1
|
Willner L, Tauber R, Eiber M. [Radionuclide therapy in 2025: nuclear medicine options in the treatment of metastatic castration-resistant prostate cancer]. UROLOGIE (HEIDELBERG, GERMANY) 2025; 64:237-245. [PMID: 39982466 DOI: 10.1007/s00120-025-02526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Radionuclide therapy continues to gain in importance thanks to promising clinical results. It is a suitable treatment option for many patients and is increasingly establishing itself as a key pillar in the treatment of metastatic castration-resistant prostate cancer (mCRPC). OBJECTIVE This article summarizes the current role of radionuclide therapies in the treatment of mCRPC and provides insights into recent developments. METHODS Presentation of key study results, current approval labels and ongoing clinical trials. RESULTS Significant prolongation of survival through treatment with lutetium-177-PSMA-617 and radium-223-dichloride has led to approval of both substances in late-stage mCRPC. Further study results on the effectiveness of lutetium-PSMA in earlier stages and on the use of the alpha emitter actinium-225 are expected.
Collapse
Affiliation(s)
- Luisa Willner
- Klinik und Poliklinik für Nuklearmedizin, Klinikum der Technischen Universität München, München, Deutschland.
| | - Robert Tauber
- Klinik und Poliklinik für Urologie, Klinikum der Technischen Universität München, München, Deutschland
| | - Matthias Eiber
- Klinik und Poliklinik für Nuklearmedizin, Klinikum der Technischen Universität München, München, Deutschland
| |
Collapse
|
2
|
Surasinghe S, Liatsou I, Nováková Z, Bařinka C, Artemov D, Hapuarachchige S. Optical and MRI-Guided Theranostic Application of Ultrasmall Superparamagnetic Iron Oxide Nanodrug Conjugate for PSMA-Positive Prostate Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11611-11623. [PMID: 39933703 PMCID: PMC11873945 DOI: 10.1021/acsami.4c16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Active targeting is more effective than conventional passive targeted drug delivery systems in increasing therapeutic efficacy and minimizing systemic toxicities. Importantly, the nanoparticle-based targeted drug delivery systems combine active and passive targeting properties and significantly enhance therapeutic efficacy. In this study, we utilized ultrasmall superparamagnetic iron oxide (uSPIO) nanoparticles conjugated with anti-prostate-specific membrane antigen (PSMA) 5D3 monoclonal antibody, mertansine (DM1) antitubulin agent, and fluorophore to develop a targeted uSPIO-5D3-DM1-AF488/CF750 nanotheranostic for PSMA(+) prostate cancer (PC) therapy. This agent enables multimodality in vivo imaging using near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI). uSPIO-5D3-DM1-AF488 is selectively internalized into PSMA-positive cells by receptor-mediated endocytosis, and uSPIO-5D3-DM1-CF750 exhibited 1.62 and 166.2 ng/mL IC50 values in PSMA(+) and PSMA(-) cells, respectively. The image-guided therapeutic study was conducted in vivo in human PC xenograft mouse models bearing bilateral PSMA(±) tumors (n = 10, two 10 mg/kg doses on days 1 and 14). The therapeutic results exhibited a significant control of the growth of PSMA(+) tumors starting at day 5 (p = 0.05) and significantly improved efficacy after day 9 (p = 0.0005) during the treatment period (t = 21 days). We observed the PSMA-specific uptake of uSPIO-5D3-DM1-CF750 in tumors in NIR IVIS Xenogen images and T1- and T2-weighted MRI with 20.6% and 42% reduction of overall T1 and T2, respectively. Approximately 70% of mice with PSMA(+) tumors treated with uSPIO-5D3-DM1-CF750 survived or did not exceed the threshold level of the tumor size during the treatment. Ex vivo biodistribution study proved 50% and 45% higher uptake of uSPIO-5D3-DM1-CF750 by PSMA(+) tumors compared to untargeted uSPIO-DM1-CF750 by PSMA(+) tumors and uSPIO-5D3-DM1-CF750 by PSMA(-) tumors, respectively. ICP-MS analysis demonstrated a 73% increase in uSPIO-5D3-DM1-CF750 uptake by PSMA(+) tumors compared to PSMA(+) tumors treated with pure uSPIO. The toxicological results reveal the safe profile in systemic toxicities without life-threatening changes in the complete blood count and clinical chemistry profile of toxicology.
Collapse
Affiliation(s)
- Sharmane Surasinghe
- Department
of Radiology and Radiological Science, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Ioanna Liatsou
- Department
of Radiology and Radiological Science, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Zora Nováková
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Cyril Bařinka
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Dmitri Artemov
- Department
of Radiology and Radiological Science, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sudath Hapuarachchige
- Department
of Radiology and Radiological Science, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
3
|
Ismuha RR, Ritawidya R, Daruwati I, Muchtaridi M. Future Prospect of Low-Molecular-Weight Prostate-Specific Membrane Antigen Radioisotopes Labeled as Theranostic Agents for Metastatic Castration-Resistant Prostate Cancer. Molecules 2024; 29:6062. [PMID: 39770150 PMCID: PMC11679579 DOI: 10.3390/molecules29246062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight PSMA inhibitors, with their diverse chemical structures and binding properties, have opened new avenues for research and therapeutic applications in prostate cancer management. These novel agents exhibit enhanced tumor targeting and specificity due to their small size, facilitating rapid uptake and localization at the target site while minimizing the retention in non-target tissues. The primary aim of this study is to evaluate the potential of low-molecular-weight PSMA inhibitors labeled with radioisotopes as theranostic agents for prostate cancer. This includes assessing their efficacy in targeted imaging and therapy and understanding their pharmacokinetic properties and mechanisms of action. This study is a literature review focusing on in vitro and clinical research data. The in vitro studies utilize PSMA-targeted radioligands labeled with radioisotopes to assess their binding affinity, specificity, and internalization in prostate cancer cell lines. Additionally, the clinical studies evaluate the safety, effectiveness, and biodistribution of radiolabeled PSMA ligands in patients with advanced prostate cancer. The findings indicate promising outcomes regarding the safety and efficacy of PSMA-targeted radiopharmaceuticals in clinical settings. The specific accumulation of these agents in prostate tumor lesions suggests their potential for various applications, including imaging and therapy. This research underscores the promise of radiopharmaceuticals targeting PSMA in advancing the diagnosis and treatment of prostate cancer. These agents improve diagnostic accuracy and patients' outcomes by enhancing imaging capabilities and enabling personalized treatment strategies.
Collapse
Affiliation(s)
- Ratu Ralna Ismuha
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmacy, Dharmais Cancer Hospital—National Cancer Center, Jakarta 11420, Indonesia
| | - Rien Ritawidya
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Isti Daruwati
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Giunta EF, Caroli P, Scarpi E, Altavilla A, Rossetti V, Marini I, Celli M, Casadei C, Lolli C, Schepisi G, Bleve S, Brighi N, Cursano MC, Paganelli G, Matteucci F, De Giorgi U. Correlation of [ 68Ga]Ga-PSMA PET/CT response and PSA decline in first-line enzalutamide for metastatic castration-resistant prostate cancer patients. Eur J Nucl Med Mol Imaging 2024; 52:326-334. [PMID: 39207484 PMCID: PMC11599341 DOI: 10.1007/s00259-024-06887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE to assess the utility of response monitoring to enzalutamide by using [68Ga]Ga-PSMA PET in mCRPC patients treated with enzalutamide as first-line therapy. METHODS patients underwent [68Ga]Ga-PSMA PET less than 8 weeks before and 3 months after starting enzalutamide. On the basis of EAU/EANM criteria, patients were categorized as PSMA responders (PET-R) or PSMA non-responders (PET-NR), whilst, based on PSA, they were classified as biochemical responders (PSA-R) or non-responders (PSA-NR). Survival analysis was performed using the Cox regression hazard model and the Kaplan-Meier method. RESULTS 69 patients were considered fully evaluable. We observed 47.8% of concordance between [68Ga]Ga-PSMA PET and PSA monitoring at 3 months after starting enzalutamide. For discordant cases, the PSA reduction has a weak impact on PFS and a significant impact on OS in PET-NR patients, whilst this change has no impact either for PFS and OS in PET-R ones. CONCLUSIONS [68Ga]Ga-PSMA PET could be a useful imaging tool for monitoring response to enzalutamide in mCRPC patients, being more informative than PSA in this setting, and possibly better guiding clinicians in therapeutic decisions.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Caroli
- Department of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Virginia Rossetti
- Department of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Irene Marini
- Department of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Monica Celli
- Department of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Maria Concetta Cursano
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Paganelli
- Department of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Federica Matteucci
- Department of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
6
|
Kleynhans J, Ebenhan T, Sathekge MM. Expanding Role for Gallium-68 PET Imaging in Oncology. Semin Nucl Med 2024; 54:778-791. [PMID: 38964934 DOI: 10.1053/j.semnuclmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Gallium-68 has gained substantial momentum since 2003 as a versatile radiometal that is extremely useful for application in the development of novel oncology targeting diagnostic radiopharmaceuticals. It is available through both generator produced radioactivity and via cyclotron production methods and can therefore be implemented in either small- or large-scale production facilities. It can also be implemented within different spectrum of infrastructure settings with relative ease. Whilst many of the radiopharmaceuticals are being development and investigated, which is summarized in this manuscript, [68Ga]Ga-SSTR2 and [68Ga]Ga-PSMA has prominence in current clinical guidelines. The novel tracer [68Ga]Ga-FAPi has also gained significant interest in the clinical context. A comparison of the labelling strategies followed to incorporate gallium-68 and fluorine-18 into the same molecular targeting constructs clearly demonstrate that gallium-68 complexation is the most convenient approach. Recently, cold kit based starting products are available to make the small-scale production of gallium-68 radiopharmaceuticals even more efficient when combined with generator produced gallium-68. The regulatory aspects is currently changing to support the implementation of gallium-68 and other diagnostic radiopharmaceuticals, simplifying the translation towards clinical use. Overall, the development of gallium-68 based radiopharmaceuticals is not only rapidly changing the landscape of diagnosis in oncology, but this growth also promotes innovation and progress in new applications of therapeutic radiometals such as lutetium-177 and actinium-225.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological Sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Mike Machaba Sathekge
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
7
|
Özman O, Veerman H, Contieri R, Droghetti M, Donswijk ML, Hagens MJ, Van Leeuwen PJ, Vis AN, van der Poel HG. Staging Accuracy and Prognostic Value of Prostate-Specific Membrane Antigen PET/CT Strongly Depends on Lymph Node Tumor Burden. J Clin Med 2024; 13:6534. [PMID: 39518673 PMCID: PMC11547063 DOI: 10.3390/jcm13216534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives: To explore the factors affecting the lymph node metastasis (LNM) detection performance of prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and to evaluate its prognostic value for biochemical recurrence after radical prostatectomy (RP). Methods: Patients who had intermediate- or high-risk prostate cancer and underwent robot-assisted (RA)RP between 2017 and 2021 were included. Initial lymph node staging was carried out using PSMA PET/CT. Sensitivity, specificity, and positive (PPV) and negative (NPV) predictive values were calculated. A cut-off value for LNM tumor deposit size that maximizes specificity was investigated and a post hoc specificity analysis was carried out. In survival analysis for biochemical progression-free survival (bPFS) after RP, Kaplan-Meier curves of molecular imaging (mi)N0 and miN1 patients were compared using the log-rank test and separate Cox regression models were developed to reveal the significance of PSMA PET/CT staging in pre- and post-surgery settings. Results: In 583 patients with a prevalence of pathology-proven LNM of 27.4%, overall sensitivity, specificity, PPV, and NPV of PSMA PET/CT per patient were 26.3% [95%CI 18.9-35.5], 93.9% [95%CI 84.9-100], 61.8% [95%CI 44.5-83.5], and 77.1% [95%CI 69.7-85.1], respectively. PSMA PET/CT showed a better sensitivity as LNM tumor deposit size increased (p = 0.003 OR 2.4 [95%CI 1.3-4.4]) and a better specificity in pT3-4 tumors (96.1%) versus pT2 (91.1%, p = 0.024 OR 2.7 [95%CI 1.1-6.3]). After adjustment according to 5.5 mm LNM tumor deposit size, which showed the best discriminative performance (AUC: 0.905 [95%CI 0.804-1.000, p < 0.001]), overall sensitivity tripled (90.2%, p < 0.001). The 1-year bPFS was 56.0% and 83.3% for miN1 and miN0 patients, respectively (p < 0.001). Whereas miN0pN1 was not, miN1pN1 disease was independently associated with decreased bPFS (HR:2.1 95%CI 1.3-3.4, p < 0.001). Conclusions: PSMA PET/CT has a lymph node tumor burden-dependent and cohort-driven diagnostic ability but consequently a strong independent prognostic value for predicting biochemical recurrence after RARP.
Collapse
Affiliation(s)
- Oktay Özman
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
| | - Hans Veerman
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
- Prostate Cancer Network the Netherlands, 1066 CX Amsterdam, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, 1066 CX Amsterdam, The Netherlands
| | - Roberto Contieri
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
- Department of Biomedical Science, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy
| | - Matteo Droghetti
- Division of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maarten L. Donswijk
- Department of Nuclear Medicine, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Marinus J. Hagens
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
- Prostate Cancer Network the Netherlands, 1066 CX Amsterdam, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, 1066 CX Amsterdam, The Netherlands
| | - Pim J. Van Leeuwen
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
- Prostate Cancer Network the Netherlands, 1066 CX Amsterdam, The Netherlands
| | - André N. Vis
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
- Prostate Cancer Network the Netherlands, 1066 CX Amsterdam, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, 1066 CX Amsterdam, The Netherlands
| | - Henk G. van der Poel
- Department of Urology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (H.V.); (M.J.H.); (P.J.V.L.); (A.N.V.); (H.G.v.d.P.)
- Prostate Cancer Network the Netherlands, 1066 CX Amsterdam, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
8
|
McBriar JD, Shafiian N, Scharf S, Boockvar JA, Wernicke AG. Prostate-Specific Membrane Antigen Use in Glioma Management: Past, Present, and Future. Clin Nucl Med 2024; 49:806-816. [PMID: 38968568 DOI: 10.1097/rlu.0000000000005365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) is a membrane-bound metallopeptidase highly expressed in the neovasculature of many solid tumors including gliomas. It is a particularly enticing therapeutic target due to its ability to internalize, thereby delivering radioligands or pharmaceuticals to the intracellular compartment. Targeting the neovasculature of gliomas using PSMA for diagnosis and management has been a recent area of increased study and promise. The purpose of this review is to synthesize the current state and future directions of PSMA use in the histopathologic study, imaging, and treatment of gliomas. METHODS PubMed and Scopus databases were used to conduct a literature review on PSMA use in gliomas in June 2023. Terms searched included "PSMA," "Prostate-Specific Membrane Antigen" OR "PSMA" OR "PSMA PET" AND "glioma" OR "high grade glioma" OR "glioblastoma" OR "GBM." RESULTS Ninety-four publications were screened for relevance with 61 studies, case reports, and reviews being read to provide comprehensive context for the historical, contemporary, and prospective use of PSMA in glioma management. CONCLUSIONS PSMA PET imaging is currently a promising and accurate radiographic tool for the diagnosis and management of gliomas. PSMA histopathology likely represents a viable tool for helping predict glioma behavior. More studies are needed to investigate the role of PSMA-targeted therapeutics in glioma management, but preliminary reports have indicated its potential usefulness in treatment.
Collapse
Affiliation(s)
- Joshua D McBriar
- From the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| | - Neeva Shafiian
- From the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| | | | | | - A Gabriella Wernicke
- Radiation Medicine, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY
| |
Collapse
|
9
|
Gallant JP, Hintz HM, Gunaratne GS, Breneman MT, Recchia EE, West JL, Ott KL, Heninger E, Jackson AE, Luo NY, Rosenkrans ZT, Hernandez R, Zhao SG, Lang JM, Meimetis L, Kosoff D, LeBeau AM. Mechanistic Characterization of Cancer-associated Fibroblast Depletion via an Antibody-Drug Conjugate Targeting Fibroblast Activation Protein. CANCER RESEARCH COMMUNICATIONS 2024; 4:1481-1494. [PMID: 38747612 PMCID: PMC11168342 DOI: 10.1158/2767-9764.crc-24-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Cancer-associated fibroblasts (CAF) are a prominent cell type within the tumor microenvironment (TME) where they are known to promote cancer cell growth and survival, angiogenesis, drug resistance, and immunosuppression. The transmembrane prolyl protease fibroblast activation protein (FAP) is expressed on the surface of highly protumorigenic CAFs found in the stroma of nearly every cancer of epithelial origin. The widespread expression of FAP has made it an attractive therapeutic target based on the underlying hypothesis that eliminating protumorigenic CAFs will disrupt the cross-talk between components of TME resulting in cancer cell death and immune infiltration. This hypothesis, however, has never been directly proven. To eliminate FAP-expressing CAFs, we developed an antibody-drug conjugate using our anti-FAP antibody, huB12, coupled to a monomethyl auristatin E (huB12-MMAE) payload. After determining that huB12 was an effective targeting vector, we found that huB12-MMAE potently eliminated FAP-expressing cells as monocultures in vitro and significantly prolonged survival in vivo using a xenograft engineered to overexpress FAP. We investigated the effects of selectively eliminating CAFs using a layered, open microfluidic cell coculture platform, known as the Stacks. Analysis of mRNA and protein expression found that treatment with huB12-MMAE resulted in the increased secretion of the proinflammatory cytokines IL6 and IL8 by CAFs and an associated increase in expression of proinflammatory genes in cancer cells. We also detected increased secretion of CSF1, a cytokine involved in myeloid recruitment and differentiation. Our findings suggest that the mechanism of FAP-targeted therapies is through effects on the immune microenvironment and antitumor immune response. SIGNIFICANCE The direct elimination of FAP-expressing CAFs disrupts the cross-talk with cancer cells leading to a proinflammatory response and alterations in the immune microenvironment and antitumor immune response.
Collapse
Affiliation(s)
- Joseph P. Gallant
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hallie M. Hintz
- Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Gihan S. Gunaratne
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew T. Breneman
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emma E. Recchia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jayden L. West
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kendahl L. Ott
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Erika Heninger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abigail E. Jackson
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Natalie Y. Luo
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zachary T. Rosenkrans
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shuang G. Zhao
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Labros Meimetis
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - David Kosoff
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
10
|
Cortiana V, Gambill J, Chorya H, Mahendru D, Amin F, Park CH, Leyfman Y. PSMA-Targeted Therapy: Advancements in Detection and Treatment Modalities with Dr. Scott T. Tagawa. Cancers (Basel) 2024; 16:1833. [PMID: 38791912 PMCID: PMC11120199 DOI: 10.3390/cancers16101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer is one of the most challenging malignancies due to its high incidence and prevalence, as it is the most frequently diagnosed non-skin cancer in men. The timely identification of prostate cancer and its metastasis is paramount for ensuring favorable outcomes for patients. Prostate-specific membrane antigen (PSMA) emerges as a promising biomarker for its detection, due to its specificity. This makes it an ideal target for the early identification of a metastatic phenotype. Situated on the membrane of tumor cells, PSMA facilitates the attachment of PSMA-targeting particles, enabling their detection through positron emission tomography (PET) scans with relative ease. Utilizing these imaging agents in conjunction with PET scans enhances the accuracy of prostate cancer tumor detection compared to PET scans alone. The advancement in prostate cancer imaging has paved the way for innovative treatment modalities. Prostate-specific membrane antigen-targeted radionuclide therapies (PSMA-TRT) exploit PSMA imaging agents to target identified prostate cancer malignancies with precise radiation, thereby reducing or eliminating the tumor mass. PSMA-TRT exhibits significant promise in prostate cancer therapy, evident from the notable declines in prostate-specific antigen (PSA) levels post treatment. However, PSMA-TRT carries both beneficial and adverse effects. While it represents a substantial leap forward in tumor cell imaging, PSMA-based antigens, being larger particles than ligands, offer prolonged imaging capabilities. Yet, the long-term effects of PSMA-TRT remain unknown, with the short-term adverse ones including fatigue, nausea, pain flares, and potential radiation exposure to others.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | - Diksha Mahendru
- Global Remote Research Scholars Program, St Paul, MN 55101, USA
| | - Fabiha Amin
- Valley Stream South High School, Valley Stream, NY 11581, USA
| | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai, Oceanside, NY 11572, USA;
| |
Collapse
|
11
|
Chen DC, Huang S, Buteau JP, Kashyap R, Hofman MS. Clinical Positron Emission Tomography/Computed Tomography: Quarter-Century Transformation of Prostate Cancer Molecular Imaging. PET Clin 2024; 19:261-279. [PMID: 38199918 DOI: 10.1016/j.cpet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Although positron emission tomography/computed tomography (PET/CT) underwent rapid growth during the last quarter-century, becoming a new standard-of-care for imaging most cancer types, CT and bone scan remained the gold standard for patients with prostate cancer. This occurred as 2-fluorine-18-fluoro-2-deoxy-d-glucose was perceived to have a limited role owing to low sensitivity in many patients. A resurgence of interest occurred with the use of fluorine-18-sodium-fluoride PET/CT as a replacement for bone scintigraphy, and then choline, fluciclovine, and dihydrotestosterone (DHT) PET/CT as prostate "specific" radiotracers. The last decade, however, has seen a true revolution with the meteoric rise of prostate-specific membrane antigen PET/CT.
Collapse
Affiliation(s)
- David C Chen
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Siyu Huang
- Department of Surgery, The University of Melbourne
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Raghava Kashyap
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Jewell K, Hofman MS, Ong JSL, Levy S. Emerging Theranostics for Prostate Cancer and a Model of Prostate-specific Membrane Antigen Therapy. Radiology 2024; 311:e231703. [PMID: 38563674 DOI: 10.1148/radiol.231703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There is increasing demand worldwide to develop diagnostic and therapeutic (theranostic) markers for prostate cancer. One target of interest is prostate-specific membrane antigen (PSMA), a protein which is overexpressed in prostate cancer cells. Over the past decade, a growing body of literature has demonstrated that radiolabeled ligands that target PSMA show favorable clinical response and survival outcomes in patients with advanced prostate cancer. This focused review provides background to the development of PSMA as a target, an overview of key studies informing our current approach to radioligand-based imaging and therapy for prostate cancer, and a model for real-world implementation of PSMA theranostics based on an Australian experience.
Collapse
Affiliation(s)
- Kerry Jewell
- From the Department of Molecular Imaging and Therapeutic Nuclear Medicine and Department of Oncology, Prostate Theranostics and Imaging Centre of Excellence (ProsTIC); Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia (K.J., M.S.H., S.L.); University of Melbourne, Melbourne, Australia (M.S.H.); and Department of Nuclear Medicine, Fiona Stanley Hospital, Murdoch, Australia (J.S.L.O.)
| | - Michael S Hofman
- From the Department of Molecular Imaging and Therapeutic Nuclear Medicine and Department of Oncology, Prostate Theranostics and Imaging Centre of Excellence (ProsTIC); Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia (K.J., M.S.H., S.L.); University of Melbourne, Melbourne, Australia (M.S.H.); and Department of Nuclear Medicine, Fiona Stanley Hospital, Murdoch, Australia (J.S.L.O.)
| | - Jeremy S L Ong
- From the Department of Molecular Imaging and Therapeutic Nuclear Medicine and Department of Oncology, Prostate Theranostics and Imaging Centre of Excellence (ProsTIC); Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia (K.J., M.S.H., S.L.); University of Melbourne, Melbourne, Australia (M.S.H.); and Department of Nuclear Medicine, Fiona Stanley Hospital, Murdoch, Australia (J.S.L.O.)
| | - Sidney Levy
- From the Department of Molecular Imaging and Therapeutic Nuclear Medicine and Department of Oncology, Prostate Theranostics and Imaging Centre of Excellence (ProsTIC); Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia (K.J., M.S.H., S.L.); University of Melbourne, Melbourne, Australia (M.S.H.); and Department of Nuclear Medicine, Fiona Stanley Hospital, Murdoch, Australia (J.S.L.O.)
| |
Collapse
|
13
|
Mendoza-Ávila M, Esparza-Pérez H, Castillo-López JA, Rodea-Montero ER. Agreement between PSMA-RADS and E-PSMA systems in classifying [ 18F]PSMA-1007 PET/CT lesions among prostate cancer patients: exploring the correlation between lesion size and uptake. Front Med (Lausanne) 2024; 11:1368093. [PMID: 38545506 PMCID: PMC10967023 DOI: 10.3389/fmed.2024.1368093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 01/03/2025] Open
Abstract
PURPOSE To determine the agreement between the PSMA-RADS and E-PSMA standardized reporting systems in the classification of [18F]PSMA-1007-uptaking lesions identified on PET/CT scan in patients with prostate cancer (PCa) and post-prostatectomy with suspected recurrent disease (local recurrence, regional nodal involvement and distant metastases), based on biochemical recurrence, while also exploring the correlation between lesion size and tracer uptake. MATERIALS AND METHODS A retrospective cross-sectional study of 32 post-prostatectomy PCa patients who had suspected recurrent disease based on biochemical recurrence post-prostatectomy (prostate-specific antigen values that are 0.2 ng/mL or higher) underwent [18F]PSMA-1007 PET/CT scan. The recurrent disease PCa lesions were characterized and subsequently classified using two standardized reporting systems (PSMA-RADS and E-PSMA). The lesions were grouped based on anatomical site, their size and SUVmax were compared using Kruskal-Wallis test with Dunn-Bonferroni post hoc tests. Spearman correlation coefficients were calculated between the size of the lesions and their SUVmax of the radiotracer [18F]PSMA-1007 for all the lesions and when grouped by anatomical site. Additionally, the agreement between lesion classifications was assessed using Cohen's kappa index. RESULTS Only 32 (69.98 ± 8.27, men) patients met the inclusion criteria, a total of 149 lesions with avid uptake of [18F]PSMA-1007 were identified. Positive correlation (r = 0.516, p < 0.001) was observed between the size of the metastatic prostate cancer lymph node lesions and their [18F]PSMA-1007 uptake. Substantial agreement was noted between the PSMA-RADS and E-PSMA classification system scores among all lesions (κ = 0.70, p < 0.001), with notable discrepancies primarily among lymph node lesions. CONCLUSION Our findings revealed a positive correlation between the size of the metastatic prostate cancer lymph node lesions and [18F]PSMA-1007 uptake, and although there was substantial agreement between the PSMA-RADS and E-PSMA classification systems, there were discrepancies mainly among the lymph node lesions.
Collapse
Affiliation(s)
- Miguel Mendoza-Ávila
- Department of Radiology, Hospital Regional de Alta Especialidad del Bajío, León, Mexico
- Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hiram Esparza-Pérez
- Department of Nuclear Medicine, Hospital Regional de Alta Especialidad del Bajío, León, Mexico
| | | | - Edel Rafael Rodea-Montero
- Department of Research, Hospital Regional de Alta Especialidad del Bajío, León, Mexico
- UPIIG, Instituto Politécnico Nacional, Silao de la Victoria, Mexico
| |
Collapse
|
14
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
15
|
Song B, Hong SK. The era of prostate-specific membrane antigen for the diagnosis and treatment of prostate cancer: A novel horizon. Investig Clin Urol 2023; 64:197-199. [PMID: 37340999 DOI: 10.4111/icu.20230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Affiliation(s)
- Byeongdo Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Juzeniene A, Stenberg VY, Bruland ØS, Revheim ME, Larsen RH. Dual targeting with 224Ra/ 212Pb-conjugates for targeted alpha therapy of disseminated cancers: A conceptual approach. Front Med (Lausanne) 2023; 9:1051825. [PMID: 36733936 PMCID: PMC9887039 DOI: 10.3389/fmed.2022.1051825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Metastases are the primary cause of death among cancer patients and efficacious new treatments are sorely needed. Targeted alpha-emitting radiopharmaceuticals that are highly cytotoxic may fulfill this critical need. The focus of this paper is to describe and explore a novel technology that may improve the therapeutic effect of targeted alpha therapy by combining two radionuclides from the same decay chain in the same solution. We hypothesize that the dual targeting solution containing bone-seeking 224Ra and cell-directed complexes of progeny 212Pb is a promising approach to treat metastatic cancers with bone and soft tissue lesions as well as skeletal metastases of mixed lytic/osteoblastic nature. A novel liquid 224Ra/212Pb-generator for rapid preparation of a dual targeting solution is described. Cancer cell targeting monoclonal antibodies, their fragments, synthetic proteins or peptides can all be radiolabeled with 212Pb in the 224Ra-solution in transient equilibrium with daughter nuclides. Thus, 224Ra targets stromal elements in sclerotic bone metastases and 212Pb-chelated-conjugate targets tumor cells of metastatic prostate cancer or osteosarcoma. The dual targeting solution may also be explored to treat metastatic breast cancer or multiple myeloma after manipulation of bone metastases to a more osteoblastic phenotype by the use of bisphosphonates, denosumab, bortezomib or hormone therapy prior to treatment. This may improve targeting of bone-seeking 224Ra and render an augmented radiation dose deposited within metastases. Our preliminary preclinical studies provide conceptual evidence that the dual 224Ra-solution with bone or tumor-targeted delivery of 212Pb has potential to inhibit cancer metastases without significant toxicity. In some settings, the use of a booster dose of purified 212Pb-conjugate alone could be required to elevate the effect of this tumor cell directed component, if needed, e.g., in a fractionated treatment regimen, where the dual targeting solution will act as maintenance treatment.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- ARTBIO AS, Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
17
|
Beyer T, Czernin J, Freudenberg L, Giesel F, Hacker M, Hicks RJ, Krause BJ. A 2022 International Survey on the Status of Prostate Cancer Theranostics. J Nucl Med 2023; 64:47-53. [PMID: 35953304 DOI: 10.2967/jnumed.122.264298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023] Open
Abstract
Growing interest in PSMA imaging using [68Ga]- or [18F]-labeled ligands and PSMA-based radioligand therapy (RLT) of prostate cancer (PCa) prompted us to survey the global community on their experiences and expectations. Methods: A web-based survey was composed to interrogate areas specific to PET imaging, the clinical value chain, and RLT applications. International responses were collected in early 2022. In total, over 300 valid responses were received and evaluated. Results: Most responses (83%) were given by nuclear medicine specialists with extensive experience in PET. At 22% of sites, PCa ranked "top" in cancer-type-specific PET indications, with an average and median of 15% and 10% of all cases, respectively. The most frequently used PSMA PET tracers were [68Ga]PSMA (32%) and [18F]PSMA-1007 (31%). Users reported a steady growth in PSMA PET and RLT over the past 5 y, averaging 50% and 82%, respectively, with a further 100% median growth projected over the next 5 y. Of note, more respondents indicated cognizance of personalized dosimetry than actually used it routinely. The most commonly identified barriers to future growth in PCa theranostics were radiopharmaceutical supply, reimbursement, staff availability, and buy-in of medical oncologists. Conclusion: Despite enthusiasm, this survey indicates variable adoption of PSMA imaging and RLT globally. Several challenges need to be addressed by the medical community, authorities, and patient advocacy groups in integrating PSMA-targeted theranostics into personalized medicine.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | | | - Frederik Giesel
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany; Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Rodney J Hicks
- The Department of Medicine, St Vincent's Hospital, the University of Melbourne, Melbourne, Australia; and
| | - Bernd J Krause
- Rostock University Medical Centre, Department of Nuclear Medicine, Rostock, Germany
| |
Collapse
|
18
|
Ayesa SL, Murphy A. Positron emission tomography: Evolving modalities, radiopharmaceuticals and professional collaboration. J Med Radiat Sci 2022; 69:415-418. [DOI: 10.1002/jmrs.629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sally L. Ayesa
- Department of Medical Imaging & Nuclear Medicine Gosford & Wyong Hospitals Gosford New South Wales Australia
- Department of Nuclear Medicine Royal North Shore Hospital St Leonards New South Wales Australia
- School of Medicine University of Sydney Campderdown New South Wales Australia
| | - Andrew Murphy
- Department of Medical Imaging Princess Alexandra Hospital Woolloongabba QLD Australia
- School of Clinical Sciences Faculty of Health Queensland University of Technology Brisbane QLD Australia
| |
Collapse
|
19
|
Miyahira AK, Soule HR. The 28th Annual Prostate Cancer Foundation Scientific Retreat report. Prostate 2022; 82:1346-1377. [PMID: 35852016 DOI: 10.1002/pros.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The 28th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held virtually over 4 days, on October 28-29 and November 4-5, 2021. METHODS The Annual PCF Scientific Retreat is a leading global scientific conference that focuses on first-in-field, unpublished, and high-impact basic, translational, and clinical prostate cancer research, as well as research from other fields with high probability for impacting prostate cancer research and patient care. RESULTS Primary areas of research discussed at the 2021 PCF Retreat included: (i) prostate cancer disparities; (ii) prostate cancer survivorship; (iii) next-generation precision medicine; (iv) PSMA theranostics; (v) prostate cancer lineage plasticity; (vi) tumor metabolism as a cancer driver and treatment target; (vii) prostate cancer genetics and polygenic risk scores; (viii) glucocorticoid receptor biology in castration-resistant prostate cancer (CRPC); (ix) therapeutic degraders; (x) new approaches for immunotherapy in prostate cancer; (xi) novel technologies to overcome the suppressive tumor microenvironment; and (xii) real-world evidence and synthetic/virtual control arms. CONCLUSIONS This article provides a summary of the presentations from the 2021 PCF Scientific Retreat. We hope that sharing this knowledge will help to improve the understanding of the current state of research and direct new advances in prostate cancer research and care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
20
|
Jadvar H. Prostate-specific Membrane Antigen PET: Standard Imaging in Prostate Cancer. Radiology 2022; 304:609-610. [PMID: 35608452 PMCID: PMC9434807 DOI: 10.1148/radiol.221074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Hossein Jadvar
- From the Division of Nuclear Medicine, Department of Radiology, USC
Keck School of Medicine, University of Southern California, 2250 Alcazar St, CSC
102, Los Angeles, CA 90033
| |
Collapse
|