1
|
Mahmoud O, Püllen L, Umutlu L, Szarvas T, Fendler WP, Ting S, Reis H, Bayer H, Herrmann K, Hadaschik BA, Al-Nader M, Berliner C. Multitracer comparison of gold standard PSMA-PET/CT with 68Ga-FAPI and 18F-FDG in high-risk prostate cancer: a proof-of-concept study. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07352-6. [PMID: 40423777 DOI: 10.1007/s00259-025-07352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
PURPOSE The aim of this study was to, evaluate the diagnostic accuracy of [⁶⁸Ga]Ga-FAPI-46 positron emission tomography (PET)/computed tomography (CT) in high-risk prostate cancer (PC) compared to [¹⁸F]PSMA / [⁶⁸Ga]Ga- PSMA- and [¹⁸F]FDG- PET/CT as well as multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS Ten patients with high-risk PC (PSA > 20 ng/mL, Gleason score > 7, or > T2c) underwent PET/CT imaging using [⁶⁸Ga]Ga-FAPI-46, [¹⁸F]F-/[⁶⁸Ga]Ga-PSMA and [¹⁸F]FDG before radical prostatectomy (RP). The maximum standardized uptake values (SUVmax) were measured for the entire prostate and individual prostate sextants. Diagnostic accuracy was assessed per patient and per segment by correlating imaging findings with final histopathologic results. Immunohistochemical analysis of PSMA and FAP expression was performed on the index tumor lesion. RESULTS Histopathologic analysis confirmed pT2c and pT3 prostate adenocarcinoma in 4 (40%) and 6 (60%) patients, respectively. One patient (10%) had regional lymph node metastasis (pN1). The International Society of Urological Pathology (ISUP) grade groups (GGs) were 2 (60%), 3 (20%), and 5 (20%). Overall, 46 of 60 prostate sextants were histologically positive for PC. While PSMA expression was detected in all patients, FAP expression was observed in 5 of 9 cases (55.5%). Per-patient and per-segment analyses demonstrated that [⁶⁸Ga]Ga-FAPI-46 and [¹⁸F]F-/[⁶⁸Ga]Ga-PSMA had comparable diagnostic accuracy and outperformed [¹⁸F]FDG. The mean (SD) SUVmax of the entire prostate was highest for PSMA PET/CT at 13.1 (7), followed by FAPI at 7.6 (5.5) and FDG at 5.4 (3.5) (p = 0.015). Among patients in the FAPI subgroup, those with ISUP GG 3-5 exhibited greater FAP expression and radiotracer uptake compared to ISUP GG 2 cases. In the two high-grade patients, [⁶⁸Ga]Ga-FAPI-46 demonstrated greater tumor uptake than [¹⁸F]PSMA / [⁶⁸Ga]Ga-PSMA PET/CT. Notably, MRI demonstrated higher diagnostic accuracy and superior local staging compared to all radiotracers evaluated. CONCLUSION FAP expression was detected in a subset of high-risk PC patients, particularly in those with higher-grade disease. This proof-of-concept study may suggest a role for [⁶⁸Ga]Ga-FAPI-46 PET/CT in primary PC with low PSMA avidity, but further research is warranted to define its clinical application.
Collapse
Affiliation(s)
- Osama Mahmoud
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
- Department of Urology, South Valley university, Qena, Egypt.
- Department of urology, Qena Faculty of Medicine, South Valley University, Safaga Road, Qena, 83523, Egypt.
| | - Lukas Püllen
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Tibor Szarvas
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology Nordhessen, Kassel, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Henning Bayer
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Boris A Hadaschik
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Mulham Al-Nader
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Berliner
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| |
Collapse
|
2
|
Fu L, Xie F, Sun P, Dong Y, Zhou K, Jiang L, Wu R, Han Y, Wu H, Tang G, Zhou W. First clinical investigation to predict lymphovascular and/or perineural invasion in gastric cancer using 18F-FAPI-42 PET/CT parameters. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07325-9. [PMID: 40387910 DOI: 10.1007/s00259-025-07325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE This study was conducted to explore the predictive value of PET parameters derived from 18F-FAPI-42 PET/CT in assessing lymphovascular and/or perineural invasion (LVI/PNI) in gastric cancer (GC) patients. METHODS 72 GC patients who underwent 18F-FAPI-42 PET/CT prior to surgical resection were included. Clinicopathological factors and PET parameters were collected and analyzed in LVI/PNI-negative and LVI/PNI-positive groups. The predictive value of PET parameters for LVI/PNI status was evaluated using the receiver operating characteristic (ROC) curve. A nomogram was developed using significant predictors from multivariate stepwise regression analysis and its performance was assessed by decision curve analysis (DCA). RESULTS Univariate analysis indicated a significant association between LVI/PNI status and PET parameters (SUVmax, SUVmean, and TBR) (all p < 0.001). The area under the ROC curve (AUC) values for predicting LVI/PNI were 0.932 [95% CI (0.877-0.987)] for SUVmax, 0.923 [95% CI (0.861-0.984)] for SUVmean, and 0.925 [95% CI (0.865-0.985)] for TBR. The optimal cutoff values for prediction, along with their corresponding sensitivity and specificity, were 3.86 (93.3% and 81.5%) for SUVmax, 2.04 (93.3% and 81.5%) for SUVmean, and 9.75 (91.1% and 81.5%) for TBR. Multivariate analysis identified histological grade and SUVmax as independent risk factors for LVI/PNI prediction. Our nomogram had good discriminatory ability (AUC = 0.934) and offered net benefits in predicting LVI/PNI status by DCA. CONCLUSION This study demonstrates that FAPI uptake parameters exhibit an exceptionally high capacity and serve as a noninvasive preoperative tool for predicting LVI/PNI status in GC, with SUVmax emerging as the most suitable predictive indicator.
Collapse
Affiliation(s)
- Lilan Fu
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Fei Xie
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Penghui Sun
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Dong
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kemin Zhou
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Jiang
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruihe Wu
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjiang Han
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hubing Wu
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Ganghua Tang
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenlan Zhou
- Department of Nuclear Medicine, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Loganath K, Craig N, Barton A, Joshi S, Anagnostopoulos C, Erba PA, Glaudemans AWJM, Saraste A, Bucerius J, Lubberink M, Gheysens O, Buechel RR, Habib G, Gaemperli O, Gimelli A, Hyafil F, Newby DE, Slart RHJA, Dweck MR. Cardiovascular positron emission tomography imaging of fibroblast activation: A review of the current literature. J Nucl Cardiol 2025; 47:102106. [PMID: 39672296 DOI: 10.1016/j.nuclcard.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Fibrosis is one of the key healing responses to injury, especially within the heart, where it helps to maintain structural integrity following acute insults such as myocardial infarction. However, if it becomes dysregulated, then fibrosis can become maladaptive, leading to adverse remodelling, impaired cardiac function and heart failure. Fibroblast activation protein is exclusively expressed by activated fibroblasts, the key effector cells of fibrogenesis, and has a unique extracellular domain that is an ideal ligand for novel molecular imaging probes. Fibroblast activation protein inhibitor (FAPI) radiotracers have been developed for positron emission tomography (PET) imaging, demonstrating high selectivity for activated fibroblasts across a range of different pathologies and disparate organ systems. In this review, we will summarise the role of fibroblast activation protein in cardiovascular disease and how FAPI radiotracers might improve the assessment and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Krithika Loganath
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Neil Craig
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Barton
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Shruti Joshi
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Constantinos Anagnostopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Paola Anna Erba
- Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy; Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamllynkatu, Turku, Finland; Heart Center, Turku University Hospital, Turku, Finland
| | - Jan Bucerius
- Department of Nuclear Medicine, Georg-August University Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Mark Lubberink
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Gilbert Habib
- Cardiology Department, APHM, La Timone Hospital, Marseille, France; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Oliver Gaemperli
- HeartClinic, Hirslanden Hospital Zurich, Hirslanden, Switzerland
| | | | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, University of Paris, Paris, France; PARCC, INSERM, University of Paris, Paris, France
| | - David E Newby
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine & Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, the Netherlands
| | - Marc R Dweck
- BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Sakir M, Ballal S, Rastogi S, Yadav MP, Roesch F, Chandekar K, Gb P, Tripathi M, Dhiman A, Taggar M, Martin M, Bal C. Head-to-Head Comparison Between [ 68 Ga]Ga-DOTA.SA.FAPi And [ 18 F]F-FDG PET/CT Imaging in Patients With Sarcoma. Clin Nucl Med 2025; 50:e271-e279. [PMID: 39876086 DOI: 10.1097/rlu.0000000000005697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE This study aimed to compare the diagnostic efficacy of [ 68 Ga]Ga-DOTA.SA.FAPi and [ 18 F]F-FDG PET/CT for detecting primary and metastatic lesions in sarcoma patients. MATERIALS AND METHODS The analysis included both patient-based and lesion-based comparisons of PET/CT scans in individuals with histologically confirmed sarcoma. RESULTS A total of 23 sarcoma patients (mean age 43.0 ± 16.5 years; range: 21-76 years) underwent both [ 18 F]F-FDG and [ 68 Ga]Ga-DOTA.SA.FAPi PET/CT scans. Histological distribution included 30% synovial sarcoma, 13% liposarcoma, and 21.7% leiomyosarcoma, with 70% of patients presenting with distant metastases. Detection rates for primary tumors were similar between [ 68 Ga]Ga-DOTA.SA.FAPi and [ 18 F]F-FDG PET/CT (85.7% vs 100%, P = 0.149). Lymph node detection rates were also comparable (80% vs 100%, P = 0.146). Lesion-based analysis revealed that [ 68 Ga]Ga-DOTA.SA.FAPi detected 220 lesions (83% efficiency) compared with 249 lesions (94% efficiency) for [ 18 F]F-FDG ( P < 0.0001). Notably, [ 68 Ga]Ga-DOTA.SA.FAPi demonstrated superior detection of liver (54 vs 38 lesions, P < 0.0001) and bone metastases (125 vs 102 lesions, P < 0.0001). CONCLUSIONS Our study shows that although [ 18 F]F-FDG PET/CT offers superior overall lesion detection efficiency, [ 68 Ga]Ga-DOTA.SA.FAPi PET/CT excels in identifying specific metastatic sites, particularly in bone and liver. These findings highlight the complementary roles of both imaging modalities in sarcoma evaluation.
Collapse
Affiliation(s)
| | | | - Sameer Rastogi
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Frank Roesch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | - Marcel Martin
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
5
|
He Y, Rogasch JMM, Savic LJ. PET Imaging and Key Radiotracers for Evaluating Response to Locoregional Therapy in Hepatocellular Carcinoma. PET Clin 2025:S1556-8598(25)00024-0. [PMID: 40287367 DOI: 10.1016/j.cpet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Locoregional therapies (LRTs) play a considerable role in the management of hepatocellular carcinoma (HCC), especially for patients who are not suitable for radical resection or transplantation. In clinical practice, assessment of LRTs is mainly based on computed tomography and MR imaging, but functional and metabolic information is less accessible. This article reviews the use of various the standardized uptake value parameters based on PET and multiple radiotracers for managing HCC after treatment with different LRTs, as well as parts of preclinical research. It discusses the current use of PET in more detail, as well as its advantages, disadvantages, and prospects.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany; Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany; Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
6
|
Li X, Lu N, Sun K, Shi F, Lin L, Chen Y, Wang Y, Wang M, Sun K, Xue X, Xiao W, Su X, Bai X, Liang T. [ 18F]FAPI- 04 PET/CT for pathologic response assessment in pancreatic cancer patients with systemic treatment. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07271-6. [PMID: 40237796 DOI: 10.1007/s00259-025-07271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE To study the association between [18F]FAPI- 04 uptake on positron emission tomography/computed tomography (PET/CT) and pathologic treatment response (PTR) in patients with pancreatic cancer (PC). METHODS We enrolled 59 patients from August 2021, of whom 28 underwent surgical treatment after systemic therapy. The patients were investigated for a correlation between baseline fibroblast activation protein inhibitor (FAPI) uptake and PTR using College of American Pathologists (CAP) scores. The FAPI PET variables include standardised uptake value (SUV)max, SUVmean, metabolic tumour volume (MTV), and total lesion FAP expression (TLF). A PET/CT scan obtained before surgery in 14 patients facilitated assessing changes in FAPI uptake through treatment, and their association with PTR. Multiplex immunohistochemistry (mIHC) analysis identified the FAPI biodistribution in the PC tumours. RESULTS The SUVmax correlated positively with FAP expression in PC tissues. However, there was no correlation between baseline variables and the CAP scores. Treatment resulted in remarkably reduced MTV and TLF in all patients. The baseline SUVmax and SUVmean of patients with a good PTR (CAP score ≤ 2) differed from those after treatment (p = 0.001). An FITC-FAPI probe intuitively showed that cancer-associated fibroblasts (CAFs) and tumour cells had a similar FITC-FAPI fluorescence intensity, indicating a negative association between tumour regression and [18F]FAPI- 04 uptake. CONCLUSION Greater changes in FAPI uptake through treatment were associated with a better PTR in patients with PC and might be valuable in predicting prolonged survival. These results are clinically meaningful when selecting candidates for conversion surgery during systemic treatment.
Collapse
Affiliation(s)
- Xiang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Kang Sun
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Fukang Shi
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Lili Lin
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yangyang Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Meng Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Hong R, Yu P, Zhang X, Su P, Liang H, Dong D, Wang X, Wang K. The role of cancer-associated fibroblasts in the tumour microenvironment of urinary system. Clin Transl Med 2025; 15:e70299. [PMID: 40195290 PMCID: PMC11975626 DOI: 10.1002/ctm2.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Urological tumours are a type of neoplasms that significantly jeopardise human life and wellbeing. Cancer-associated fibroblasts (CAFs), serving as the primary component of the stromal cellular milieu, form a diverse cellular cohort that exerts substantial influence on tumourigenesis and tumour progression. In this review, we summarised the literatures regarding the functions of CAFs in the urinary tumour microenvironment (TME). We primarily examined the multifaceted activities of CAFs in the TME of urological system tumours, including inhibiting tumour immunity, remodelling the extracellular matrix, promoting tumour growth, metastasis, drug resistance and their clinical applications. We also discussed potential future directions for leveraging artificial intelligence in CAFs research. KEY POINTS: The interaction of CAFs with various cell secretory factors in the TME of urological tumors. The application of CAFs in diagnosis, treatment and prognosis of urological tumors.
Collapse
Affiliation(s)
- Ri Hong
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Puguang Yu
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoli Zhang
- Department of Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Peng Su
- Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Hongyuan Liang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Dong
- College of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Xuesong Wang
- Department of UrologyPeople's Hospital of China Medical UniversityShenyangChina
- Department of UrologyPeople's Hospital of Liaoning ProvinceShenyangChina
| | - Kefeng Wang
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
8
|
Wang L, Pan X, Ye S, Huang Y, Wang M, Chen L, Zhou K, Han Y, Wu H. [ 18F]F-FAPI-42 PET dynamic imaging characteristics and multiparametric quantification of lung cancer: an exploratory study using uEXPLORER PET/CT. Eur J Nucl Med Mol Imaging 2025; 52:1685-1694. [PMID: 39760863 DOI: 10.1007/s00259-024-07064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE To explore the dynamic and parametric characteristics of [18F]F-FAPI-42 PET/CT in lung cancers. METHODS Nineteen participants with newly diagnosed lung cancer underwent 60-min dynamic [18F]F-FAPI-42 PET/CT. Time-activity curves (TAC) were generated for tumors and normal organs, with kinetic parameters (K1, K2, K3, K4, Ki) calculated. A new parameter, the K ratio (K1 + K3)/(K2 + K4), was introduced to measure net uptake efficiency. RESULTS In primary tumor (PT), [18F]F-FAPI-42 uptake showed a gradual increase followed by a plateau, contrasting with organs like the thyroid and pancreas, which showed rapid uptake and continuous washout. Compared to non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC) lesions reached the plateau earlier (11 min vs. 14 min) but had a lower uptake. During the plateau phase, [18F]F-FAPI-42 demonstrated slight washout in SCLC, whereas its uptake increased slightly in NSCLC. Lymph node and distant metastases exhibited similar TAC profiles to primary tumors. Kinetic modeling revealed that an irreversible two-compartment model (irre-2TCM) best represented the pharmacokinetics of [18F]F-FAPI-42 in lung cancer, whereas re-2TCM was better suited for the pancreas and thyroid. Lower K1, K2, K3 and K4 were observed in PT compared to those in the pancreas and thyroid (P < 0.05), however, the K ratio in PT was found to be 2-3 times higher. SCLC had lower Ki and SUVmean than NSCLC (P < 0.05). Kinetic parameter differences were also observed between PT and metastatic lesions. Larger metastatic lymph nodes exhibited higher K1, Ki, and K ratio than smaller ones. CONCLUSION Lung cancers exhibit distinct [18F]F-FAPI-42 dynamic and kinetic characteristics compared to the thyroid gland and pancreas. Differences were also observed between SCLC and NSCLC, primary and metastatic lesions, as well as larger versus smaller lesions. These findings provide valuable insights into the in vivo pharmacokinetics of [18F]F-FAPI-42, potentially improving the diagnosis of lung cancer. TRIAL REGISTRATION ChiCTR2100045757. Registered April 24, 2021 retrospectively registered, http//www.chictr.org.cn.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xingzhu Pan
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Shimin Ye
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Yanchao Huang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Meng Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Li Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Kemin Zhou
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Yanjiang Han
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Hubing Wu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China.
| |
Collapse
|
9
|
Qin J, Han C, Li H, Wang Z, Hu X, Liu L, Zhu S, Zhao J, Sun Y, Wei Y. Relationship between PD-L1 expression and [ 18F]FAPI versus [ 18F]FDG uptake on PET/CT in lung cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07201-6. [PMID: 40113644 DOI: 10.1007/s00259-025-07201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE To investigate the correlation between [18F] labeled fibroblast activation protein inhibitor (FAPI) positron emission tomography (PET)/computed tomography (CT) uptake and programmed death ligand 1 (PD-L1) expression in lung cancer and evaluate the predictive value of [18F]FAPI PET/CT for PD-L1 expression compared with [18F]fluorodeoxyglucose ([18F]FDG) PET/CT. METHODS This single-center retrospective study consecutively enrolled patients with pathologically confirmed lung cancer who underwent [18F]FAPI and [18F]FDG PET/CT scans within 2 weeks, with a minimum interval of 20 h. PD-L1 expression was assessed using immunohistochemistry and stratified into three groups. PET/CT uptake parameters included the maximum standard uptake value (SUVmax) in the biopsy tumor or mediastinal metastasis lymph nodes area and the mean SUVs (SUVmean) of normal tissue (lung and blood). The ratios of SUVmax to the SUVmean for each normal tissue were denoted as the tumor-to-background ratios (TBRlung and TBRblood). All statistical analyses were conducted using IBM SPSS Statistics. Normality was assessed, and for non-normally distributed data, the Kruskal-Wallis and Mann-Whitney U tests were applied. Associations between variables were evaluated using Spearman's rank correlation. All tests were two-sided, with a P-value < 0.05 considered statistically significant. RESULTS Among the 75 cases included on the final analysis, the TBRblood and TBRlung derived from [18F]FAPI PET/CT were significantly positively correlated with PD-L1 expression (r = 0.32, P < 0.01; r = 0.26, P < 0.05). Additionally, cases with high PD-L1 expression showed significantly higher [18F]FAPI uptake values (mean TBRlung=36.16; mean TBRblood=10.75) compared with those with low PD-L1 expression (mean TBRlung=25.10; mean TBRblood=8.04). No statistically significant correlation was observed between [18F]FDG uptake values and PD-L1 expression level. Receiver operating characteristic analysis identified TBRblood on [18F]FAPI PET/CT with a cutoff value of 7.76 (area under the curve = 0.68, P < 0.01, sensitivity = 75%, and specificity = 53.49%) as a significant predictor of the level of PD-L1 expression. CONCLUSION [18F]FAPI uptake was positively correlated with PD-L1 expression in lung cancer. The combination of [18F]FAPI PET/CT and PD-L1 expression may offer a more comprehensive approach to assessing the response of lung cancer to immunotherapy. TRIAL REGISTRATION This study was approved by the Clinical Research Ethics Committee of our institution (institutional review board approval no. SDZLEC2021-112-02).
Collapse
Affiliation(s)
- Jingjie Qin
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Chao Han
- Shandong University Cancer Center, Jinan, Shandong, China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoqian Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Lanping Liu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Shouhui Zhu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Jingjing Zhao
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Yuhong Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yuchun Wei
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China.
| |
Collapse
|
10
|
Chen X, Liu Y, Zhao X, Jing F, Wang B, Chen X, Pang X, Zhang J, Wang J, Zhang Z, Han J, Wang M. Same-Day Positron Emission Tomography/Computed Tomography with 68Ga-Radiolabeled Fibroblast Activation Protein Inhibitors and 18F-Fluorodeoxyglucose Imaging for Gastrointestinal Cancers. Cancer Biother Radiopharm 2025; 40:130-138. [PMID: 39466063 DOI: 10.1089/cbr.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Objective: We investigated the clinical practicability of same-day 68Ga-radiolabeled fibroblast activation protein inhibitors (68Ga-FAPI)-first and 18F-fluorodeoxyglucose (18F-FDG) imaging and compared it with same-day 18F-FDG-first or 2-day procedures in diagnosing gastrointestinal cancers. Materials and Methods: Sixty-five patients with confirmed gastrointestinal cancers were divided into same-day 68Ga-FAPI-first group (Group A), same-day 18F-FDG-first group (Group B), and 2-day group (Group C). Low-dose CT and low injection activity were performed on 68Ga-FAPI positron emission tomography/computed tomography (PET/CT). Interval times, radiation dose, diagnostic performance, and detectability were assessed among groups. Additionally, the uptake, tumor-to-liver ratio (TLR), diagnostic efficacy, and TNM stage were compared between the two modalities. Results: The total waiting time for Group C was significantly longer than that for Group A or B (both p < 0.001). The total dose-length product and effective dose decreased in all groups. There were comparable detectability and diagnostic performance among groups (all p > 0.05). The within-group analysis in Group B indicated that 68Ga-FAPI PET/CT had higher uptake in the primary and recurrent lesions than 18F-FDG without differences in TLR, due to higher liver background on 68Ga-FAPI PET than Group A or C (both p < 0.001).68Ga-FAPI PET/CT possessed higher accuracy than 18F-FDG and changed staging in 14 patients (14/65, 21.54%). Conclusions: The same-day 68Ga-FAPI-first and 18F-FDG imaging reduced examination waiting time without increased radiation dose, simultaneously achieving excellent diagnostic performance and improving clinical staging in diagnosing gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiaoshan Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunuan Liu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Fenglian Jing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao Pang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Mengjiao Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
McGale J, Khurana S, Howell H, Nakhla A, Roa T, Doshi P, Shirini D, Huang A, Duong P, Backhaus P, Liao M, Kaur H, Fontani AM, Hung I, Pandit-Taskar N, Haberkorn U, Gulati A, Naim A, Sinigaglia M, Bebawy M, Girard A, Seban RD, Dercle L. FAP-Targeted SPECT/CT and PET/CT Imaging for Breast Cancer Patients. Clin Nucl Med 2025; 50:e138-e145. [PMID: 39780367 DOI: 10.1097/rlu.0000000000005617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Breast cancer presents a significant global health challenge, necessitating continued innovation in diagnostic and therapeutic approaches. Recent advances have led to the identification of cancer-associated fibroblasts, which are highly prevalent in breast cancers and express fibroblast activation proteins (FAPs), as critical targets. FAP-specific radiotracers, when used with PET/CT and SPECT/CT, have significant potential for improving early breast cancer detection, staging, treatment response monitoring, and therapeutic intervention. This review provides insight into FAP-targeted molecular imaging, exploring advanced techniques for protein status assessment, development of early-phase targeted therapies, and other emerging applications. The advent of FAP-targeted imaging stands to significantly enhance personalized oncologic care, leading to improved breast cancer management and overall patient outcomes.
Collapse
Affiliation(s)
- Jeremy McGale
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sakshi Khurana
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Harrison Howell
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Abanoub Nakhla
- Department of Surgery, Maimonides Medical Center, New York, NY
| | - Tina Roa
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Parth Doshi
- Department of Internal Medicine, Lewis Katz School of Medicine, Philadelphia, PA
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alice Huang
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Phuong Duong
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany and Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Matthew Liao
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Harleen Kaur
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | | | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amit Gulati
- Department of Internal Medicine, Maimonides Medical Center, New York, NY
| | - Asmâa Naim
- Université Mohammed VI des Sciences et de la Santé, Casablanca, Morocco
| | | | - Maria Bebawy
- Morristown Medical Center, OBGYN Department, Morristown, NJ
| | - Antoine Girard
- Department of Nuclear Medicine, CHU Amiens-Picardie, Amiens, France
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, Saint-Cloud, France and Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, Orsay, France
| | - Laurent Dercle
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
12
|
Kong Z, Li Z, Cui XY, Wang J, Xu M, Liu Y, Chen J, Ni S, Zhang Z, Fan X, Huang J, Lin Y, Sun Y, He Y, Lin X, Meng T, Li H, Song Y, Peng B, An C, Gao C, Li N, Liu C, Zhu Y, Yang Z, Liu Z, Liu S. CTR-FAPI PET Enables Precision Management of Medullary Thyroid Carcinoma. Cancer Discov 2025; 15:316-328. [PMID: 39470165 PMCID: PMC11803395 DOI: 10.1158/2159-8290.cd-24-0897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
Medullary thyroid carcinoma (MTC) can only be cured through the excision of all metastatic lesions, but current clinical practice fails to localize the disease in 29% to 60% of patients. Previously, we developed a fibroblast activation protein inhibitor (FAPI)-based covalent targeted radioligand (CTR) for improved detection sensitivity and accuracy. In this first-in-class clinical trial, we head-to-head compared [68Ga]Ga-CTR-FAPI PET-CT and [18F]fluorodeoxyglucose ([18F]FDG) PET-CT in 50 patients with MTC. The primary endpoint was the patient-based detection rate, with [68Ga]Ga-CTR-FAPI exhibiting higher detection than [18F]FDG (98% vs. 66%, P = 0.0002). This improved detection was attributed to increased tumor uptake (maximum standardized uptake value = 11.71 ± 9.16 vs. 2.55 ± 1.73, P < 0.0001). Diagnostic accuracy, validated on lesions with gold-standard pathology, was greater for [68Ga]Ga-CTR-FAPI compared with [18F]FDG (96.7% vs. 43.3%, P < 0.0001). Notably, the management of 32% of patients was altered following [68Ga]Ga-CTR-FAPI PET-CT, and the surgical plan was changed for 66.7% of patients. Overall, [68Ga]Ga-CTR-FAPI PET-CT provided superior detection and diagnostic accuracy compared with [18F]FDG PET-CT, enabling precision management of patients with MTC. Significance: In this first-in-class clinical trial of CTR, [68Ga]Ga-CTR-FAPI demonstrated an improved patient-based detection rate (98%), tumor uptake (maximum standardized uptake value = 11.71 ± 9.16), and pathology-validated diagnostic accuracy (96.7%) compared with the currently approved method in MTC treatment. It directly altered management in 32% of patients, enabling precision diagnosis and management of MTC. See related commentary by Witney, p. 264.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yang Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongmin Zhang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Yansong Lin
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuning Sun
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqin He
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinfeng Lin
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Tianyu Meng
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Han Li
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Song
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boshizhang Peng
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chen Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yiming Zhu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhibo Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- Changping Laboratory, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking University-Tsinghua University Center for Life Sciences, Beijing, China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Wen L, He C, Guo Y, Zhou N, Meng X, Chen Y, Ma C, Zhu H, Yang Z, Xia L. Strategies for specific multimodal imaging of cancer-associated fibroblasts and applications in theranostics of cancer. Mater Today Bio 2025; 30:101420. [PMID: 39839493 PMCID: PMC11745968 DOI: 10.1016/j.mtbio.2024.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Fibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications. This nanoplatform can perform positron emission tomography (PET), magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) with strong near infrared absorption and metal chelating ability, achieving efficiently targeting accumulation and display long retention in the tumor region. Meanwhile, 131I-labeled nanoplatform for targeted radioisotope therapy (TRT) and photothermal therapy (PTT) were significantly suppressed tumor growth in glioblastoma xenograft models without obvious side effects. These results demonstrated that this novel nanoparticles-based theranostics nanoplatform can effectively enhance multimodal imaging and targeted radionuclide-photothermal synergistic therapy for solid tumors with FAP expression.
Collapse
Affiliation(s)
- Li Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Molecular Imaging, Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Chengxue He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanhui Guo
- Department of Radiology, Peking University Third Hospital, Beijing, 100088, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, 100084, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| |
Collapse
|
14
|
Xu H, Wang H, Yu SZ, Li XM, Jiang DL, Wu YF, Ren SH, Qin LX, Guan YH, Lu L, Zhu WW, Wang XY, Xie F. Prognostic and diagnostic value of [ 18F]FDG, 11C-acetate, and [ 68Ga]Ga-FAPI-04 PET/CT for hepatocellular carcinoma. Eur Radiol 2025:10.1007/s00330-025-11352-3. [PMID: 39838091 DOI: 10.1007/s00330-025-11352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
OBJECTIVES To assess the prognostic value of Fluorine 18-labeled fluorodeoxyglucose [18F]FDG, gallium 68-labeled fibroblast-activation protein inhibitor-04 [68Ga]Ga-FAPI-04, 11C-acetate in hepatocellular carcinoma (HCC) and evaluate the potential usefulness and advantages of different combinations for accurate diagnosis. MATERIALS AND METHODS Thirty-six patients with suspected hepatic masses were prospectively enrolled from May 2021 to September 2022 and underwent [18F]FDG, [68Ga]Ga-FAPI-04, and 11C-acetate PET/CT scans before surgery. PET/CT results and histopathologic examinations were independently interpreted by two radiologists and pathologists, respectively. Kaplan-Meier overall survival curves were calculated and the sensitivity among [18F]FDG, 11C-acetate, [68Ga]Ga-FAPI-04, and different combinations were compared. RESULTS Of the 36 included patients (mean age, 59 years ± 10 (standard deviation)), 29 were diagnosed with HCC, four with non-HCC malignant tumors, and three with benign tumors. Patients with HCC lesions negative for 11C-acetate or [68Ga]Ga-FAPI-04 exhibited poorer overall survival. Out of 36 patients, 44 HCC lesions were detected. The dual-tracer [68Ga]Ga-FAPI-04/11C-acetate exhibited the highest sensitivity (39 of 44 lesions (88.6%)) among all schemes. HCC lesions with higher histological grade and microvascular invasion (MVI) showed higher maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR) of [18F]FDG, but no evidence of significant differences was found in [68Ga]Ga-FAPI-04 and 11C-acetate PET/CT. Higher expression of fibroblast activation protein (FAP) showed higher uptake of [68Ga]Ga-FAPI-04 and [18F]FDG. CONCLUSION [68Ga]Ga-FAPI-04 and 11C-acetate PET/CT exhibited good predictive value for HCC patients, with their combination showing the highest sensitivity for HCC detection, suggesting potential for improved diagnostic protocols. KEY POINTS Question What are the prognostic and diagnostic values of PET/CT tracers, including [18F]FDG, [68Ga]FAPI-04, and 11C-acetate? Findings Hepatocellular carcinoma, with differing findings across [18F]FDG, [68Ga]GaFAPI-04, and 11C-acetate PET/CT, showed varied prognoses; [68Ga]GaFAPI-04 and 11C-acetate combined offered the highest detection sensitivity. Clinical relevance Evaluating the prognostic value and diagnostic efficacy of different tracer combinations in patients with hepatocellular carcinoma helps to guide the optimal selection of tracers in clinical practice.
Collapse
Affiliation(s)
- Hao Xu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Zhe Yu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiu-Ming Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong-Lang Jiang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan-Fei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu-Hua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Hui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiao-Yang Wang
- Department of Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Hope TA, Calais J, Goenka AH, Haberkorn U, Konijnenberg M, McConathy J, Oprea-Lager DE, Trimnal L, Zan E, Herrmann K, Deroose CM. SNMMI Procedure Standard/EANM Practice Guideline for Fibroblast Activation Protein (FAP) PET. J Nucl Med 2025; 66:26-33. [PMID: 39572227 PMCID: PMC11705787 DOI: 10.2967/jnumed.124.269002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California;
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Konijnenberg
- Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, Netherlands
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniela E Oprea-Lager
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Trimnal
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Elcin Zan
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, and German Cancer Research Center, Essen, Germany
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; and
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Hotta M, Seyedroudbari A, Dry S, Girgis M, Calais J. Characterization of a gonadal vein Capillary Hemangioma by [68Ga]FAPI-46 and [18 F]FDG PET and immunohistochemistry: a potential pitfall of FAPI PET signal. Eur J Nucl Med Mol Imaging 2025; 52:785-786. [PMID: 39227425 DOI: 10.1007/s00259-024-06909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Affiliation(s)
- Masatoshi Hotta
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Ameen Seyedroudbari
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Mark Girgis
- Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
17
|
Huang RR, Zuo C, Mona CE, Holzgreve A, Morrissey C, Nelson PS, Brady L, True L, Sisk A, Czernin J, Calais J, Ye H. FAP and PSMA Expression by Immunohistochemistry and PET Imaging in Castration-Resistant Prostate Cancer: A Translational Pilot Study. J Nucl Med 2024; 65:1952-1958. [PMID: 39477498 PMCID: PMC11619584 DOI: 10.2967/jnumed.124.268037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/25/2024] [Indexed: 12/08/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a theranostic target for metastatic prostate cancer (PCa). However, castration-resistant PCa (CRPC) may lose PSMA expression after systemic therapy. Fibroblast activation protein (FAP), expressed by carcinoma-associated fibroblasts in various cancer types, including PCa, has the potential to be an alternative target. In this study, we evaluated FAP expression in CRPC to assess its potential, using PSMA as a comparison. Methods: FAP expression was assessed using immunohistochemistry in 116 CRPC tumors: 78 adenocarcinomas, 11 small cell carcinomas, and 27 anaplastic carcinomas. Correlation analysis between manual scoring and automated scoring was performed on 54 whole-slide sections of metastatic CRPC. Paired FAP and PSMA stains were assessed in tissue microarray cores of CRPC (n = 62), consisting of locally advanced CRPC (n = 9) and metastatic CRPC (n = 53). FAP and PSMA positivity was defined by an immunohistochemistry score of at least 10. To explore the correlation of PSMA and FAP inhibitor (FAPi) PET imaging and immunohistochemistry, a preliminary analysis of 4 patients included in a [68Ga]-FAPi-46 imaging trial (NCT04457232) was conducted. Results: Manual and automated scoring of FAP yielded results with strong correlations. Overall, FAP expression in CRPC was notably lower than PSMA expression (median immunoscores, 14 vs. 72; P < 0.001). Different histologic subtypes of CRPC demonstrated distinct levels of PSMA expression, whereas their FAP expression levels were comparable. Among the 19 PSMA-negative tumors, 11 (58%) exhibited FAP positivity. FAP expression levels in lymph node metastases were significantly lower than those in nonnodal metastases (P = 0.021). Liver metastases showed significant enrichment of tumors with strong FAP expression compared with nonliver lesions (P = 0.016). In the 4 clinical trial patients, the biopsied metastatic lesions showed lower uptake on FAPi PET than on PSMA PET (median SUVmax, 9.6 vs. 14.5), consistent with FAP expression that was lower than PSMA expression in the corresponding tumor biopsy samples (median immunoscores, 30 vs. 160). Conclusion: Because of the low FAP expression levels in CRPC, the utility of FAPi PET imaging may be limited. Although FAPi PET imaging may be further tested in PSMA-negative CRPC, such as small cell carcinoma, other molecular imaging modalities should be evaluated as alternative choices.
Collapse
Affiliation(s)
- Rong Rong Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Chunlai Zuo
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Pathology, Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - Christine E Mona
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Adrien Holzgreve
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lauren Brady
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lawrence True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; and
| | - Anthony Sisk
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California;
| | - Huihui Ye
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California;
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
18
|
Taddio MF, Doshi S, Masri M, Jeanjean P, Hikmat F, Gerlach A, Nyiranshuti L, Rosser EW, Schaue D, Besserer-Offroy E, Carlucci G, Radu CG, Czernin J, Lückerath K, Mona CE. Evaluating [ 225Ac]Ac-FAPI-46 for the treatment of soft-tissue sarcoma in mice. Eur J Nucl Med Mol Imaging 2024; 51:4026-4037. [PMID: 39008063 PMCID: PMC11527918 DOI: 10.1007/s00259-024-06809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Fibroblast Activation Protein (FAP) is an emerging theranostic target that is highly expressed on cancer-associated fibroblasts and on certain tumor cells including sarcoma. We investigated the anti-tumor efficacy of [225Ac]Ac-FAPI-46 as monotherapy or in combination with immune checkpoint blockade (ICB) in immunocompetent murine models of sarcoma sensitive or resistant to ICB. METHODS [68Ga]Ga- and [225Ac]Ac-FAPI-46 were tested in subcutaneous FAP+ FSA fibrosarcoma bearing C3H/Sed/Kam mice. The efficacy of up to three cycles of 60 kBq [225Ac]Ac-FAPI-46 was evaluated as monotherapy and in combination with an anti-PD-1 antibody. Efficacy of [225Ac]Ac-FAPI-46 and/or ICB was further compared in FAP-overexpressing FSA (FSA-F) tumors that were sensitive to ICB or rendered ICB-resistant by tumor-induction in the presence of Abatacept. RESULTS [225Ac]Ac-FAPI-46 was well tolerated up to 3 × 60 kBq but had minimal effect on FSA tumor growth. The combination of three cycles [225Ac]Ac-FAPI-46 and ICB resulted in growth delay in 55% of mice (6/11) and partial tumor regression in 18% (2/11) of mice. In FSA-F tumors with FAP overexpression, both [225Ac]Ac-FAPI-46 and ICB were effective without additional benefits from the combination. In locally immunosuppressed and ICB resistant FAP-F tumors, however, [225Ac]Ac-FAPI-46 restored responsiveness to ICB, resulting in significant tumor regression and tumor-free survival of 56% of mice in the combination group up to 60 days post treatment. CONCLUSION [225Ac]Ac-FAPI-46 efficacy is correlated with tumoral FAP expression levels and can restore responsiveness to PD-1 ICB. These data illustrate that careful patient selection based on target expression and rationally designed combination therapies are critically important to maximize the therapeutic impact of FAP-targeting radioligands.
Collapse
Affiliation(s)
- Marco F Taddio
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Suraj Doshi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marwan Masri
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Pauline Jeanjean
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Firas Hikmat
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alana Gerlach
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lea Nyiranshuti
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dorthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elie Besserer-Offroy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Giuseppe Carlucci
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
19
|
Hou P, Zhong K, Guo W, Chen H, Li Y, Ke M, Lv J, Liu S, Zhong H, Fu Y, Lin J, Liu C, Gu Y, Qin J, Hong C, Wang X. The diagnostic value of [ 18F]FAPI-42 PET/CT for pulmonary artery masses: comparison with [ 18F]FDG PET/CT. Eur Radiol 2024; 34:7233-7243. [PMID: 38834788 DOI: 10.1007/s00330-024-10821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 04/21/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVES To investigate the potential utility of [18F]fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography (PET/CT) for evaluating pulmonary artery (PA) masses, and compare it with [18F]fluorodeoxyglucose (FDG) PET/CT. METHODS Participants with clinically suspected PA malignancy were prospectively enrolled and underwent dual-tracer PET/CT ([18F]FAPI-42 and [18F]FDG) imaging. Visual analysis and semi-quantitative parameters were compared between the two types of radiotracers. The tissue specimen underwent immunohistochemical staining to verify FAP expression in the tissue. RESULTS Thirty-three patients (18 males/15 females; mean age 53.1 ± 15.4 years) were enrolled. All 21 patients with malignant PA masses were FDG-positive (100%), whereas 20 out of 21 patients were FAPI-positive (95.2%). All 12 patients with benign PA masses were both negative in FDG and FAPI PET. The mean maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) of FAPI and FDG in malignant PA masses were significantly higher than those of benign masses. Although there was no significant difference in SUVmax between FDG and FAPI in malignant PA masses (11.36 vs. 9.18, p = 0.175), the TBR (liver) and TBR (left ventricle) were more favorable for FAPI than for FDG (13.04 vs. 5.17, p < 0.001); (median: 7.75 vs. 2.75, p = 0.007). Immunohistochemical analysis (n = 16) validated that the level of FAP expression corresponded strongly to the uptake of FAPI in PET/CT scans (rs = 0.712, p = 0.002). For clinical management, FAPI PET found more metastatic lesions than FDG PET in 4 patients, with 2 patients upgrading and 1 patient changing treatment decisions. CONCLUSIONS FAPI PET/CT is feasible in the diagnosis of PA masses. Although not superior to FDG PET/CT, FAPI PET/CT showed better target-to-background contrast. CLINICAL RELEVANCE STATEMENT This study found that FAPI PET/CT is not superior to FDG PET/CT in diagnosing PA masses, but FAPI PET/CT displays better target-to-background contrast and more positive lesions, which may help improve disease management. KEY POINTS Pulmonary malignancies lack specificity in clinical manifestations, laboratory tests, and routine imaging examinations. FAPI PET/CT is not diagnostically better than FDG PET/CT but displays better target-to-background contrast and more positive lesions. Dual-tracer PET/CT ([18F]FAPI-42 and [18F]FDG) imaging improves clinical management of pulmonary artery masses.
Collapse
Affiliation(s)
- Peng Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Kaixiang Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Wenliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Haiming Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Youcai Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Miao Ke
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Huizhen Zhong
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Yimin Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Jielong Lin
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Chunli Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Yingying Gu
- Department of Respiratory Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China
| | - Jilong Qin
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China
| | - Cheng Hong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510010, China.
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510010, China.
| |
Collapse
|
20
|
Kiani M, Jokar S, Hassanzadeh L, Behnammanesh H, Bavi O, Beiki D, Assadi M. Recent Clinical Implications of FAPI: Imaging and Therapy. Clin Nucl Med 2024; 49:e538-e556. [PMID: 39025634 DOI: 10.1097/rlu.0000000000005348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ABSTRACT The fibroblast activation protein (FAP) is a biomarker that is selectively overexpressed on cancer-associated fibroblasts (CAFs) in various types of tumoral tissues and some nonmalignant diseases, including fibrosis, arthritis, cardiovascular, and metabolic diseases. FAP plays a critical role in tumor microenvironment through facilitating proliferation, invasion, angiogenesis, immunosuppression, and drug resistance. Recent studies reveal that FAP might be regarded as a promising target for cancer diagnosis and treatment. FAP-targeted imaging modalities, especially PET, have shown high sensitivity and specificity in detecting FAP-expressing tumors. FAP-targeted imaging can potentially enhance tumor detection, staging, and monitoring of treatment response, and facilitate the development of personalized treatment strategies. This study provides a comprehensive view of FAP and its function in the pathophysiology of cancer and nonmalignant diseases. It also will discuss the characteristics of radiolabeled FAP inhibitors, particularly those based on small molecules, their recent clinical implications in imaging and therapy, and the associated clinical challenges with them. In addition, we present the results of imaging and biodistribution radiotracer 68 Ga-FAPI-46 in patients with nonmalignant diseases, including interstitial lung disease, primary biliary cirrhosis, and myocardial infarction, who were referred to our department. Our results show that cardiac FAP-targeted imaging can provide a novel potential biomarker for managing left ventricle remodeling. Moreover, this study has been organized and presented in a manner that offers a comprehensive overview of the current status and prospects of FAPI inhibitors in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Mahshid Kiani
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Jokar
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
21
|
Nilsson T, Rasinski P, Smedby Ö, Af Burén S, Sparrelid E, Löhr JM, Tran TA, Blomgren A, Tzortzakakis A, Axelsson R, Holstensson M. Acquisition Duration Optimization Using Visual Grading Regression in [ 68Ga]FAPI-46 PET Imaging of Oncologic Patients. J Nucl Med Technol 2024; 52:221-228. [PMID: 38627014 DOI: 10.2967/jnmt.123.267156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 09/07/2024] Open
Abstract
Fibroblast activation protein is a promising target for oncologic molecular imaging with radiolabeled fibroblast activation protein inhibitors (FAPI) in a large variety of cancers. However, there are yet no published recommendations on how to set up an optimal imaging protocol for FAPI PET/CT. It is important to optimize the acquisition duration and strive toward an acquisition that is sufficiently short while simultaneously providing sufficient image quality to ensure a reliable diagnosis. The aim of this study was to evaluate the feasibility of reducing the acquisition duration of [68Ga]FAPI-46 imaging while maintaining satisfactory image quality, with certainty that the radiologist's ability to make a clinical diagnosis would not be affected. Methods: [68Ga]FAPI-46 PET/CT imaging was performed on 10 patients scheduled for surgical resection of suspected pancreatic cancer, 60 min after administration of 3.6 ± 0.2 MBq/kg. The acquisition time was 4 min/bed position, and the raw PET data were statistically truncated and reconstructed to represent images with an acquisition duration of 1, 2, and 3 min/bed position, additional to the reference images of 4 min/bed position. Four image quality criteria that focused on the ability to distinguish specific anatomic details, as well as perceived image noise and overall image quality, were scored on a 4-point Likert scale and analyzed with mixed-effects ordinal logistic regression. Results: A trend toward increasing image quality scores with increasing acquisition duration was observed for all criteria. For the overall image quality, there was no significant difference between 3 and 4 min/bed position, whereas 1 and 2 min/bed position were rated significantly (P < 0.05) lower than 4 min/bed position. For the other criteria, all images with a reduced acquisition duration were rated significantly inferior to images obtained at 4 min/bed position. Conclusion: The acquisition duration can be reduced from 4 to 3 min/bed position while maintaining satisfactory image quality. Reducing the acquisition duration to 2 min/bed position or lower is not recommended since it results in inferior-quality images so noisy that clinical interpretation is significantly disrupted.
Collapse
Affiliation(s)
- Ted Nilsson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Pawel Rasinski
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Siri Af Burén
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Ernesto Sparrelid
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Upper Gastrointestinal Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - J Matthias Löhr
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Upper Gastrointestinal Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Thuy A Tran
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden; and
| | - August Blomgren
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Antonios Tzortzakakis
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Rimma Axelsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Maria Holstensson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden;
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
22
|
Oguri N, Gi T, Nakamura E, Furukoji E, Goto H, Maekawa K, Tsuji AB, Nishii R, Aman M, Moriguchi-Goto S, Sakae T, Azuma M, Yamashita A. Expression of fibroblast activation protein-α in human deep vein thrombosis. Thromb Res 2024; 241:109075. [PMID: 38955058 DOI: 10.1016/j.thromres.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is associated with wound healing, cancer-associated fibroblasts, and chronic fibrosing diseases. However, its expression in deep vein thrombosis (DVT) remains unclear. Therefore, this study investigated FAP expression and localization in DVT. METHODS We performed pathological analyses of the aspirated thrombi of patients with DVT (n = 14), classifying thrombotic areas in terms of fresh, cellular lysis, and organizing reaction components. The organizing reaction included endothelialization and fibroblastic reaction. We immunohistochemically examined FAP-expressed areas and cells, and finally analyzed FAP expression in cultured dermal fibroblasts. RESULTS All the aspirated thrombi showed a heterogeneous mixture of at least two of the three thrombotic areas. Specifically, 83 % of aspirated thrombi showed fresh and organizing reaction components. Immunohistochemical expression of FAP was restricted to the organizing area. Double immunofluorescence staining showed that FAP in the thrombi was mainly expressed in vimentin-positive or α-smooth muscle actin-positive fibroblasts. Some CD163-positive macrophages expressed FAP. FAP mRNA and protein levels were higher in fibroblasts with low-proliferative activity cultured under 0.1 % fetal bovine serum (FBS) than that under 10 % FBS. Fibroblasts cultured in 10 % FBS showed a significant decrease in FAP mRNA levels following supplementation with hemin, but not with thrombin. CONCLUSIONS The heterogeneous composition of venous thrombi suggests a multistep thrombus formation process in human DVT. Further, fibroblasts or myofibroblasts may express FAP during the organizing process. FAP expression may be higher in fibroblasts with low proliferative activity.
Collapse
Affiliation(s)
- Nobuyuki Oguri
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eriko Nakamura
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eiji Furukoji
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroki Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan; Medical Imaging Engineering, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Murasaki Aman
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sayaka Moriguchi-Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tatefumi Sakae
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
23
|
Paty LP, Degueldre S, Provost C, Schmitt C, Trump L, Fouque J, Vriamont C, Valla F, Gendron T, Madar O. Development of a versatile [ 68Ga]Ga-FAPI-46 automated synthesis suitable to multi-elutions of germanium-68/gallium-68 generators. Front Chem 2024; 12:1411312. [PMID: 39076612 PMCID: PMC11284080 DOI: 10.3389/fchem.2024.1411312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 07/31/2024] Open
Abstract
Gallium-68-labeled FAPI-46 has recently been proposed as a novel positron emission tomography imaging probe to diagnose and monitor a wide variety of cancers. Promising results from several ongoing clinical trials have led to a soaring demand for this radiotracer. Typical [68Ga]Ga-FAPI-46 labeling protocols do not cope with multiple generator elutions, leaving radiopharmacies unable to scale-up the production and meet the demand. Here, we propose a robust and efficient automated radiosynthesis of [68Ga]Ga-FAPI-46 on the Trasis miniAllinOne synthesizer, featuring a prepurification step which allows multiple generator elutions and ensures compatibility with a wide range of gallium-68 generators. Our approach was to optimize the prepurification step by first testing five different cationic cartridge chemistries. Only the strong cationic exchange (SCX) cartridges tested had sufficient affinities for quantitative trapping of >99.9%, while the weak cationics did not exceed 50%. Packaging, rinsing, or flowing of the selected SCX cartridges was not noticeable, but improvements in fluidics managed to save time. Based on our previous development experience of [68Ga]Ga-FAPI-46, radiolabeling optimization was also carried out at different temperatures during 10 min. At temperatures above 100°C, radiochemical yield (RCY) > 80% was achieved without significantly increasing the chemical impurities (<5.5 μg mL-1). The optimized sequence was reproducibly conducted with three different brands of widely used generators (RCY >88%). A comparison with radiosyntheses carried out without prepurification steps was also conclusive in terms of RCY, radiochemical yield, and chemical purity. Finally, high-activity tests using elutions from three generators were also successful for these parameters. [68Ga]Ga-FAPI-46 was consistently obtained in good radiochemical yields (>89%, n = 3), and the final product quality was compliant with internal specifications based on European Pharmacopoeia. This process is suitable for GMP production and allows scaling-up of routine productions, higher throughput, and, ultimately, better patient care.
Collapse
Affiliation(s)
- Louis-Paul Paty
- Département de Radiopharmacologie, Ensemble Hospitalier de l’Institut Curie, Saint-Cloud, France
| | | | - Claire Provost
- Département de Radiopharmacologie, Ensemble Hospitalier de l’Institut Curie, Saint-Cloud, France
- Centre de Recherche de l’Institut Curie, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | - Camille Schmitt
- Département de Radiopharmacologie, Ensemble Hospitalier de l’Institut Curie, Saint-Cloud, France
| | - Laura Trump
- Département de Radiopharmacologie, Ensemble Hospitalier de l’Institut Curie, Saint-Cloud, France
- Centre de Recherche de l’Institut Curie, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | - Julien Fouque
- Département de Radiopharmacologie, Ensemble Hospitalier de l’Institut Curie, Saint-Cloud, France
- Centre de Recherche de l’Institut Curie, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | | | - Frank Valla
- SOFIE, iTheranostics, Dulles, VA, United States
| | | | - Olivier Madar
- Département de Radiopharmacologie, Ensemble Hospitalier de l’Institut Curie, Saint-Cloud, France
- Centre de Recherche de l’Institut Curie, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| |
Collapse
|
24
|
Vaz SC, Woll JPP, Cardoso F, Groheux D, Cook GJR, Ulaner GA, Jacene H, Rubio IT, Schoones JW, Peeters MJV, Poortmans P, Mann RM, Graff SL, Dibble EH, de Geus-Oei LF. Joint EANM-SNMMI guideline on the role of 2-[ 18F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur J Nucl Med Mol Imaging 2024; 51:2706-2732. [PMID: 38740576 PMCID: PMC11224102 DOI: 10.1007/s00259-024-06696-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - David Groheux
- Nuclear Medicine Department, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK
- King's College London and Guy's & St Thomas' PET Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Isabel T Rubio
- Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Navarra, Spain
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Ritse M Mann
- Radiology Department, RadboudUMC, Nijmegen, The Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
- Department of Radiation Science & Technology, Technical University of Delft, Delft, The Netherlands.
| |
Collapse
|
25
|
Hua T, Chen M, Fu P, Zhou W, Zhao W, Li M, Zuo C, Guan Y, Xu H. Heterogeneity of fibroblast activation protein expression in the microenvironment of an intracranial tumor cohort: head-to-head comparison of gallium-68 FAP inhibitor-04 ( 68Ga-FAPi-04) and fluoride-18 fluoroethyl-L-tyrosine ( 18F-FET) in positron emission tomography-computed tomography imaging. Quant Imaging Med Surg 2024; 14:4450-4463. [PMID: 39022225 PMCID: PMC11250301 DOI: 10.21037/qims-24-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Background Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) can interact with tumor parenchymal cells to promote tumor growth and migration. Fibroblast activation protein (FAP) expressed by CAFs can be targeted with positron emission tomography (PET) tracers, but studies on FAP expression patterns in intracranial tumors remain scarce. We aimed to evaluate FAP expression patterns in intracranial tumors with gallium-68 FAP inhibitor-04 (68Ga-FAPi-04) and immunohistochemical staining and to observe the interactions between CAFs and tumor cells with a head-to-head comparison of 68Ga-FAPi-04 and fluoride-18 fluoroethyl-L-tyrosine (18F-FET) for PET quantification analysis. Methods We prospectively enrolled 22 adult patients with intracranial mass lesions. 68Ga-FAPi-04 and 18F-FET PET-computed tomography (PET/CT) brain imaging were applied before surgery. Maximal tumor-to-brain ratio (TBRmax), metabolic tumor volume (MTV), and total lesion tracer uptake (TLU) was obtained, and different thresholds were used for 68Ga-FAPi-04-positive lesion delineation owing to the lack of relevant guidelines. The MTV and TLU ratios of both tracers were calculated. Linear regression was applied to observe the differential efficacy of semiquantitative PET parameters. Results A total of 22 patients with a mean age of 50±13 years (range, 27-69 years) were enrolled. Heterogeneous patterns of 68Ga-FAPi-04 uptake [median of maximal standardized uptake value (SUVmax) =3.8; range, 0.1-19.1] were found. More malignant tumors, including brain metastasis, glioblastoma, and medulloblastoma, generally exhibited more significant 68Ga-FAPi-04 uptake than did the less malignant tumors, while the SUVmax and TBRmax exhibited nonsignificant differences across three intracranial lesion groups of primary brain tumor, brain metastasis, and noncancerous disease (SUVmax: P=0.092; TBRmax: P=0.189). Immunohistochemistry staining showed different stromal FAP expression status in various intracranial lesions. In 15 patients with positive 68Ga-FAPi-04 intracranial tumor uptake, the MTVFAPi:MTVFET ratio had differential efficacy in various types of intracranial tumors [95% confidence interval (CI): 0.572-7.712; P=0.027], and further quantification analyses confirmed the differential ability of the MTVFAPi:MTVFET ratio (95% CI: -0.045 to 11.013, P=0.052; 95% CI: 0.044-17.903, P=0.049; 95% CI: -1.131 to 30.596, P=0.065) with different isocontour volumetric thresholds. Conclusions This head-to-head study demonstrated heterogeneous FAP expression in intracranial tumors. The FAP expression volume percentage in tumor parenchyma may therefore offer benefit with respect to differentiating between intracranial tumor types.
Collapse
Affiliation(s)
- Tao Hua
- Department of Nuclear Medicine & Positron Emission Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Weiyan Zhou
- Department of Nuclear Medicine & Positron Emission Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Zhao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Nuclear Medicine & Positron Emission Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & Positron Emission Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & Positron Emission Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
26
|
Nakayama M, Hope TA, Salavati A. Diagnostic and Therapeutic Application of Fibroblast Activation Protein Inhibitors in Oncologic and Nononcologic Diseases. Cancer J 2024; 30:210-217. [PMID: 38753756 DOI: 10.1097/ppo.0000000000000719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging. As we expand our knowledge of the utility of FAPI PET, accurate understanding of noncancerous uptake seen on FAPI PET is crucial for accurate evaluation. In this review, we summarize potential diagnostic and therapeutic applications of radiolabeled FAP inhibitors in oncological and nononcological disease processes.
Collapse
Affiliation(s)
- Mariko Nakayama
- From the Department of Radiological Sciences, UCLA, Los Angeles, CA, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ali Salavati
- Division of Nuclear Medicine and Translational Theranostics, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
27
|
Li X, Lv X, Quan Z, Han T, Tang Y, Liu Y, Wang M, Li G, Ye J, Wang J, Lan X, Zhang X, Li M, Liu S, Kang F, Wang J. Surgical evidence-based comparison of [ 68Ga]Ga-FAPI-04 PET and MRI-DWI for assisting debulking surgery in ovarian cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:1773-1785. [PMID: 38197954 DOI: 10.1007/s00259-023-06582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE Imaging assessment of abdominopelvic tumor burden is crucial for debulking surgery decision in ovarian cancer patients. This study aims to compare the efficiency of [68Ga]Ga-FAPI-04 FAPI PET and MRI-DWI in the preoperative evaluation and its potential impact to debulking surgery decision. METHODS Thirty-six patients with suspected/confirmed ovarian cancer were enrolled and underwent integrated [68Ga]Ga-FAPI-04 PET/MRI. Nineteen patients (15 stage III-IV and 4 I-II stage) who underwent debulking surgery were involved in the diagnostic efficiency analysis. The images of [68Ga]Ga-FAPI-04 PET and MRI-DWI were visually analyzed respectively. Immunohistochemistry on FAP was performed in metastatic lesions to investigate the radiological missing of [68Ga]Ga-FAPI-04 PET as well as its different performance in primary debulking surgery (PDS) and interval debulking surgery (IDS) patients. Potential imaging impact on management was also studied in 35 confirmed ovarian cancer patients. RESULTS [68Ga]Ga-FAPI-04 PET displayed higher sensitivity (76.8% vs.59.9%), higher accuracy (84.9% vs. 80.7%), and lower missing rate (23.2% vs. 40.1%) than MRI-DWI in detecting abdominopelvic metastasis. The diagnostic superiority of [68Ga]Ga-FAPI-04 PET is more obvious in PDS patients but diminished in IDS patients. [68Ga]Ga-FAPI-04 PET outperformed MRI-DWI in 70.8% abdominopelvic regions (17/24), which contained seven key regions that impact the resectability and surgical complexity. MRI-DWI hold advantage in the peritoneal surface of the bladder and the central tendon of the diaphragm. Of the contradictory judgments between the two modalities (14.9%), [68Ga]Ga-FAPI-04 PET correctly identified more lesions, particularly in PDS patients (73.8%). In addition, FAP expression was independent of lesion size and decreased in IDS patients. [68Ga]Ga-FAPI-04 PET changed 42% of surgical planning that was previously based on MRI-DWI. CONCLUSION [68Ga]Ga-FAPI-04 PET is more efficient in assisting debulking surgery in ovarian cancer patients than MRI-DWI. Integrated [68Ga]Ga-FAPI-04 PET/MR imaging is a potential method for planning debulking surgery in ovarian cancer patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaohui Lv
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Tingting Han
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yongqiang Tang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ying Liu
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mengxin Wang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jingyi Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shujuan Liu
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
28
|
Kou Z, Liu C, Zhang W, Sun C, Liu L, Zhang Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 2024; 64:54. [PMID: 38577950 PMCID: PMC11015919 DOI: 10.3892/ijo.2024.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
Collapse
Affiliation(s)
- Zixing Kou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, P.R. China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100007, P.R. China
| |
Collapse
|
29
|
Bentestuen M, Nalliah S, Stolberg MMK, Zacho HD. How to Perform FAPI PET? An Expedited Systematic Review Providing a Recommendation for FAPI PET Imaging With Different FAPI Tracers. Semin Nucl Med 2024; 54:345-355. [PMID: 38052711 DOI: 10.1053/j.semnuclmed.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
This expedited systematic review aims to provide the first overview of the different Fibroblast activation protein inhibitor (FAPI) PET scan procedures in the literature and discuss how to efficiently obtain optimal FAPI PET images based on the best available evidence. The PubMed, Embase, Cochrane Library, and Web of Science databases were systematically searched in April 2023. Peer-reviewed cohort studies published in English and used FAPI tracers were included. Articles were excluded if critical scan procedure information was missing, or the article was not retrievable from a university library within 30 days. Data were grouped according to the FAPI tracer applied. Meta-analysis with proper statistics was deemed not feasible based on a pilot study. A total of 946 records were identified. After screening, 159 studies were included. [68Ga]Ga-FAPI-04 was applied in 98 studies (61%), followed by [68Ga]Ga-FAPI-46 in 19 studies (12%). Most studies did not report specific patient preparation. A mean/median administered activity of 80-200 MBq was most common; however, wide ranges were seen in [68Ga]Ga-FAPI-04 PET studies (56-370 MBq). An injection-to-scan-time of 60 minutes was dominant for all FAPI PET studies. A possible trend toward shorter injection-to-scan times was observed for [68Ga]Ga-FAPI-46. Three studies evaluated [68Ga]Ga-FAPI-46 PET acquisition at multiple time points in more than 593 cancer lesions, all yielding equivalent tumor detection at 10 minutes vs later time points despite slightly lower tumor-to-background Ratios. Despite the wide ranges, most institutions administer an average of 80-200 MBq [68Ga]Ga-FAPI-04/46 and scan patients at 60 minutes postinjection. For [68Ga]Ga-FAPI-46, the present evidence consistently supports the feasibility of image acquisition earlier than 30 minutes. Currently, data on the optimal FAPI PET scan procedure are limited, and more studies are encouraged. The current review can serve as a temporary guideline for institutions planning FAPI PET studies.
Collapse
Affiliation(s)
- Morten Bentestuen
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Surenth Nalliah
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Marie M K Stolberg
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
30
|
Xu Y, Chen J, Zhang Y, Zhang P. Recent Progress in Peptide-Based Molecular Probes for Disease Bioimaging. Biomacromolecules 2024; 25:2222-2242. [PMID: 38437161 DOI: 10.1021/acs.biomac.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Ying Xu
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Junfan Chen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Pengcheng Zhang
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
31
|
Lee EYP, Philip Ip PC, Tse KY, Kwok ST, Chiu WK, Ho G. PET/Computed Tomography Transformation of Oncology: Ovarian Cancers. PET Clin 2024; 19:207-216. [PMID: 38177053 DOI: 10.1016/j.cpet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Over the last quarter of a century, fluorine-18-fluorodeoxyglucose (FDG) PET/computed tomography (CT) has revolutionized the diagnostic algorithm of ovarian cancer, impacting on the initial disease evaluation including staging and surgical planning, treatment response assessment and prognostication, to the most important role in detection of recurrent disease. The role of FDG PET/CT is expanding with the adoption of new therapeutic agents. Other non-FDG tracers have been explored with fibroblast activation protein inhibitor being promising. Novel tracers may provide the basis for future theragnostic work. This article will review the evolution and impact of PET/CT in ovarian cancer management.
Collapse
Affiliation(s)
- Elaine Yuen Phin Lee
- Department of Diagnostic Radiology, School of Clinical Medicine, University of Hong Kong, Room 406, Block K, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China.
| | - Pun Ching Philip Ip
- Department of Pathology, School of Clinical Medicine, University of Hong Kong, Room 019, 7/F, Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, University of Hong Kong, 6/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Shuk Tak Kwok
- Department of Obstetrics and Gynaecology, 6/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| | - Wan Kam Chiu
- Department of Obstetrics and Gynaecology, United Christian Hospital, 5/F, Block S, Kwun Tong, Kowloon, Hong Kong, China
| | - Grace Ho
- Department of Radiology, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
32
|
Zhang Z, Tao J, Qiu J, Cao Z, Huang H, Xiao J, Zhang T. From basic research to clinical application: targeting fibroblast activation protein for cancer diagnosis and treatment. Cell Oncol (Dordr) 2024; 47:361-381. [PMID: 37726505 DOI: 10.1007/s13402-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE This study aims to review the multifaceted roles of a membrane protein named Fibroblast Activation Protein (FAP) expressed in tumor tissue, including its molecular functionalities, regulatory mechanisms governing its expression, prognostic significance, and its crucial role in cancer diagnosis and treatment. METHODS Articles that have uncovered the regulatory role of FAP in tumor, as well as its potential utility within clinical realms, spanning diagnosis to therapeutic intervention has been screened for a comprehensive review. RESULTS Our review reveals that FAP plays a pivotal role in solid tumor progression by undertaking a multitude of enzymatic and nonenzymatic roles within the tumor stroma. The exclusive presence of FAP within tumor tissues highlights its potential as a diagnostic marker and therapeutic target. The review also emphasizes the prognostic significance of FAP in predicting tumor progression and patient outcomes. Furthermore, the emerging strategies involving FAPI inhibitor (FAPI) in cancer research and clinical trials for PET/CT diagnosis are discussed. And targeted therapy utilizing FAP including FAPI, chimeric antigen receptor (CAR) T cell therapy, tumor vaccine, antibody-drug conjugates, bispecific T-cell engagers, FAP cleavable prodrugs, and drug delivery system are also introduced. CONCLUSION FAP's intricate interactions with tumor cells and the tumor microenvironment make it a promising target for diagnosis and treatment. Promising strategies such as FAPI offer potential avenues for accurate tumor diagnosis, while multiple therapeutic strategies highlight the prospects of FAP targeting treatments which needs further clinical evaluation.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
33
|
Guo C, Liu Y, Yang H, Xia Y, Li X, Chen L, Feng Y, Zhang Y, Chen Y, Huang Z. A pilot study of [68Ga]Ga-fibroblast activation protein inhibitor-04 PET/CT in renal cell carcinoma. Br J Radiol 2024; 97:859-867. [PMID: 38290775 PMCID: PMC11027253 DOI: 10.1093/bjr/tqae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES As a promising positron emission tomography (PET) tracer, [68Ga]Ga-fibroblast activation protein inhibitor-04([68Ga]Ga-FAPI-04) performs better than 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) at diagnosing primary and metastatic lesions in patients with various types of cancer. We investigated the utility of [68Ga]Ga-FAPI-04 PET/CT for the detection of primary and metastatic lesions in renal cell carcinoma (RCC). [18F]FDG PET/CT were used for comparison. METHODS Twenty-two patients with suspected RCC or recurrent RCC were enrolled in our study. Among these patients, 14 were newly diagnosed with RCC, 3 had recurrent RCC, and 5 were excluded from further analysis due to having benign renal tumours. Seventeen patients with RCC underwent [68Ga]Ga-FAPI-04 PET/CT, and 6 of them also received [18F]FDG PET/CT. The positive detection rates were calculated and compared with those in patients who underwent both scans. RESULTS Data from 17 patients with RCC (median age: 60.5 years, interquartile range [IQR]: 54-70 years) were evaluated. The positive detection rate of [68Ga]Ga-FAPI-04 PET/CT for RCC was 64.7% (11/17). Lymph node metastases (n = 44), lung metastasis (n = 1), and bone metastasis (n = 1) were detected. Six patients with RCC underwent [68Ga]Ga-FAPI-04 and [18F]FDG PET/CT. [68Ga]Ga-FAPI-04 PET/CT showed a higher positive detection rate than [18F]FDG PET/CT in detecting RCC (83.3% [5/6] vs. 50% [3/6], P = 0.545). Additionally, [68Ga]Ga-FAPI-04 PET/CT has higher SUVmax (3.20 [IQR: 2.91-5.80 vs. 2.71 [IQR: 2.13-3.10], P = 0.116) and tumour-to-background ratio (TBR) values (1.60 [IQR: 1.33-3.67] vs. 0.86 [0.48-1.21], P = 0.028) than [18F]FDG PET/CT. CONCLUSIONS These findings suggest that [68Ga]Ga-FAPI-04 PET/CT has potential value in RCC diagnosis. Further studies are warranted to validate these results. ADVANCES IN KNOWLEDGE Clinical utility of [68Ga]Ga-FAPI-04 in RCC remains unclear, and there are not many similar studies in the literature. We evaluated the role of [68Ga]Ga-FAPI-04 in diagnosing RCC.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ya Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haozhou Yang
- Department of Urology, Fushun People’s Hospital, Zigong, Sichuan 643000, China
| | - Yuxiao Xia
- Department of Nuclear Medicine, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan 610000, China
| | - Xue Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liming Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
34
|
Rizzo A, Albano D, Dondi F, Cioffi M, Muoio B, Annunziata S, Racca M, Bertagna F, Piccardo A, Treglia G. Diagnostic yield of FAP-guided positron emission tomography in thyroid cancer: a systematic review. Front Med (Lausanne) 2024; 11:1381863. [PMID: 38590320 PMCID: PMC10999586 DOI: 10.3389/fmed.2024.1381863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Background Several recent studies have proposed the possible application of positron emission tomography/computed tomography (PET/CT) administering radiolabelled fibroblast-activation protein (FAP) inhibitors for various forms of thyroid cancer (TC), including differentiated TC (DTC), and medullary TC (MTC). Methods The authors conducted an extensive literature search of original studies examining the effectiveness of FAP-guided PET/CT in patients with TC. The papers included were original publications exploring the use of FAP-targeted molecular imaging in restaging metastatic DTC and MTC patients. Results A total of 6 studies concerning the diagnostic yield of FAP-targeted PET/CT in TC (274 patients, of which 247 DTC and 27 MTC) were included in this systematic review. The included articles reported high values of FAP-targeted PET/CT detection rates in TC, ranging from 81 to 100% in different anatomical sites and overall superior to the comparative imaging method. Conclusion Although there are promising results, the existing literature on the diagnostic accuracy of FAP-guided PET in this context is still quite limited. To thoroughly evaluate its potential significance in TC patients, it is needed to conduct prospective randomized multicentric trials.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO – IRCCS, Turin, Italy
| | - Domenico Albano
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Dondi
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martina Cioffi
- Nuclear Medicine Unit, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Barbara Muoio
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiopharmacy - TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO – IRCCS, Turin, Italy
| | - Francesco Bertagna
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. “Ospedali Galliera,” Genoa, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
35
|
Gu B, Yang Z, Du X, Xu X, Ou X, Xia Z, Guan Q, Hu S, Yang Z, Song S. Imaging of Tumor Stroma Using 68Ga-FAPI PET/CT to Improve Diagnostic Accuracy of Primary Tumors in Head and Neck Cancer of Unknown Primary: A Comparative Imaging Trial. J Nucl Med 2024; 65:365-371. [PMID: 38272706 PMCID: PMC10924163 DOI: 10.2967/jnumed.123.266556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The low detection rate of primary tumors by current diagnostic techniques remains a major concern for patients with head and neck cancer of unknown primary (HNCUP). Therefore, in this study, we aimed to investigate the potential role of 68Ga-labeled fibroblast activation protein inhibitor (68Ga-FAPI) PET/CT compared with 18F-FDG PET/CT for the detection of primary tumors of HNCUP. Methods: In this prospective comparative imaging trial conducted at Fudan University Shanghai Cancer Center, 91 patients with negative or equivocal findings of a primary tumor by comprehensive clinical examination and conventional imaging were enrolled from June 2020 to September 2022. The presence of a primary tumor was recorded by 3 experienced nuclear medicine physicians. Primary lesions were validated by histopathologic analysis and a composite reference standard. Results: Of the 91 patients (18 women, 73 men; median age, 60 y; age range, 24-76 y), primary tumors were detected in 46 (51%) patients after a thorough diagnostic work-up. 68Ga-FAPI PET/CT detected more primary lesions than 18F-FDG PET/CT (46 vs. 17, P < 0.001) and showed better sensitivity, positive predictive value, and accuracy in locating primary tumors (51% vs. 25%, 98% vs. 43%, and 51% vs. 19%, respectively). Furthermore, 68Ga-FAPI PET/CT led to treatment changes in 22 of 91 (24%) patients compared with 18F-FDG PET/CT. The Kaplan-Meier curve illustrated that patients with unidentified primary tumors had a significantly worse prognosis than patients with identified primary tumors (hazard ratio, 5.77; 95% CI, 1.86-17.94; P = 0.0097). Conclusion: 68Ga-FAPI PET/CT outperforms 18F-FDG PET/CT in detecting primary lesions and could serve as a sensitive, reliable, and reproducible imaging modality for HNCUP patients.
Collapse
Affiliation(s)
- Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Ziyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Xinyue Du
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Xiaomin Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zuguang Xia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; and
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Silong Hu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| |
Collapse
|
36
|
Bocci M, Zana A, Principi L, Lucaroni L, Prati L, Gilardoni E, Neri D, Cazzamalli S, Galbiati A. In vivo activation of FAP-cleavable small molecule-drug conjugates for the targeted delivery of camptothecins and tubulin poisons to the tumor microenvironment. J Control Release 2024; 367:779-790. [PMID: 38346501 DOI: 10.1016/j.jconrel.2024.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Small molecule-drug conjugates (SMDCs) are increasingly considered as a therapeutic alternative to antibody-drug conjugates (ADCs) for cancer therapy. OncoFAP is an ultra-high affinity ligand of Fibroblast Activation Protein (FAP), a stromal tumor-associated antigen overexpressed in a wide variety of solid human malignancies. We have recently reported the development of non-internalizing OncoFAP-based SMDCs, which are activated by FAP thanks to selective proteolytic cleavage of the -GlyPro- linker with consequent release of monomethyl auristatin E (MMAE) in the tumor microenvironment. In this article, we describe the generation and the in vivo characterization of FAP-cleavable OncoFAP-drug conjugates based on potent topoisomerase I inhibitors (DXd, SN-38, and exatecan) and an anti-tubulin payload (MMAE), which are already exploited in clinical-stage and approved ADCs. The Glycine-Proline FAP-cleavable technology was directly benchmarked against linkers found in Adcetris™, Enhertu™, and Trodelvy™ structures by means of in vivo therapeutic experiments in mice bearing tumors with cellular or stromal FAP expression. OncoFAP-GlyPro-Exatecan and OncoFAP-GlyPro-MMAE emerged as the most efficacious anti-cancer therapeutics against FAP-positive cellular models. OncoFAP-GlyPro-MMAE exhibited a potent antitumor activity also against stromal models, and was therefore selected for clinical development.
Collapse
Affiliation(s)
- Matilde Bocci
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland.
| | - Aureliano Zana
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland
| | | | - Laura Lucaroni
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland
| | - Luca Prati
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland
| | | | - Dario Neri
- Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, Zurich CH-8093, Switzerland; Philogen S.p.A., Siena 53100, Italy
| | | | - Andrea Galbiati
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland.
| |
Collapse
|
37
|
Evangelista L, Guglielmo P, Pietrzak A, Lazar AM, Urso L, Aghaee A, Eppard E. The Future Direction of Women in Nuclear Medicine and Nuclear Medicine in Women's Health. Semin Nucl Med 2024; 54:302-310. [PMID: 38218670 DOI: 10.1053/j.semnuclmed.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
This work discusses the role of Nuclear Medicine for women's health, the role of women in the development of this emerging field and the various issues which arise from both. It emphasizes the importance of young women and their competing needs due to factors like pregnancy and work-related challenges. The objectives of this overview include improving imaging techniques, preserving fertility during cancer treatment, diagnosing pelvic and uterine conditions, developing radiopharmaceuticals for women's health, protecting female employees in Nuclear Medicine, and considering the role of artificial intelligence.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Priscilla Guglielmo
- Nuclear Medicine Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Agata Pietrzak
- Electroradiology Department, Poznan University of Medical Sciences, Poznan, Poland; Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland
| | - Alexandra Maria Lazar
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", Bucharest, Romania; Carcinogenesis and Molecular Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", Bucharest, Romania
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Nuclear Medicine Unit, Onco-Hematological Department, University Hospital of Ferrara, Ferrara, Italy
| | - Atena Aghaee
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elisabeth Eppard
- Faculty of Medicine, University Clinic for Radiology and Nuclear Medicine, Otto von Guericke University (OvGU), Magdeburg, Germany
| |
Collapse
|
38
|
Caresia AP, Jo Rosales J, Rodríguez Fraile M, Arçay Öztürk A, Artigas C. PET/CT FAPI: Procedure and evidence review in oncology. Rev Esp Med Nucl Imagen Mol 2024; 43:130-140. [PMID: 38331248 DOI: 10.1016/j.remnie.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024]
Abstract
Neoplasms are composed of malignant tumor cells, which are surrounded by other non-tumor cellular elements, in what has been defined as the microenvironment or tumor stroma. Evidence on the importance of the tumor microenvironment has not stopped growing in recent years. It plays a central role in cell proliferation, tissue invasion, angiogenesis and cell migration. The paradigm is the family of new FAPI radiopharmaceuticals that show the density of the fibroblast activation protein (FAP) which is overexpressed in the cell membrane of activated cancer-associated fibroblasts (CAF), and its presence is related to poor prognosis. This educational document includes the procedure for performing PET/CT FAPI, biodistribution and the main potentially clinical applications in oncology to date.
Collapse
Affiliation(s)
- A P Caresia
- Servei e Medicina Nuclear, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - J Jo Rosales
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Spain
| | - M Rodríguez Fraile
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Spain
| | - A Arçay Öztürk
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - C Artigas
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
39
|
Wang D, Liu X, Li M, Ning J. HIF-1α regulates the cell viability in radioiodine-resistant papillary thyroid carcinoma cells induced by hypoxia through PKM2/NF-κB signaling pathway. Mol Carcinog 2024; 63:238-252. [PMID: 37861358 DOI: 10.1002/mc.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The curative treatment options for papillary thyroid cancer (PTC) encompass surgical intervention, radioactive iodine administration, and chemotherapy. However, the challenges of radioiodine (RAI) resistance, metastasis, and chemotherapy resistance remain inadequately addressed. The objective of this study was to investigate the protective role of hypoxia-inducible factor-1α (HIF-1α) in 131 I-resistant cells and a xenograft model under hypoxic conditions, as well as to explore potential mechanisms. The effects of HIF-1α on 131 I-resistant BCPAP and TPC-1 cells, as well as the xenograft model, were assessed in this study. Cell viability, migration, invasion, and apoptosis rates were measured using Cell Counting Kit-8, wound-healing, Transwell, and flow cytometry assays. Additionally, the expressions of Ki67, matrix metalloproteinase-9 (MMP-9), and pyruvate kinase M2 (PKM2) were examined using immunofluorescence or immunohistochemistry assays. Sodium iodide symporter and PKM2/NF-κBp65 relative protein levels were detected by western blot analysis. The findings of our study indicate that siHIF-1α effectively inhibits cell proliferation, cell migration, and invasion in 131 I-resistant cells under hypoxic conditions. Additionally, the treatment of siHIF-1α leads to alterations in the relative protein levels of Ki67, MMP-9, PKM2, and PKM2/NF-κBp65, both in vivo and in vitro. Notably, the effects of siHIF-1α are modified when DASA-58, an activator of PKM2, is administered. These results collectively demonstrate that siHIF-1α reduces cell viability in PTC cells and rat models, while also mediating the nuclear factor-κB (NF-κB)/PKM2 signaling pathway. Our findings provide a new rationale for further academic and clinical research on RAI-resistant PTC.
Collapse
Affiliation(s)
- Dong Wang
- Thyroid Surgery Ward, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Meijing Li
- Second Department of Hepatobiliary Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinyao Ning
- Thyroid Surgery Ward, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
40
|
Poplawski SE, Hallett RM, Dornan MH, Novakowski KE, Pan S, Belanger AP, Nguyen QD, Wu W, Felten AE, Liu Y, Ahn SH, Hergott VS, Jones B, Lai JH, McCann JAB, Bachovchin WW. Preclinical Development of PNT6555, a Boronic Acid-Based, Fibroblast Activation Protein-α (FAP)-Targeted Radiotheranostic for Imaging and Treatment of FAP-Positive Tumors. J Nucl Med 2024; 65:100-108. [PMID: 38050111 DOI: 10.2967/jnumed.123.266345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Indexed: 12/06/2023] Open
Abstract
The overexpression of fibroblast activation protein-α (FAP) in solid cancers relative to levels in normal tissues has led to its recognition as a target for delivering agents directly to tumors. Radiolabeled quinoline-based FAP ligands have established clinical feasibility for tumor imaging, but their therapeutic potential is limited due to suboptimal tumor retention, which has prompted the search for alternative pharmacophores. One such pharmacophore is the boronic acid derivative N-(pyridine-4-carbonyl)-d-Ala-boroPro, a potent and selective FAP inhibitor (FAPI). In this study, the diagnostic and therapeutic (theranostic) potential of N-(pyridine-4-carbonyl)-d-Ala-boroPro-based metal-chelating DOTA-FAPIs was evaluated. Methods: Three DOTA-FAPIs, PNT6555, PNT6952, and PNT6522, were synthesized and characterized with respect to potency and selectivity toward soluble and cell membrane FAP; cellular uptake of the Lu-chelated analogs; biodistribution and pharmacokinetics in mice xenografted with human embryonic kidney cell-derived tumors expressing mouse FAP; the diagnostic potential of 68Ga-chelated DOTA-FAPIs by direct organ assay and small-animal PET; the antitumor activity of 177Lu-, 225Ac-, or 161Tb-chelated analogs using human embryonic kidney cell-derived tumors expressing mouse FAP; and the tumor-selective delivery of 177Lu-chelated DOTA-FAPIs via direct organ assay and SPECT. Results: DOTA-FAPIs and their natGa and natLu chelates exhibited potent inhibition of human and mouse sources of FAP and greatly reduced activity toward closely related prolyl endopeptidase and dipeptidyl peptidase 4. 68Ga-PNT6555 and 68Ga-PNT6952 showed rapid renal clearance and continuous accumulation in tumors, resulting in tumor-selective exposure at 60 min after administration. 177Lu-PNT6555 was distinguished from 177Lu-PNT6952 and 177Lu-PNT6522 by significantly higher tumor accumulation over 168 h. In therapeutic studies, all 3 177Lu-DOTA-FAPIs exhibited significant antitumor activity at well-tolerated doses, with 177Lu-PNT6555 producing the greatest tumor growth delay and animal survival. 225Ac-PNT6555 and 161Tb-PNT6555 were similarly efficacious, producing 80% and 100% survival at optimal doses, respectively. Conclusion: PNT6555 has potential for clinical translation as a theranostic agent in FAP-positive cancer.
Collapse
Affiliation(s)
- Sarah E Poplawski
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | | | | | - Shuang Pan
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Anthony P Belanger
- Harvard Medical School, Boston, Massachusetts
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | - Quang-De Nguyen
- Harvard Medical School, Boston, Massachusetts
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wengen Wu
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | - Yuxin Liu
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Shin Hye Ahn
- Harvard Medical School, Boston, Massachusetts
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | | | - Barry Jones
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Jack H Lai
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | - William W Bachovchin
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts;
| |
Collapse
|
41
|
Spektor AM, Gutjahr E, Lang M, Glatting FM, Hackert T, Pausch T, Tjaden C, Schreckenberger M, Haberkorn U, Röhrich M. Immunohistochemical FAP Expression Reflects 68Ga-FAPI PET Imaging Properties of Low- and High-Grade Intraductal Papillary Mucinous Neoplasms and Pancreatic Ductal Adenocarcinoma. J Nucl Med 2024; 65:52-58. [PMID: 38167622 PMCID: PMC10755523 DOI: 10.2967/jnumed.123.266393] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) are grossly visible (typically > 5 mm) intraductal epithelial neoplasms of mucin-producing cells, arising in the main pancreatic duct or its branches. According to the current 2-tiered grading scheme, these lesions are categorized as having either low-grade (LG) dysplasia, which has a benign prognosis, or high-grade (HG) dysplasia, which formally represents a carcinoma in situ and thus can transform to pancreatic ductal adenocarcinoma (PDAC). Because both entities require different treatments according to their risk of becoming malignant, a precise pretherapeutic diagnostic differentiation is inevitable for adequate patient management. Recently, our group has demonstrated that 68Ga-fibroblast activation protein (FAP) inhibitor (FAPI) PET/CT shows great potential for the differentiation of LG IPMNs, HG IPMNs, and PDAC according to marked differences in signal intensity and tracer dynamics. The purpose of this study was to biologically validate FAP as a target for PET imaging by analyzing immunohistochemical FAP expression in LG IPMNs, HG IPMNs, and PDAC and comparing with SUV and time to peak (TTP) measured in our prior study. Methods: To evaluate the correlation of the expression level of FAP and α-smooth muscle actin (αSMA) in neoplasm-associated stroma depending on the degree of dysplasia in IPMNs, 98 patients with a diagnosis of LG IPMN, HG IPMN, PDAC with associated HG IPMN, or PDAC who underwent pancreatic surgery at the University Hospital Heidelberg between 2017 and 2023 were identified using the database of the Institute of Pathology, University Hospital Heidelberg. In a reevaluation of hematoxylin- and eosin-stained tissue sections of formalin-fixed and paraffin-embedded resection material from the archive, which was originally generated for histopathologic routine diagnostics, a regrading of IPMNs was performed by a pathologist according to the current 2-tiered grading scheme, consequently eliminating the former diagnosis of "IPMN with intermediate-grade dysplasia." For each case, semithin tissue sections of 3 paraffin blocks containing neoplasm were immunohistologically stained with antibodies directed against FAP and αSMA. In a masked approach, a semiquantitative analysis of the immunohistochemically stained slides was finally performed by a pathologist by adapting the immunoreactive score (IRS) and human epidermal growth factor receptor 2 (Her2)/neu score to determine the intensity and percentage of FAP- and αSMA-positive cells. Afterward, the IRS of 14 patients who underwent 68Ga-FAPI-74 PET/CT in our previous study was compared with their SUVmax, SUVmean, and TTP for result validation. Results: From 98 patients, 294 specimens (3 replicates per patient) were immunohistochemically stained for FAP and αSMA. Twenty-three patients had LG IPMNs, 11 had HG IPMNs, 10 had HG IPMNs plus PDAC, and 54 had PDAC. The tumor stroma was in all cases variably positive for FAP. The staining intensity, percentage of FAP-positive stroma, IRS, and Her2/neu score increased with higher malignancy. αSMA expression could be shown in normal pancreatic stroma as well as within peri- and intraneoplastic desmoplastic reaction. No homogeneous increase in intensity, percentage, IRS, and Her2/neu score with higher malignancy was observed for αSMA. The comparison of the mean IRS of FAP with the mean SUVmax, SUVmean, and TTP of 68Ga-GAPI-74 PET/CT showed a matching value increasing with higher malignancy in 68Ga-FAPI-74 PET imaging and immunohistochemical FAP expression. Conclusion: The immunohistochemical staining of IPMNs and PDAC validates FAP as a biology-based stromal target for in vivo imaging. Increasing expression of FAP in lesions with a higher degree of malignancy matches the expectation of a stronger FAP expression in PDAC and HG IPMNs than in LG IPMNs and corroborates our previous findings of higher SUVs and a longer TTP in PDAC and HG IPMNs than in LG IPMNs.
Collapse
Affiliation(s)
- Anna-Maria Spektor
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Lang
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Frederik M Glatting
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg, Hamburg, Germany
| | - Thomas Pausch
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Tjaden
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany;
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany; and
| |
Collapse
|
42
|
Fu C, Zhang B, Guo T, Li J. Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques. Korean J Radiol 2024; 25:86-102. [PMID: 38184772 PMCID: PMC10788608 DOI: 10.3348/kjr.2023.0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 01/08/2024] Open
Abstract
Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.
Collapse
Affiliation(s)
- Chen Fu
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bangxing Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
43
|
Shangguan C, Yang C, Shi Z, Miao Y, Hai W, Shen Y, Qu Q, Li B, Mi J. 68Ga-FAPI-04 Positron Emission Tomography Distinguishes Malignancy From 18F-FDG-Avid Colorectal Lesions. Int J Radiat Oncol Biol Phys 2024; 118:285-294. [PMID: 37634891 DOI: 10.1016/j.ijrobp.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Lesions with a high uptake of 18F-fluorodeoxyglucose (18F-FDG) on positron emission tomography-computed tomography (PET-CT) can be benign and malignant. New radiotracers, such as the gallium 68 (68Ga)-labeled fibroblast activation protein inhibitor 4 (FAPI-04), could be used to diagnose colorectal carcinoma. This study aimed to evaluate the efficacy of 68Ga-FAPI-04 PET in differentiating benign from malignant 18F-FDG-avid colorectal lesions. METHODS AND MATERIALS An azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal tumor model was developed. Double-tracer 68Ga-FAPI-04 and 18F-FDG PET-CT were applied in the rat model and 22 patients. The PET-CT data were analyzed with enteroscopy, histopathologic observations, immunohistochemistry (IHC) staining, and radioautography results. One hundred seventy-two patients with pathologically confirmed colorectal lesions were enrolled in FAP IHC staining. RESULTS We found that 68Ga-FAPI-04 PET-CT imaging accurately distinguished the malignant from benign inflammatory lesions in an AOM/DSS-induced rat colorectal tumor model. Of 22 patients with gastric cancer but without colorectal carcinoma, 8 had 18F-FDG uptake in the colorectum, but 68Ga-FAPI-04 PET was negative in these sites. An inflammatory lesion or adenoma did not interfere with 68Ga-FAPI-04 PET imaging. Among the 18F-FDG-avid colorectal lesions, 80 of 94 pathologically malignant lesions (85.1%) were FAP-positive, and only 16 of the 78 premalignant or benign lesions (20.5%) had a weak 68Ga-FAPI-04 uptake. CONCLUSIONS 68Ga-FAPI-04 PET-CT could be used to distinguish between benign and malignant 18F-FDG-avid colorectal lesions.
Collapse
Affiliation(s)
- Chengfang Shangguan
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- Department of Otolaryngology & Head and Neck Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaopeng Shi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shen
- Research Center for Experimental Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Qu
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Mi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Wang Y, Liu Y, Geng H, Zhang W. Advancements in theranostic applications: exploring the role of fibroblast activation protein inhibition tracers in enhancing thyroid health assessment. EJNMMI Res 2023; 13:109. [PMID: 38129604 PMCID: PMC10739649 DOI: 10.1186/s13550-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The diagnostic accuracy of [18F]-fluorodeoxyglucose ([18F]-FDG) positron emission tomography imaging in accurately identifying thyroid lesions is limited, primarily due to the physiological uptake of normal head and neck tissues and inflammatory uptake in lymph nodes. Since fibroblast activating protein is highly expressed in tumors and largely unexpressed in normal tissues, quinoline-based fibroblast activating protein inhibitors (FAPI) have emerged as promising tools in the diagnosis of cancer and other medical conditions. Several studies have reported on the feasibility and value of FAPI in thyroid cancer. MAIN BODY In this narrative review, we summarize the current literature on state-of-the-art FAPI positron emission tomography imaging for thyroid cancer and fibroblast activating protein-targeted radionuclide therapy. We provide an overview of FAPI uptake in normal thyroid tissue, thyroid cancer and its metastases. Additionally, we highlight the difference between FAPI uptake and [18F]-FDG uptake in thyroid lesions. Furthermore, we discuss the therapeutic value of FAPI in iodine-refractory thyroid cancer. CONCLUSION The utilization of fibroblast activating protein inhibitors in thyroid cancer holds significant promise, offering clinicians valuable insights for more precise diagnose choices and treatments strategies in the future.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Long Cheng Street 99, Xiao Dian District, Taiyuan, 030032, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ye Liu
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Long Cheng Street 99, Xiao Dian District, Taiyuan, 030032, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huixia Geng
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Long Cheng Street 99, Xiao Dian District, Taiyuan, 030032, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wanchun Zhang
- Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Long Cheng Street 99, Xiao Dian District, Taiyuan, 030032, Shanxi, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
45
|
Chen Z, Wang Y, Yang X, Li L, Huo Y, Yu X, Xiao X, Zhang C, Chen Y, Zhao H, Zhou Y, Huang G, Liu J, Chen R. Feasibility of acquisitions using total-body PET/CT with a half-dose [ 68Ga]Ga-FAPI-04 activity in oncology patients. Eur J Nucl Med Mol Imaging 2023; 50:3961-3969. [PMID: 37535107 DOI: 10.1007/s00259-023-06354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND [68Ga]Ga-FAPI-04 (gallium-68-labeled fibroblast activation protein inhibitor-04) PET/CT has been widely used in diagnosing malignant tumors. Total-body PET/CT has a long axial field of view and provides higher sensitivity compared to traditional PET/CT. However, whether the reduced injected dose of [68Ga]Ga-FAPI-04 could obtain qualified imaging has not been evaluated. PURPOSE To explore the effect of half-dose [68Ga]Ga-FAPI-04 on image quality and tumor detectability in oncology patients. METHODS A total of twenty-seven patients with tumors or clinically suspected tumors were included, and all patients were scanned with total-body PET/CT after an injected dose of 0.84-1.14 MBq/kg [68Ga]Ga-FAPI-04. All patients obtained superior image quality with 300 s original acquisition time. Images were reconstructed using 180 s, 120 s, 60 s, 40 s, 30 s, 20 s scanning duration by ordered subset expectation maximization algorithm. The subjective image quality of all patients in each time group was scored using 5-point Likert scale. Mediastinal blood pool, liver, spleen, and muscle were analyzed as background using semi-quantitative parameters maximum standardized uptake values (SUVmax), mean standardized uptake values (SUVmean), standard deviation (SD), and signal to noise ratio (SNR). The lesion detection rate, SUVmax, and tumor-to-background ratio (TBR) were calculated for tumors confirmed by pathology. RESULTS The subjective image quality score decreased with the shortening of scanning time; however, both 180 s and 120 s images met the diagnostic requirements in terms of overall quality, lesion conspicuity, and image noise. The SUVmax of background increased with the reduction of scanning time, while the SUVmean was relatively stable. With the shortening of scanning time, the SD gradually increased, and the SNR gradually decreased, which was consistent with subjective image quality scores. In 180 s and 120 s images, all 11 primary lesions and 79 metastatic lesions were detected. The SUVmax of tumor focus showed an increasing trend as same as the background. Compared with 300 s, the TBR muscle had no statistical difference in 180 s and 120 s. CONCLUSIONS Half-dose [68Ga]Ga-FAPI-04 in total-body PET/CT imaging can shorten the acquisition time to 120 s with acceptable subjective image quality and 100% tumor detection rate. Total-body PET/CT imaging with a half-dose [68Ga]Ga-FAPI-04 and reduced acquisition time can be used in radiation-sensitive and poor tolerant to prolong horizontal positioning and waiting time populations such as children and gravidas.
Collapse
Affiliation(s)
- Zijun Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yining Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlan Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Lianghua Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chenpeng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yumei Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haitao Zhao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
46
|
Lawaetz M, Christensen A, Juhl K, Lelkaitis G, Karnov K, Carlsen EA, Charabi BW, Loft A, Czyzewska D, von Buchwald C, Kjaer A. Diagnostic Value of Preoperative uPAR-PET/CT in Regional Lymph Node Staging of Oral and Oropharyngeal Squamous Cell Carcinoma: A Prospective Phase II Trial. Diagnostics (Basel) 2023; 13:3303. [PMID: 37958201 PMCID: PMC10649042 DOI: 10.3390/diagnostics13213303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
The detection of lymph node metastases is a major challenge in oral and oropharyngeal squamous cell carcinoma (OSCC and OPSCC). 68Ga-NOTA-AE105 is a novel positron emission tomography (PET) radioligand with high affinity to urokinase-type plasminogen activator receptor (uPAR), a receptor expressed on the surfaces of tumor cells. The aim of this study was to investigate the diagnostic value of uPAR-PET/CT (computerized tomography) in detecting regional metastatic disease in patients with OSCC and OPSCC compared to the current imaging work-up. In this phase II trial, patients with OSCC and OPSCC referred for surgical treatment were prospectively enrolled. Before surgery, 68Ga-NOTA-AE105 uPAR-PET/CT was conducted, and SUVmax values were obtained from the primary tumor and the suspected lymph nodes. Histology results from lymph nodes were used as the standard of truth of metastatic disease. The diagnostic values of 68Ga-uPAR-PET/CT were compared to conventional routine preoperative imaging results (CT and/or MRI). The uPAR expression in resected primary tumors and metastases was determined by immunohistochemistry and quantified digitally (H-score). A total of 61 patients underwent uPAR-PET/CT. Of the 25 patients with histologically verified lymph node metastases, uPAR-PET/CT correctly identified regional metastatic disease in 14 patients, with a median lymph node metastasis size of 14 mm (range 3-27 mm). A significant correlation was found between SUVmax and the product of the H-score and tumor depth (r = 0.67; p = 0.003). The sensitivity and specificity of uPAR-PET/CT in detecting regional metastatic disease were 56% and 100%, respectively. When added to CT/MRI, uPAR-PET was able to upstage 2/11 (18%) of patients with occult metastases and increase the sensitivity to 64%. The sensitivity and specificity of 68Ga-NOTA-AE105 uPAR-PET/CT were equivalent to those of CT/MRI. The significant correlation between SUVmax and uPAR expression verified the target specificity of 68Ga-NOTA-AE105. Despite the target specificity, the sensitivity of imaging is too low for nodal staging and it cannot replace neck dissection.
Collapse
Affiliation(s)
- Mads Lawaetz
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Anders Christensen
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Kirstine Karnov
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Esben Andreas Carlsen
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Birgitte W. Charabi
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Dorota Czyzewska
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (M.L.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark (D.C.)
| |
Collapse
|
47
|
Rosenberg AJ, Cheung YY, Liu F, Sollert C, Peterson TE, Kropski JA. Fully automated radiosynthesis of [ 68Ga]Ga-FAPI-46 with cyclotron produced gallium. EJNMMI Radiopharm Chem 2023; 8:29. [PMID: 37843670 PMCID: PMC10579206 DOI: 10.1186/s41181-023-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Radiopharmaceuticals capable of targeting the fibroblast activation protein have become widely utilized in the research realm as well as show great promise to be commercialized; with [68Ga]Ga-FAPI-46 being one of the most widely utilized. Until now the synthesis has relied on generator-produced gallium-68. Here we present a developed method to utilize liquid-target cyclotron-produced gallium-68 to prepare [68Ga]Ga-FAPI-46. RESULTS A fully-automated manufacturing process for [68Ga]Ga-FAPI-46 was developed starting with the 68Zn[p,n]68Ga cyclotron bombardment to provide [68Ga]GaCl3, automated purification of the [68Ga]GaCl3, chelation with the precursor, and final formulation/purification. The activity levels produced were sufficient for multiple clinical research doses, and the final product met all release criteria. Furthermore, the process consistently provides < 2% of Ga-66 and Ga-67 at the 4-h expiry, meeting the Ph. Eur. STANDARDS CONCLUSIONS The automated radiosynthesis on the GE FASTlab 2 module purifies the cyclotron output into [68Ga]GaCl3, performs the labeling, formulates the product, and sterilizes the product while transferring to the final vial. Production of > 40 mCi (> 1480 MBq) of [68Ga]Ga-FAPI-46 in excellent radiochemical yield was achieved with all batches meeting release criteria.
Collapse
Affiliation(s)
- Adam J Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
| | - Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fei Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
48
|
Xie L, Qiu S, Lu C, Gu C, Wang J, Lv J, Fang L, Chen Z, Li Y, Jiang T, Xia Y, Wang W, Li B, Xu Z. Gastric cancer-derived LBP promotes liver metastasis by driving intrahepatic fibrotic pre-metastatic niche formation. J Exp Clin Cancer Res 2023; 42:258. [PMID: 37789385 PMCID: PMC10546721 DOI: 10.1186/s13046-023-02833-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Liver metastasis (LM) is one of the most common distant metastases of gastric cancer (GC). However, the mechanisms underlying the LM of GC (GC-LM) remain poorly understood. This study aimed to identify the tumour-secreted protein associated with GC-LM and to investigate the mechanisms by which this secreted protein remodels the liver microenvironment to promote GC-LM. METHODS Data-independent acquisition mass spectrometry (DIA-MS), mRNA expression microarray, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to identify and validate the GC-secreted proteins associated with GC-LM. A modified intrasplenic injection mouse model of LM was used to evaluate the progression and tumour burden of LM in vivo. Flow cytometry, immunofluorescence (IF), western blots (WB) and IHC were performed to validate the pre-metastatic niche (PMN) formation in the pre-modelling mouse models. mRNA sequencing of PMA-treated THP-1 cells with or without lipopolysaccharide binding protein (LBP) treatment was used to identify the functional target genes of LBP in macrophages. Co-immunoprecipitation (Co-IP), WB, ELISA, IF and Transwell assays were performed to explore the underlying mechanism of LBP in inducing intrahepatic PMN formation. RESULTS LBP was identified as a critical secreted protein associated with GC-LM and correlated with a worse prognosis in patients with GC. LBP activated the TLR4/NF-κB pathway to promote TGF-β1 secretion in intrahepatic macrophages, which, in turn, activated hepatic satellite cells (HSCs) to direct intrahepatic fibrotic PMN formation. Additionally, TGF-β1 enhanced the migration and invasion of incoming metastatic GC cells in the liver. Consequently, selective targeting of the TGF-β/Smad signaling pathway with galunisertib demonstrated its efficacy in effectively preventing GC-LM in vivo. CONCLUSIONS The results of this study provide compelling evidence that serological LBP can serve as a valuable diagnostic biomarker for the early detection of GC-LM. Mechanistically, GC-derived LBP mediates the crosstalk between primary GC cells and the intrahepatic microenvironment by promoting TGF-β1 secretion in intrahepatic macrophages, which induces intrahepatic fibrotic PMN formation to promote GC-LM. Importantly, selectively targeting the TGF-β/Smad signaling pathway with galunisertib represents a promising preventive and therapeutic strategy for GC-LM.
Collapse
Affiliation(s)
- Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Shengkui Qiu
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Chao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jihuan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| |
Collapse
|
49
|
Li X, Ma W, Wang M, Quan Z, Zhang M, Ye J, Li G, Zhou X, Ma T, Wang J, Yang W, Nie Y, Wang J, Kang F. 68Ga-FAPI-04 PET for Surveillance of Anastomotic Recurrence in Postoperative Patients with Gastrointestinal Cancer: a Comparative Study with 18F-FDG PET. Mol Imaging Biol 2023; 25:857-866. [PMID: 37407745 DOI: 10.1007/s11307-023-01835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE This study aims to compare the diagnostic efficacy of 68Ga-FAPI-04 PET and 18F-FDG PET for detecting anastomotic recurrence in postoperative patients with gastrointestinal cancer, and to characterize the signal pattern over time at surgical wounds on both PET imaging. METHODS Gastrointestinal cancer patients who planned to 68Ga-FAPI-04 and 18F-FDG PET/CT imaging for postoperative surveillance were involved. The SUVmax at surgical wounds were assessed. Endoscopic pathology confirmed anastomotic recurrence or it was ruled out by imaging and clinical follow-up. The sensitivity, specificity, positive and negative predictive values (PPV and NPV), and accuracy of the two PET imaging in detecting anastomotic recurrence were compared. Relationships between tracer uptake at surgical wounds and postoperative time were also analyzed. RESULTS Compared with non-recurrent patients, the recurrent patients exhibited a significantly higher anastomotic SUVmax on 68Ga-FAPI-04 PET (SUVmax: 9.92 ± 4.36 vs. 2.81 ± 1.86, P = 0.002). Sensitivity, specificity, PPV, NPV, and accuracy of detecting anastomotic recurrence were 100.0%, 87.3%, 41.7%, 100.0%, and 88.3% for 68Ga-FAPI-04 PET, and 60.0%, 81.8%, 23.1%, 95.7%, and 80.0% for 18F-FDG PET, respectively. Although 68Ga-FAPI-04 PET signal at surgical wounds showed a slight trend to decrease with time, no statistical difference was observed over months post-surgery (P > 0.05). CONCLUSIONS Both tracers displayed high NPVs in identifying anastomotic recurrence with a higher sensitivity to 68Ga-FAPI-04. Tracer uptake at anastomotic sites does not decrease significantly over time, which results in low PPVs for both PET. Therefore, it is difficult to differentiate anastomotic recurrence from inflammation on either PET imaging.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Taoqi Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Junling Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
50
|
Cui Y, Wang Y, Wang S, Du B, Li X, Li Y. Highlighting Fibroblasts Activation in Fibrosis: The State-of-The-Art Fibroblast Activation Protein Inhibitor PET Imaging in Cardiovascular Diseases. J Clin Med 2023; 12:6033. [PMID: 37762974 PMCID: PMC10531835 DOI: 10.3390/jcm12186033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrosis is a common healing process that occurs during stress and injury in cardiovascular diseases. The evolution of fibrosis is associated with cardiovascular disease states and causes adverse effects. Fibroblast activation is responsible for the formation and progression of fibrosis. The incipient detection of activated fibroblasts is important for patient management and prognosis. Fibroblast activation protein (FAP), a membrane-bound serine protease, is almost specifically expressed in activated fibroblasts. The development of targeted FAP-inhibitor (FAPI) positron emission tomography (PET) imaging enabled the visualisation of FAP, that is, incipient fibrosis. Recently, research on FAPI PET imaging in cardiovascular diseases increased and is highly sought. Hence, we comprehensively reviewed the application of FAPI PET imaging in cardiovascular diseases based on the state-of-the-art published research. These studies provided some insights into the value of FAPI PET imaging in the early detection of cardiovascular fibrosis, risk stratification, response evaluation, and prediction of the evolution of left ventricular function. Future studies should be conducted with larger populations and multicentre patterns, especially for response evaluation and outcome prediction.
Collapse
Affiliation(s)
| | | | | | | | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China; (Y.C.); (Y.W.); (S.W.); (B.D.)
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China; (Y.C.); (Y.W.); (S.W.); (B.D.)
| |
Collapse
|