24
|
Gandia-Ferrero MT, Torres-Espallardo I, Martínez-Sanchis B, Morera-Ballester C, Muñoz E, Sopena-Novales P, González-Pavón G, Martí-Bonmatí L. Objective Image Quality Comparison Between Brain-Dedicated PET and PET/CT Scanners. J Med Syst 2023; 47:88. [PMID: 37589893 DOI: 10.1007/s10916-023-01984-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
As part of a clinical validation of a new brain-dedicated PET system (CMB), image quality of this scanner has been compared to that of a whole-body PET/CT scanner. To that goal, Hoffman phantom and patient data were obtined with both devices. Since CMB does not use a CT for attenuation correction (AC) which is crucial for PET images quality, this study includes the evaluation of CMB PET images using emission-based or CT-based attenuation maps. PET images were compared using 34 image quality metrics. Moreover, a neural network was used to evaluate the degree of agreement between both devices on the patients diagnosis prediction. Overall, results showed that CMB images have higher contrast and recovery coefficient but higher noise than PET/CT images. Although SUVr values presented statistically significant differences in many brain regions, relative differences were low. An asymmetry between left and right hemispheres, however, was identified. Even so, the variations between the two devices were minor. Finally, there is a greater similarity between PET/CT and CMB CT-based AC PET images than between PET/CT and the CMB emission-based AC PET images.
Collapse
Affiliation(s)
- Maria Teresa Gandia-Ferrero
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València, 46026, Spain.
| | - Irene Torres-Espallardo
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València, 46026, Spain
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València, 46026, Spain
| | - Begoña Martínez-Sanchis
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València, 46026, Spain
| | | | - Enrique Muñoz
- Oncovision, Carrer de Jeroni de Montsoriu, 92, València, 46022, Spain
| | - Pablo Sopena-Novales
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València, 46026, Spain
| | | | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València, 46026, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València, 46026, Spain
| |
Collapse
|
25
|
Raymond C, Jurkiewicz MT, Orunmuyi A, Liu L, Dada MO, Ladefoged CN, Teuho J, Anazodo UC. The performance of machine learning approaches for attenuation correction of PET in neuroimaging: A meta-analysis. J Neuroradiol 2023; 50:315-326. [PMID: 36738990 DOI: 10.1016/j.neurad.2023.01.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE This systematic review provides a consensus on the clinical feasibility of machine learning (ML) methods for brain PET attenuation correction (AC). Performance of ML-AC were compared to clinical standards. METHODS Two hundred and eighty studies were identified through electronic searches of brain PET studies published between January 1, 2008, and August 1, 2022. Reported outcomes for image quality, tissue classification performance, regional and global bias were extracted to evaluate ML-AC performance. Methodological quality of included studies and the quality of evidence of analysed outcomes were assessed using QUADAS-2 and GRADE, respectively. RESULTS A total of 19 studies (2371 participants) met the inclusion criteria. Overall, the global bias of ML methods was 0.76 ± 1.2%. For image quality, the relative mean square error (RMSE) was 0.20 ± 0.4 while for tissues classification, the Dice similarity coefficient (DSC) for bone/soft tissue/air were 0.82 ± 0.1 / 0.95 ± 0.03 / 0.85 ± 0.14. CONCLUSIONS In general, ML-AC performance is within acceptable limits for clinical PET imaging. The sparse information on ML-AC robustness and its limited qualitative clinical evaluation may hinder clinical implementation in neuroimaging, especially for PET/MRI or emerging brain PET systems where standard AC approaches are not readily available.
Collapse
Affiliation(s)
- Confidence Raymond
- Department of Medical Biophysics, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Michael T Jurkiewicz
- Department of Medical Biophysics, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Medical Imaging, Western University, London, ON, Canada
| | - Akintunde Orunmuyi
- Kenyatta University Teaching, Research and Referral Hospital, Nairobi, Kenya
| | - Linshan Liu
- Lawson Health Research Institute, London, ON, Canada
| | | | - Claes N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark
| | - Jarmo Teuho
- Turku PET Centre, Turku University, Turku, Finland; Turku University Hospital, Turku, Finland
| | - Udunna C Anazodo
- Department of Medical Biophysics, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Montreal Neurological Institute, 3801 Rue University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
26
|
Zeng X, Wang Z, Tan W, Petersen E, Cao X, LaBella A, Boccia A, Franceschi D, de Leon M, Chiang GCY, Qi J, Biegon A, Zhao W, Goldan AH. A conformal TOF-DOI Prism-PET prototype scanner for high-resolution quantitative neuroimaging. Med Phys 2023; 50:10.1002/mp.16223. [PMID: 36651630 PMCID: PMC11025680 DOI: 10.1002/mp.16223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) has had a transformative impact on oncological and neurological applications. However, still much of PET's potential remains untapped with limitations primarily driven by low spatial resolution, which severely hampers accurate quantitative PET imaging via the partial volume effect (PVE). PURPOSE We present experimental results of a practical and cost-effective ultra-high resolution brain-dedicated PET scanner, using our depth-encoding Prism-PET detectors arranged along a compact and conformal gantry, showing substantial reduction in PVE and accurate radiotracer uptake quantification in small regions. METHODS The decagon-shaped prototype scanner has a long diameter of 38.5 cm, a short diameter of 29.1 cm, and an axial field-of-view (FOV) of 25.5 mm with a single ring of 40 Prism-PET detector modules. Each module comprises a 16 × 16 array of 1.5 × 1.5 × 20-mm3 lutetium yttrium oxyorthosillicate (LYSO) scintillator crystals coupled 4-to-1 to an 8 × 8 array of silicon photomultiplier (SiPM) pixels on one end and to a prismatoid light guide array on the opposite end. The scanner's performance was evaluated by measuring depth-of-interaction (DOI) resolution, energy resolution, timing resolution, spatial resolution, sensitivity, and image quality of ultra-micro Derenzo and three-dimensional (3D) Hoffman brain phantoms. RESULTS The full width at half maximum (FWHM) DOI, energy, and timing resolutions of the scanner are 2.85 mm, 12.6%, and 271 ps, respectively. Not considering artifacts due to mechanical misalignment of detector blocks, the intrinsic spatial resolution is 0.89-mm FWHM. Point source images reconstructed with 3D filtered back-projection (FBP) show an average spatial resolution of 1.53-mm FWHM across the entire FOV. The peak absolute sensitivity is 1.2% for an energy window of 400-650 keV. The ultra-micro Derenzo phantom study demonstrates the highest reported spatial resolution performance for a human brain PET scanner with perfect reconstruction of 1.00-mm diameter hot-rods. Reconstructed images of customized Hoffman brain phantoms prove that Prism-PET enables accurate radiotracer uptake quantification in small brain regions (2-3 mm). CONCLUSIONS Prism-PET will substantially strengthen the utility of quantitative PET in neurology for early diagnosis of neurodegenerative diseases, and in neuro-oncology for improved management of both primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Xinjie Zeng
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Zipai Wang
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Wanbin Tan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Eric Petersen
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Xinjie Cao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Andy LaBella
- Department of Radiology, Boston children’s Hospital, Boston, MA, US
| | - Anthony Boccia
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| | - Gloria Chia-Yi Chiang
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, CA, US
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| |
Collapse
|
27
|
Ishii K, Hanaoka K, Watanabe S, Morimoto-Ishikawa D, Yamada T, Kaida H, Yamakawa Y, Minagawa S, Takenouchi S, Ohtani A, Mizuta T. High-Resolution Silicon Photomultiplier Time-of-Flight Dedicated Head PET System for Clinical Brain Studies. J Nucl Med 2023; 64:153-158. [PMID: 35798557 PMCID: PMC9841263 DOI: 10.2967/jnumed.122.264080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
We acquired brain 18F-FDG and 18F-flutemetamol PET images using a time-of-flight system dedicated to the head (dhPET) and a conventional whole-body PET/CT (wbPET) system and evaluated the clinical superiority of dhPET over wbPET. Methods: There were 18 subjects for the 18F-FDG PET study and 17 subjects for the 18F-flutemetamol PET study. 18F-FDG PET images were first obtained using wbPET, followed by dhPET. 18F-flutemetamol PET images were first obtained using wbPET, followed by dhPET. Images acquired using dhPET and wbPET were compared by visual inspection, voxelwise analysis, and SUV ratio (SUVR). Results: All 18F-FDG and 18F-flutemetamol images acquired using dhPET were judged as visually better than those acquired using wbPET. The voxelwise analysis demonstrated that accumulations in the cerebellum, in the lateral occipital cortices, and around the central sulcus area in dhPET 18F-FDG images were lower than those in wbPET 18F-FDG images, whereas accumulations around the ventricle systems were higher in dhPET 18F-FDG images than those in wbPET 18F-FDG images. Accumulations in the cerebellar dentate nucleus, in the midbrain, in the lateral occipital cortices, and around the central sulcus area in dhPET images were lower than those in wbPET images, whereas accumulations around the ventricle systems were higher in dhPET 18F-flutemetamol images than those in wbPET 18F-flutemetamol images. The mean cortical SUVRs of 18F-FDG and 18F-flutemetamol dhPET images were significantly higher than those of 18F-FDG and 18F-flutemetamol wbPET images, respectively. Conclusion: The dhPET images had better image quality by visual inspection and higher SUVRs than wbPET images. Although there were several regional accumulation differences between dhPET and wbPET images, understanding this phenomenon will enable full use of the features of this dhPET system in clinical practice.
Collapse
Affiliation(s)
- Kazunari Ishii
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan; .,Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Shota Watanabe
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Daisuke Morimoto-Ishikawa
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Takahiro Yamada
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | - Hayato Kaida
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan;,Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, Osakasayama, Japan; and
| | | | - Suzuka Minagawa
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | | | - Atsushi Ohtani
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Tetsuro Mizuta
- Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
28
|
Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, Jurkiewicz MT, Shao X, Oyeniran O, Manson T, Wang DJJ, Günther M, Achten E, Mutsaerts HJMM, Anazodo UC. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Front Aging Neurosci 2023; 15:1132077. [PMID: 37139088 PMCID: PMC10150073 DOI: 10.3389/fnagi.2023.1132077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
The blood-brain barrier (BBB) consists of specialized cells that tightly regulate the in- and outflow of molecules from the blood to brain parenchyma, protecting the brain's microenvironment. If one of the BBB components starts to fail, its dysfunction can lead to a cascade of neuroinflammatory events leading to neuronal dysfunction and degeneration. Preliminary imaging findings suggest that BBB dysfunction could serve as an early diagnostic and prognostic biomarker for a number of neurological diseases. This review aims to provide clinicians with an overview of the emerging field of BBB imaging in humans by answering three key questions: (1. Disease) In which diseases could BBB imaging be useful? (2. Device) What are currently available imaging methods for evaluating BBB integrity? And (3. Distribution) what is the potential of BBB imaging in different environments, particularly in resource limited settings? We conclude that further advances are needed, such as the validation, standardization and implementation of readily available, low-cost and non-contrast BBB imaging techniques, for BBB imaging to be a useful clinical biomarker in both resource-limited and well-resourced settings.
Collapse
Affiliation(s)
- Paulien Moyaert
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
- Lawson Health Research Institute, London, ON, Canada
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- *Correspondence: Paulien Moyaert,
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Catherine A. Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Olujide Oyeniran
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Tabitha Manson
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine, University of Bremen, Bremen, Germany
| | - Eric Achten
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Udunna C. Anazodo
- Lawson Health Research Institute, London, ON, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Morimoto-Ishikawa D, Hanaoka K, Watanabe S, Yamada T, Yamakawa Y, Minagawa S, Takenouchi S, Ohtani A, Mizuta T, Kaida H, Ishii K. Evaluation of the performance of a high-resolution time-of-flight PET system dedicated to the head and breast according to NEMA NU 2-2012 standard. EJNMMI Phys 2022; 9:88. [PMID: 36525103 PMCID: PMC9758266 DOI: 10.1186/s40658-022-00518-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study evaluated the physical performance of a positron emission tomography (PET) system dedicated to the head and breast according to the National Electrical Manufacturers Association (NEMA) NU2-2012 standard. METHODS The spatial resolution, sensitivity, scatter fraction, count rate characteristics, corrections for count losses and randoms, and image quality of the system were determined. All measurements were performed according to the NEMA NU2-2012 acquisition protocols, but image quality was assessed using a brain-sized phantom. Furthermore, scans of the three-dimensional (3D) Hoffmann brain phantom and mini-Derenzo phantom were acquired to allow visual evaluation of the imaging performance for small structures. RESULTS The tangential, radial, and axial full width at half maximum (FWHM) at a 10-mm offset in half the axial field of view were measured as 2.3, 2.5, and 2.9 mm, respectively. The average system sensitivity at the center of the field of view and at a 10-cm radial offset was 7.18 and 8.65 cps/kBq, respectively. The peak noise-equivalent counting rate was 35.2 kcps at 4.8 kBq/ml. The corresponding scatter fraction at the peak noise-equivalent counting rate was 46.8%. The peak true rate and scatter fraction at 8.6 kBq/ml were 127.8 kcps and 54.3%, respectively. The percent contrast value for a 10-mm sphere was approximately 50%. On the 3D Hoffman brain phantom image, the structures of the thin layers composing the phantom were visualized on the sagittal and coronal images. On the mini-Derenzo phantom, each of the 1.6-mm rods was clearly visualized. CONCLUSION Taken together, these results indicate that the head- and breast-dedicated PET system has high resolution and is well suited for clinical PET imaging.
Collapse
Affiliation(s)
- Daisuke Morimoto-Ishikawa
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Kohei Hanaoka
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Shota Watanabe
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Takahiro Yamada
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Yoshiyuki Yamakawa
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Suzuka Minagawa
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Shiho Takenouchi
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Atsushi Ohtani
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Tetsuro Mizuta
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Hayato Kaida
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan ,grid.258622.90000 0004 1936 9967Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazunari Ishii
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan ,grid.258622.90000 0004 1936 9967Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
30
|
Issa ASM, Scheins J, Tellmann L, Lopez-Montes A, Herraiz JL, Brambilla CR, Herzog H, Neuner I, Jon Shah N, Lerche C. A detector block-pairwise dead time correction method for improved quantitation with a dedicated BrainPET scanner. Phys Med Biol 2022; 67:235004. [PMID: 36356317 DOI: 10.1088/1361-6560/aca1f3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
Abstract
'Objective. Dead time correction (DTC) is an important factor in ensuring accurate quantification in PET measurements. This is currently often achieved using a global DTC method, i.e., an average DTC factor is computed. For PET scanners designed to image dedicated organs, e.g., those used in brain imaging or positron emission mammography (PEM), a substantial amount of the administered radioactivity is located outside of the PET field-of-view (FOV). This activity contributes to the dead time (DT) of the scintillation detectors. Moreover, the count rates of the individual scintillation detectors are potentially very inhomogeneous due to the specific irradiation of each detector, especially for combined MR/PET systems, where radiation shields cannot be applied. Approach: We have developed a block-pairwise DTC method for our Siemens 3T MR BrainPET insert by extending a previously published method that uses the delayed random coincidence count rate to estimate the DT in the individual scans and planes (i.e., scintillation pixel rings). The method was validated in decay experiments using phantoms with a homogenous activity concentration and with and without out-of-FOV activity. Based on a three-compartment phantom, we compared the accuracy and noise properties of the block-pairwise DTC and the global DTC method.Main results. The currently used global DTC led to a substantial positive bias in regions with high activity; the block-pairwise DTC resulted in substantially less bias. The noise level for the block-pairwise DTC was comparable to the global DTC and image reconstructions without any DTC. Finally, we tested the block-pairwise DTC with a data set obtained from volunteer measurements using the mGluR5 (metabotropic glutamate receptor subtype 5) antagonist [11C]ABP688. When the relative differences in activity concentrations obtained with global DTC and block-pairwise DTC for the ACC and the cerebellum GM were compared, the ratios differed by a factor of up to 1.4 at the beginning-when the first injection is administered as a bolus with high radioactivity.Significance. In this work, global DTC was shown to have the potential to introduce quantification bias, while better quantitation accuracy was achieved with the presented block-pairwise DTC method. The method can be implemented in all systems that use the delayed window technique and is particulary expected to improve the quantiation accuracy of dedicated brain PET scanners due to their geometry.'
Collapse
Affiliation(s)
- Ahlam Said Mohamad Issa
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN-Translational Medicine, Aachen, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Lutz Tellmann
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Alejandro Lopez-Montes
- Nuclear Physics Group and IPARCOS, University: Complutense University of Madrid, Madrid, Spain
| | - Joaquin L Herraiz
- Nuclear Physics Group and IPARCOS, University: Complutense University of Madrid, Madrid, Spain
| | | | - Hans Herzog
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN-Translational Medicine, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN-Translational Medicine, Aachen, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
31
|
Towards high sensitivity and high-resolution PET scanners: imaging-guided proton therapy and total body imaging. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Quantitative imaging (i.e., providing not just an image but also the related data) guidance in proton radiation therapy to achieve and monitor the precision of planned radiation energy deposition field in-vivo (a.k.a. proton range verification) is one of the most under-invested aspects of radiation cancer treatment despite that it may dramatically enhance the treatment accuracy and lower the exposure related toxicity improving the entire outcome of cancer therapy. In this article, we briefly describe the effort of the TPPT Consortium (a collaborative effort of groups from the University of Texas and Portugal) on building a time-of-flight positron-emission-tomography (PET) scanner to be used in pre-clinical studies for proton therapy at MD Anderson Proton Center in Houston. We also discuss some related ideas towards improving and expanding the use of PET detectors, including the total body imaging.
Collapse
|
32
|
Flaus A, Deddah T, Reilhac A, Leiris ND, Janier M, Merida I, Grenier T, McGinnity CJ, Hammers A, Lartizien C, Costes N. PET image enhancement using artificial intelligence for better characterization of epilepsy lesions. Front Med (Lausanne) 2022; 9:1042706. [PMID: 36465898 PMCID: PMC9708713 DOI: 10.3389/fmed.2022.1042706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2023] Open
Abstract
INTRODUCTION [18F]fluorodeoxyglucose ([18F]FDG) brain PET is used clinically to detect small areas of decreased uptake associated with epileptogenic lesions, e.g., Focal Cortical Dysplasias (FCD) but its performance is limited due to spatial resolution and low contrast. We aimed to develop a deep learning-based PET image enhancement method using simulated PET to improve lesion visualization. METHODS We created 210 numerical brain phantoms (MRI segmented into 9 regions) and assigned 10 different plausible activity values (e.g., GM/WM ratios) resulting in 2100 ground truth high quality (GT-HQ) PET phantoms. With a validated Monte-Carlo PET simulator, we then created 2100 simulated standard quality (S-SQ) [18F]FDG scans. We trained a ResNet on 80% of this dataset (10% used for validation) to learn the mapping between S-SQ and GT-HQ PET, outputting a predicted HQ (P-HQ) PET. For the remaining 10%, we assessed Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Root Mean Squared Error (RMSE) against GT-HQ PET. For GM and WM, we computed recovery coefficients (RC) and coefficient of variation (COV). We also created lesioned GT-HQ phantoms, S-SQ PET and P-HQ PET with simulated small hypometabolic lesions characteristic of FCDs. We evaluated lesion detectability on S-SQ and P-HQ PET both visually and measuring the Relative Lesion Activity (RLA, measured activity in the reduced-activity ROI over the standard-activity ROI). Lastly, we applied our previously trained ResNet on 10 clinical epilepsy PETs to predict the corresponding HQ-PET and assessed image quality and confidence metrics. RESULTS Compared to S-SQ PET, P-HQ PET improved PNSR, SSIM and RMSE; significatively improved GM RCs (from 0.29 ± 0.03 to 0.79 ± 0.04) and WM RCs (from 0.49 ± 0.03 to 1 ± 0.05); mean COVs were not statistically different. Visual lesion detection improved from 38 to 75%, with average RLA decreasing from 0.83 ± 0.08 to 0.67 ± 0.14. Visual quality of P-HQ clinical PET improved as well as reader confidence. CONCLUSION P-HQ PET showed improved image quality compared to S-SQ PET across several objective quantitative metrics and increased detectability of simulated lesions. In addition, the model generalized to clinical data. Further evaluation is required to study generalization of our method and to assess clinical performance in larger cohorts.
Collapse
Affiliation(s)
- Anthime Flaus
- Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France
- CERMEP-Life Imaging, Lyon, France
| | | | - Anthonin Reilhac
- Brain Health Imaging Centre, Center for Addiction and Mental Health (CAHMS), Toronto, ON, Canada
| | - Nicolas De Leiris
- Departement of Nuclear Medicine, CHU Grenoble Alpes, University Grenoble Alpes, Grenoble, France
- Laboratoire Radiopharmaceutiques Biocliniques, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Marc Janier
- Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Thomas Grenier
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Colm J. McGinnity
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Alexander Hammers
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carole Lartizien
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, CREATIS UMR 5220, Lyon, France
| | - Nicolas Costes
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France
- CERMEP-Life Imaging, Lyon, France
| |
Collapse
|
33
|
Akamatsu G, Takahashi M, Tashima H, Iwao Y, Yoshida E, Wakizaka H, Kumagai M, Yamashita T, Yamaya T. Performance evaluation of VRAIN: a brain-dedicated PET with a hemispherical detector arrangement. Phys Med Biol 2022; 67. [PMID: 36317319 DOI: 10.1088/1361-6560/ac9e87] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Objective.For PET imaging systems, a smaller detector ring enables less intrinsic spatial resolution loss due to the photon non-collinearity effect as well as better balance between production cost and sensitivity, and a hemispherical detector arrangement is more appropriate for brain imaging than a conventional cylindrical arrangement. Therefore, we have developed a brain-dedicated PET system with a hemispherical detector arrangement, which has been commercialized in Japan under the product name of VRAINTM. In this study, we evaluated imaging performance of VRAIN.Approach.The VRAIN used 54 detectors to form the main hemispherical unit and an additional half-ring behind the neck. Each detector was composed of a 12 × 12 array of lutetium fine silicate crystals (4.1 × 4.1 × 10 mm3) and a 12 × 12 array of silicon photomultipliers (4 × 4 mm2active area) with the one-to-one coupling. We evaluated the physical performance of VRAIN according to the NEMA NU 2-2018 standards. Some measurements were modified so as to fit the hemispherical geometry. In addition, we performed18F-FDG imaging in a healthy volunteer.Main results.In the phantom study, the VRAIN showed high resolution for separating 2.2 mm rods, 229 ps TOF resolution and 19% scatter fraction. With the TOF gain for a 20 cm diameter object (an assumed head diameter), the peak noise-equivalent count rate was 144 kcps at 9.8 kBq ml-1and the sensitivity was 25 kcps MBq-1. Overall, the VRAIN provided excellent image quality in phantom and human studies. In the human FDG images, small brain nuclei and gray matter structures were clearly visualized with high contrast and low noise.Significance.We demonstrated the excellent imaging performance of VRAIN, which supported the advantages of the hemispherical detector arrangement.
Collapse
Affiliation(s)
- Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hideaki Tashima
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yuma Iwao
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Eiji Yoshida
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | | | | | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
34
|
Sanaat A, Jamalizadeh M, Khanmohammadi H, Arabi H, Zaidi H. Active-PET: a multifunctional PET scanner with dynamic gantry size featuring high-resolution and high-sensitivity imaging: a Monte Carlo simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Organ-specific PET scanners have been developed to provide both high spatial resolution and sensitivity, although the deployment of several dedicated PET scanners at the same center is costly and space-consuming. Active-PET is a multifunctional PET scanner design exploiting the advantages of two different types of detector modules and mechanical arms mechanisms enabling repositioning of the detectors to allow the implementation of different geometries/configurations. Active-PET can be used for different applications, including brain, axilla, breast, prostate, whole-body, preclinical and pediatrics imaging, cell tracking, and image guidance for therapy. Monte Carlo techniques were used to simulate a PET scanner with two sets of high resolution and high sensitivity pixelated Lutetium Oxyorthoscilicate (LSO(Ce)) detector blocks (24 for each group, overall 48 detector modules for each ring), one with large pixel size (4 × 4 mm2) and crystal thickness (20 mm), and another one with small pixel size (2 × 2 mm2) and thickness (10 mm). Each row of detector modules is connected to a linear motor that can displace the detectors forward and backward along the radial axis to achieve variable gantry diameter in order to image the target subject at the optimal/desired resolution and/or sensitivity. At the center of the field-of-view, the highest sensitivity (15.98 kcps MBq−1) was achieved by the scanner with a small gantry and high-sensitivity detectors while the best spatial resolution was obtained by the scanner with a small gantry and high-resolution detectors (2.2 mm, 2.3 mm, 2.5 mm FWHM for tangential, radial, and axial, respectively). The configuration with large-bore (combination of high-resolution and high-sensitivity detectors) achieved better performance and provided higher image quality compared to the Biograph mCT as reflected by the 3D Hoffman brain phantom simulation study. We introduced the concept of a non-static PET scanner capable of switching between large and small field-of-view as well as high-resolution and high-sensitivity imaging.
Collapse
|
35
|
Wang Z, Cao X, LaBella A, Zeng X, Biegon A, Franceschi D, Petersen E, Clayton N, Ulaner GA, Zhao W, Goldan AH. High-resolution and high-sensitivity PET for quantitative molecular imaging of the monoaminergic nuclei: A GATE simulation study. Med Phys 2022; 49:4430-4444. [PMID: 35390182 PMCID: PMC11025683 DOI: 10.1002/mp.15653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Quantitative in vivo molecular imaging of fine brain structures requires high-spatial resolution and high-sensitivity. Positron emission tomography (PET) is an attractive candidate to introduce molecular imaging into standard clinical care due to its highly targeted and versatile imaging capabilities based on the radiotracer being used. However, PET suffers from relatively poor spatial resolution compared to other clinical imaging modalities, which limits its ability to accurately quantify radiotracer uptake in brain regions and nuclei smaller than 3 mm in diameter. Here we introduce a new practical and cost-effective high-resolution and high-sensitivity brain-dedicated PET scanner, using our depth-encoding Prism-PET detector modules arranged in a conformal decagon geometry, to substantially reduce the partial volume effect and enable accurate radiotracer uptake quantification in small subcortical nuclei. METHODS Two Prism-PET brain scanner setups were proposed based on our 4-to-1 and 9-to-1 coupling of scintillators to readout pixels using1.5 × 1.5 × 20 $1.5 \times 1.5 \times 20$ mm3 and0.987 × 0.987 × 20 $0.987 \times 0.987 \times 20$ mm3 crystal columns, respectively. Monte Carlo simulations of our Prism-PET scanners, Siemens Biograph Vision, and United Imaging EXPLORER were performed using Geant4 application for tomographic emission (GATE). National Electrical Manufacturers Association (NEMA) standard was followed for the evaluation of spatial resolution, sensitivity, and count-rate performance. An ultra-micro hot spot phantom was simulated for assessing image quality. A modified Zubal brain phantom was utilized for radiotracer imaging simulations of 5-HT1A receptors, which are abundant in the raphe nuclei (RN), and norepinephrine transporters, which are highly concentrated in the bilateral locus coeruleus (LC). RESULTS The Prism-PET brain scanner with 1.5 mm crystals is superior to that with 1 mm crystals as the former offers better depth-of-interaction (DOI) resolution, which is key to realizing compact and conformal PET scanner geometries. We achieved uniform 1.3 mm full-width-at-half-maximum (FWHM) spatial resolutions across the entire transaxial field-of-view (FOV), a NEMA sensitivity of 52.1 kcps/MBq, and a peak noise equivalent count rate (NECR) of 957.8 kcps at 25.2 kBq/mL using 450-650 keV energy window. Hot spot phantom results demonstrate that our scanner can resolve regions as small as 1.35 mm in diameter at both center and 10 cm away from the center of the transaixal FOV. Both 5-HT1A receptor and norepinephrine transporter brain simulations prove that our Prism-PET scanner enables accurate quantification of radiotracer uptake in small brain regions, with a 1.8-fold and 2.6-fold improvement in the dorsal RN as well as a 3.2-fold and 4.4-fold improvement in the bilateral LC compared to the Biograph Vision and EXPLORER, respectively. CONCLUSIONS Based on our simulation results, the proposed high-resolution and high-sensitivity Prism-PET brain scanner is a promising cost-effective candidate to achieve quantitative molecular neuroimaging of small but important brain regions with PET clinically viable.
Collapse
Affiliation(s)
- Zipai Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Andy LaBella
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xinjie Zeng
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Clayton
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gary A. Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
36
|
Dao V, Mikhaylova E, Ahnen ML, Fischer J, Thielemans K, Tsoumpas C. Evaluation of STIR Library Adapted for PET Scanners with Non-Cylindrical Geometry. J Imaging 2022; 8:jimaging8060172. [PMID: 35735971 PMCID: PMC9225016 DOI: 10.3390/jimaging8060172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
Software for Tomographic Image Reconstruction (STIR) is an open source C++ library used to reconstruct single photon emission tomography and positron emission tomography (PET) data. STIR has an experimental scanner geometry modelling feature to accurately model detector placement. In this study, we test and improve this new feature using several types of data: Monte Carlo simulations and measured phantom data acquired from a dedicated brain PET prototype scanner. The results show that the new geometry class applied to non-cylindrical PET scanners improved spatial resolution, uniformity, and image contrast. These are directly observed in the reconstructions of small features in the test quality phantom. Overall, we conclude that the revised "BlocksOnCylindrical" class will be a valuable addition to the next STIR software release with adjustments of existing features (Single Scatter Simulation, forward projection, attenuation corrections) to "BlocksOnCylindrical".
Collapse
Affiliation(s)
- Viet Dao
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence:
| | | | - Max L. Ahnen
- Positrigo AG, 8005 Zurich, Switzerland; (E.M.); (M.L.A.); (J.F.)
- Institute of Particle Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Jannis Fischer
- Positrigo AG, 8005 Zurich, Switzerland; (E.M.); (M.L.A.); (J.F.)
- Institute of Particle Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London NW1 2BU, UK;
- Centre for Medical Image Computing, UCL, Gower Street, London WC1E 6BT, UK
- Algorithms Software Consulting Ltd., London SW15 5HX, UK
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
37
|
Barthel H, Villemagne VL, Drzezga A. Future Directions in Molecular Imaging of Neurodegenerative Disorders. J Nucl Med 2022; 63:68S-74S. [PMID: 35649650 DOI: 10.2967/jnumed.121.263202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The improvement of existing techniques and the development of new molecular imaging methods are an exciting and rapidly developing field in clinical care and research of neurodegenerative disorders. In the clinic, molecular imaging has the potential to improve early and differential diagnosis and to stratify and monitor therapy in these disorders. Meanwhile, in research, these techniques improve our understanding of the underlying pathophysiology and pathobiochemistry of these disorders and allow for drug testing. This article is an overview on our perspective on future developments in neurodegeneration tracers and the associated imaging technologies. For example, we predict that the current portfolio of β-amyloid and tau aggregate tracers will be improved and supplemented by tracers allowing imaging of other protein aggregation pathologies, such as α-synuclein and transactive response DNA binding protein 43 kDa. Future developments will likely also be observed in imaging neurotransmitter systems. This refers to both offering imaging to a broader population in cases involving the dopaminergic, cholinergic, and serotonergic systems and making possible the imaging of systems not yet explored, such as the glutamate and opioid systems. Tracers will be complemented by improved tracers of neuroinflammation and synaptic density. Technologywise, the use of hybrid PET/MRI, dedicated brain PET, and total-body PET scanners, as well as advanced image acquisition and processing protocols, will open doors toward broader and more efficient clinical use and novel research applications. Molecular imaging has the potential of becoming a standard and essential clinical and research tool to diagnose and study neurodegenerative disorders and to guide treatments. On that road, we will need to redefine the role of molecular imaging in relation to that of emerging blood-based biomarkers. Taken together, the unique features of molecular imaging-that is, the potential to provide direct noninvasive information on the presence, extent, localization, and quantity of molecular pathologic processes in the living body-together with the predicted novel tracer and imaging technology developments, provide optimism about a bright future for this approach to improved care and research on neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Barthel
- Department of Nuclear Medicine, University Medical Center, University of Leipzig, Leipzig, Germany;
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, German Center for Neurodegenerative Diseases, Bonn, Germany, and Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
38
|
Functional ultrasound imaging of recent and remote memory recall in the associative fear neural network in mice. Behav Brain Res 2022; 428:113862. [DOI: 10.1016/j.bbr.2022.113862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|
39
|
Leem H, Choi Y, Jung J, Park K, Kim Y, Jung JH. Optimized TOF-PET detector using scintillation crystal array for brain imaging. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Layden C, Klein K, Matava WJ, Sadam A, Abouzahr F, Proga M, Majewski S, Nuyts J, Lang K. Design and modeling of a high resolution and high sensitivity PET brain scanner with double-ended readout. Biomed Phys Eng Express 2022; 8. [PMID: 35081525 DOI: 10.1088/2057-1976/ac4f0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
Abstract
In the wake of recent advancements in scintillator, photodetector, and low-noise fast electronics technologies, as well as in fast reconstruction software, positron emission tomography (PET) scanners have seen considerable improvements in spatial resolution, time resolution, and absolute sensitivity. To continue this trend, we present a helmet type PET brain scanner design that combines high solid angle coverage and double-ended readout of 30 mm-thick scintillator crystals to achieve excellent absolute sensitivity, depth of interaction resolution, and time resolution. This scanner comprises 598 detector arrays, each with 8×8 Lu1.8Y0.2SiO5:Ce (LYSO:Ce) crystals with dimensions 3.005×3.005×30 mm3one-to-one coupled on either end to silicon photomultipliers (SiPMs). Our Monte Carlo simulations based in the platform Geant4 predict that this scanner would attain an absolute sensitivity to a 35 cm line source placed at the center of the radial field of view of (17.1±0.1) %, a depth of interaction resolution of (3.99±0.05) mm, and a coincidence time resolution of (198±5) ps. Our simulations also predict radial, tangential, and axial spatial resolutions at the center of the field of view of 3.3 mm, 3.1 mm, and 3.3 mm, respectively. As this set of simultaneous parameters compares favorably to today's most advanced clinical PET scanners and other proposed designs, this scanner has a good chance of becoming a preferred tool for high quality brain imaging.
Collapse
Affiliation(s)
- Christopher Layden
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| | - Kyle Klein
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| | - William Joseph Matava
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| | - Akhil Sadam
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| | - Firas Abouzahr
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| | - Marek Proga
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| | - Stanislaw Majewski
- Biomedical Engineering, University of California Davis, One Shields Ave., Davis, California, 95616-5270, UNITED STATES
| | - Johan Nuyts
- KU Leuven, UZ Herestraat 49, Leuven, Flanders, 3000, BELGIUM
| | - Karol Lang
- Department of Physics, The University of Texas at Austin, 2515 SPEEDWAY, Austin, Texas, 78712-1139, UNITED STATES
| |
Collapse
|
41
|
Ibaraki M, Matsubara K, Shinohara Y, Shidahara M, Sato K, Yamamoto H, Kinoshita T. Brain partial volume correction with point spreading function reconstruction in high-resolution digital PET: comparison with an MR-based method in FDG imaging. Ann Nucl Med 2022; 36:717-727. [PMID: 35616808 PMCID: PMC9304042 DOI: 10.1007/s12149-022-01753-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In quantitative positron emission tomography (PET) of the brain, partial volume effect due mainly to the finite spatial resolution of the PET scanner (> 3 mm full width at half maximum [FWHM]) is a primary source of error in the measurement of tracer uptake, especially in small structures such as the cerebral cortex (typically < 3 mm thickness). The aim of this study was to evaluate the partial volume correction (PVC) performance of point spread function-incorporated reconstruction (PSF reconstruction) in combination with the latest digital PET scanner. This evaluation was performed through direct comparisons with magnetic resonance imaging (MR)-based PVC (used as a reference method) in a human brain study. METHODS Ten healthy subjects underwent brain 18F-FDG PET (30-min acquisition) on a digital PET/CT system (Siemens Biograph Vision, 3.5-mm FWHM scanner resolution at the center of the field of view) and anatomical T1-weighted MR imaging for MR-based PVC. PSF reconstruction was applied with a wide range of iterations (4 to 256; 5 subsets). FDG uptake in the cerebral cortex was evaluated using the standardized uptake value ratio (SUVR) and compared between PSF reconstruction and MR-based PVC. RESULTS Cortical structures were visualized by PSF reconstruction with several tens of iterations and were anatomically well matched with the MR-derived cortical segments. Higher numbers of iterations resulted in higher cortical SUVRs, which approached those of MR-based PVC (1.76), although even with the maximum number of iterations they were still smaller by 16% (1.47), corresponding to approximately 1.5-mm FWHM of the effective spatial resolution. CONCLUSION With the latest digital PET scanner, PSF reconstruction can be used as a PVC technique in brain PET, albeit with suboptimal resolution recovery. A relative advantage of PSF reconstruction is that it can be applied not only to cerebral cortical regions, but also to various small structures such as small brain nuclei that are hardly visualized on anatomical T1-weighted imaging, and thus hardly recovered by MR-based PVC.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita, 010-0874 Japan
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita, 010-0874 Japan ,Department of Management Science and Engineering, Faculty of System Science and Technology, Akita Prefectural University, Yurihonjo, Japan
| | - Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita, 010-0874 Japan
| | - Miho Shidahara
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Kaoru Sato
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita, 010-0874 Japan
| | - Hiroyuki Yamamoto
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita, 010-0874 Japan
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota Machi, Akita, 010-0874 Japan
| |
Collapse
|
42
|
Abstract
Abstract
In this partial review and partial attempt at vision of what may be the future of dedicated brain PET scanners, the key implementations of the PET technique, we postulate that we are still on a development path and there is still a lot to be done in order to develop optimal brain imagers. Optimized for particular imaging tasks and protocols, and also mobile, that can be used outside the PET center, in addition to the expected improvements in sensitivity and resolution. For this multi-application concept to be more practical, flexible, adaptable designs are preferred. This task is greatly facilitated by the improved TOF performance that allows for more open, adjustable, limited angular coverage geometries without creating image artifacts. As achieving uniform very high resolution in the whole body is not practical due to technological limits and high costs, hybrid systems using a moderate-resolution total body scanner (such as J-PET) combined with a very high performing brain imager could be a very attractive approach. As well, as using magnification inserts in the total body or long-axial length imagers to visualize selected targets with higher resolution. In addition, multigamma imagers combining PET with Compton imaging should be developed to enable multitracer imaging.
Collapse
|
43
|
Yoshida E, Obata F, Kamada K, Yoshikawa A, Yamaya T. Development of crosshair light sharing PET detector with TOF and DOI capabilities using fast LGSO scintillator. Phys Med Biol 2021; 66. [PMID: 34644694 DOI: 10.1088/1361-6560/ac2f8b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/13/2021] [Indexed: 11/12/2022]
Abstract
Objective.Time-of-flight (TOF) and depth-of-interaction (DOI) are well recognized as important information to improve PET image quality. Since such information types are not correlated, many TOF-DOI detectors have been developed but there are only a few reports of high-resolution detectors (e.g. 1.5 mm resolution) for brain PET systems. Based on the DOI detector, which enables single-ended readout by optically coupling a pair of crystals and having a loop structure, we have developed the crosshair light sharing (CLS) PET detector that optically couples the four-loop structure, consisting of quadrisected crystals comparable in size to a photo-sensor, to four photo-sensors in close proximity arranged in a windmill shape. Even as a high-resolution detector, the CLS PET detector could obtain both TOF and DOI information. The coincidence resolving time (CRT) of the CLS PET detector needs to be further improved, however, for application to the brain PET system. Recently, a fast LGSO crystal was developed which has advantages in detection efficiency and CRT compared to the GFAG crystal. In this work, we developed the CLS PET detector using the fast LGSO crystal for the TOF-DOI brain PET system.Approach.The crystals were each 1.45 × 1.45 × 15 mm3and all surfaces were chemically etched. The CLS PET detector consisted of a 14 × 14 crystal array optically coupled to an 8 × 8 MPPC array.Main results.The fast LGSO array provided 10.1% energy resolution at 511 keV, 4.7 mm DOI resolution at 662 keV, and 293 ps CRT with the energy window of 440-620 keV.Significance.The developed CLS PET detector has 290% higher coincidence sensitivity, 30% better energy resolution, and 32% better time resolution compared to our previous CLS PET detector.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Fujino Obata
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center, Tohoku University, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center, Tohoku University, Japan.,Institute for Materials Research, Tohoku University, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
44
|
Akamatsu G, Takyu S, Yoshida E, Iwao Y, Tashima H, Nishikido F, Yamaya T. Evaluation of a Hamamatsu TOF-PET Detector Module With 3.2-mm Pitch LFS Scintillators and a 256-Channel SiPM Array. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3035876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Liu H, Morris ED. Detecting and classifying neurotransmitter signals from ultra-high sensitivity PET data: the future of molecular brain imaging. Phys Med Biol 2021; 66. [PMID: 34330107 DOI: 10.1088/1361-6560/ac195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Efforts to build the next generation of brain PET scanners are underway. It is expected that a new scanner (NS) will offer anorder-of-magnitude improvementin sensitivity to counts compared to the current state-of-the-art, Siemens HRRT. Our goal was to explore the use of the anticipated increased sensitivity in combination with the linear-parametric neurotransmitter PET (lp-ntPET) model to improve detection and classification of transient dopamine (DA) signals. We simulated striatal [11C]raclopride PET data to be acquired on a future NS which will offer ten times the sensitivity of the HRRT. The simulated PET curves included the effects of DA signals that varied in start-times, peak-times, and amplitudes. We assessed the detection sensitivity of lp-ntPET to various shapes of DA signal. We evaluated classification thresholds for their ability to separate 'early'- versus 'late'-peaking, and 'low'- versus 'high'-amplitude events in a 4D phantom. To further refine the characterization of DA signals, we developed a weighted k-nearest neighbors (wkNN) algorithm to incorporate information from the neighborhood around each voxel to reclassify it, with a level of certainty. Our findings indicate that the NS would expand the range of detectable neurotransmitter events to 72%, compared to the HRRT (31%). Application of wkNN augmented the detection sensitivity to DA signals in simulated NS data to 92%. This work demonstrates that the ultra-high sensitivity expected from a new generation of brain PET scanner, combined with a novel classification algorithm, will make it possible to accurately detect and classify short-lived DA signals in the brain based on their amplitude and timing.
Collapse
Affiliation(s)
- Heather Liu
- Dept. Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Dept. Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
| | - Evan D Morris
- Dept. Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Dept. Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America.,Dept. Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
46
|
Placzek MS. Imaging Kappa Opioid Receptors in the Living Brain with Positron Emission Tomography. Handb Exp Pharmacol 2021; 271:547-577. [PMID: 34363128 DOI: 10.1007/164_2021_498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Kappa opioid receptor (KOR) neuroimaging using positron emission tomography (PET) has been immensely successful in all phases of discovery and validation in relation to radiotracer development from preclinical imaging to human imaging. There are now several KOR-specific PET radiotracers that can be utilized for neuroimaging, including agonist and antagonist ligands, as well as C-11 and F-18 variants. These technologies will increase KOR PET utilization by imaging centers around the world and have provided a foundation for future studies. In this chapter, I review the advances in KOR radiotracer discovery, focusing on ligands that have been translated into human imaging, and highlight key attributes unique to each KOR PET radiotracer. The utilization of these radiotracers in KOR PET neuroimaging can be subdivided into three major investigational classes: the first, measurement of KOR density; the second, measurement of KOR drug occupancy; the third, detecting changes in endogenous dynorphin following activation or deactivation. Given the involvement of the KOR/dynorphin system in a number of brain disorders including, but not limited to, pain, itch, mood disorders and addiction, measuring KOR density in the living brain will offer insight into the chronic effects of these disorders on KOR tone in humans. Notably, KOR PET has been successful at measuring drug occupancy in the human brain to guide dose selection for maximal therapeutic efficacy while avoiding harmful side effects. Lastly, we discuss the potential of KOR PET to detect changes in endogenous dynorphin in the human brain, to elucidate neural mechanisms and offer critical insight into disease-modifying therapeutics. We conclude with comments on other translational neuroimaging modalities such as MRI that could be used to study KOR-dynorphin tone in the living human brain.
Collapse
Affiliation(s)
- Michael S Placzek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA. .,Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Won JY, Park H, Lee S, Son JW, Chung Y, Ko GB, Kim KY, Song J, Seo S, Ryu Y, Chung JY, Lee JS. Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1579-1590. [PMID: 33625980 DOI: 10.1109/tmi.2021.3062066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.
Collapse
|
48
|
Validation technique and improvements introduced in a new dedicated brain positron emission tomograph (CareMiBrain). Rev Esp Med Nucl Imagen Mol 2021. [PMID: 34059483 DOI: 10.1016/j.remn.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of developing a PET dedicated to the brain (CareMiBrain) has evolved from its initial approach to diagnosis and monitoring of dementias, to the more ambitious of creating a revolutionary clinical pathway for the knowledge and personalized treatment of multiple neurological diseases. The main innovative feature of CareMiBrain is the use of detectors with continuous crystals, which allow a high resolution determination of the depth of annihilation photons interaction within the thickness of the scintillation crystal. The technical validation phase of the equipment consisted of a pilot, prospective and observational study whose objective was to obtain the first images (40 patients), analyze them and make adjustments in the acquisition, reconstruction and correction parameters, comparing the image quality of the CareMiBrain equipment with that of the whole-body PET-CT. Thanks to the team meetings and the joint analysis of the images, it was possible to detect its weak points and some of its causes. The calibration, acquisition and processing processes, as well as the reconstruction, were optimized, the number of iterations was set to achieve the best signal-to-noise ratio, the random correction was optimized and a post-processing algorithm was included in the reconstruction algorithm. The main technical improvements implemented in this phase of technical validation carried out through collaboration of the Services of Nuclear Medicine and Neurology of the Hospital Clínico San Carlos with the Spanish company Oncovision will be exposed in a project financed with funds from the European Union (Horizon 2020 innovation program, 713323).
Collapse
|
49
|
Cabrera-Martín MN, González-Pavón G, Sanchís Hernández M, Morera-Ballester C, Matías-Guiu JA, Carreras Delgado JL. Validation technique and improvements introduced in a new dedicated brain positron emission tomograph (CareMiBrain). Rev Esp Med Nucl Imagen Mol 2021; 40:239-248. [PMID: 34218886 DOI: 10.1016/j.remnie.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
The goal of developing a PET dedicated to the brain (CareMiBrain) has evolved from its initial approach to diagnosis and monitoring of dementias, to the more ambitious of creating a revolutionary clinical pathway for the knowledge and personalized treatment of multiple neurological diseases. The main innovative feature of CareMiBrain is the use of detectors with continuous crystals, which allow a high resolution determination of the depth of annihilation photons interaction within the thickness of the scintillation crystal. The technical validation phase of the equipment consisted of a pilot, prospective and observational study whose objective was to obtain the first images (40 patients), analyze them and make adjustments in the acquisition, reconstruction and correction parameters, comparing the image quality of the CareMiBrain equipment with that of the whole-body PET/CT. Thanks to the team meetings and the joint analysis of the images, it was possible to detect its weak points and some of its causes. The calibration, acquisition and processing processes, as well as the reconstruction, were optimized, the number of iterations was set to achieve the best signal-to-noise ratio, the random correction was optimized and a post-processing algorithm was included in the reconstruction algorithm. The main technical improvements implemented in this phase of technical validation carried out through collaboration of the Services of Nuclear Medicine and Neurology of the Hospital Clínico San Carlos with the Spanish company Oncovision will be exposed in a project financed with funds from the European Union (Horizon 2020 innovation program, 713323).
Collapse
Affiliation(s)
- María Nieves Cabrera-Martín
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Madrid, Spain.
| | | | | | | | - Jordi A Matías-Guiu
- Servicio de Neurología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - José Luis Carreras Delgado
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|
50
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|