1
|
Madeira S, Bernardino R, Osório HC, Boinas F. Mosquito (Diptera: Culicidae) Fauna of a Zoological Park in an Urban Setting: Analysis of Culex pipiens s.l. and Their Biotypes. INSECTS 2024; 15:45. [PMID: 38249051 PMCID: PMC10816151 DOI: 10.3390/insects15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. An average of 2.4 mosquitos per trap/night were captured. Five mosquito species potentially causing MBDs, including Culex pipiens biotypes, were found in the zoo. The sympatric occurrence of Culex pipiens biotypes represents a risk factor for the epizootic transmission of West Nile virus and Usutu virus. The mosquito occurrence followed the expected seasonality, with the maximum densities during summer months. However, mosquito activity was detected in winter months in low numbers. The minimum temperature and the relative humidity (RH) on the day of capture showed a positive effect on Culex pipiens abundance. Contrary, the RH the week before capture and the average precipitation the week of capture had a negative effect. No invasive species were identified, nor have flaviviruses been detected in the mosquitoes. The implementation of biosecurity measures regarding the hygiene of the premises and the strict control of all the animals entering the zoo can justify the low prevalence of mosquitoes and the absence of flavivirus-infected mosquitoes.
Collapse
Affiliation(s)
- Sara Madeira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | | | - Hugo Costa Osório
- CEVDI—INSA—Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, 2965-575 Águas de Moura, Portugal;
- ISAMB—Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Fernando Boinas
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Juma EO, Kim CH, Dunlap C, Allan BF, Stone CM. Culex pipiens and Culex restuans egg rafts harbor diverse bacterial communities compared to their midgut tissues. Parasit Vectors 2020; 13:532. [PMID: 33109276 PMCID: PMC7590256 DOI: 10.1186/s13071-020-04408-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background The bacterial communities associated with mosquito eggs are an essential component of the mosquito microbiota, yet there are few studies characterizing and comparing the microbiota of mosquito eggs to other host tissues. Methods We sampled gravid female Culex pipiens L. and Culex restuans Theobald from the field, allowed them to oviposit in the laboratory, and characterized the bacterial communities associated with their egg rafts and midguts for comparison through MiSeq sequencing of the 16S rRNA gene. Results Bacterial richness was higher in egg rafts than in midguts for both species, and higher in Cx pipiens than Cx. restuans. The midgut samples of Cx. pipiens and Cx. restuans were dominated by Providencia. Culex pipiens and Cx. restuans egg rafts samples were dominated by Ralstonia and Novosphingobium, respectively. NMDS ordination based on Bray-Curtis distance matrix revealed that egg-raft samples, or midgut tissues harbored similar bacterial communities regardless of the mosquito species. Within each mosquito species, there was a distinct clustering of bacterial communities between egg raft and midgut tissues. Conclusion These findings expand the list of described bacterial communities associated with Cx. pipiens and Cx. restuans and the additional characterization of the egg raft bacterial communities facilitates comparative analysis of mosquito host tissues, providing a basis for future studies seeking to understand any functional role of the bacterial communities in mosquito biology.
Collapse
Affiliation(s)
- Elijah O Juma
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA.
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St, Peoria, IL, 61604, USA
| | - Brian F Allan
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| |
Collapse
|
3
|
Abstract
Background Different mosquito-borne pathogens are circulating in Iran including Sindbis virus, West Nile virus, filarioid worms and malaria parasites. However, the local transmission cycles of these pathogenic agents are poorly understood, especially because ecological data on vector species are scarce and there is limited knowledge about the host range; this understanding could help to direct species-specific vector control measurements or to prioritize research. Methods In the summers of 2015 and 2016, blood-fed mosquitoes were collected at 13 trapping sites on the coast of the Caspian Sea in northern Iran and at an additional trapping site in western Iran. Mosquitoes were generally collected with either a Biogents Sentinel trap or a Heavy Duty Encephalitis Vector Survey trap installed outside. A handheld aspirator was used at the trapping site in western Iran, in addition to a few samplings around the other trapping sites. On average, eight trapping periods were conducted per trapping site. The sources of blood meals were identified using a DNA barcoding approach targeting the cytochrome b or 16S rRNA gene fragment. Results The source of blood meals for 580 blood-fed mosquito specimens of 20 different taxa were determined, resulting in the identification of 13 different host species (9 mammals including humans, 3 birds and 1 reptile), whereby no mixed blood meals were detected. Five mosquito species represented more than 85.8% of all collected blood-fed specimens: Culex pipiens pipiens form pipiens (305 specimens, 55.7% of all mosquito specimens), Cx. theileri (60, 10.9%), Cx. sitiens (51, 9.3%), Cx. perexiguus (29, 5.3%) and Anopheles superpictus (25, 4.6%). The most commonly detected hosts of the four most abundant mosquito species were humans (Homo sapiens; 224 mosquito specimens, 40.9% of all mosquito specimens), cattle (Bos taurus; 171, 31.2%) and ducks (Anas spp.; 75, 13.7%). These four mosquito species had similar host-feeding patterns. The only exceptions were a relatively high proportion of birds for Cx. pipiens pipiens f. pipiens (23.2% of detected blood meal sources) and a high proportion of non-human mammals for Cx. theileri (73.4%). Trapping month, surrounding area, or trapping method had no statistically significant impact on the observed host-feeding patterns of Cx. pipiens pipiens f. pipiens. Conclusions Due to the diverse and overlapping host-feeding patterns, several mosquito species must be considered as potential enzootic and bridge vectors for diverse mosquito-borne pathogens in Iran. Most species can potentially transmit pathogens between mammals as well as between mammals and birds, which might be the result of a similar host selection or a high dependence on the host availability. Electronic supplementary material The online version of this article (10.1186/s13071-018-3237-2) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Heym EC, Kampen H, Walther D. Mosquito species composition and phenology (Diptera, Culicidae) in two German zoological gardens imply different risks of mosquito-borne pathogen transmission. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:80-88. [PMID: 29757518 DOI: 10.1111/jvec.12286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
Due to their large diversity of potential blood hosts, breeding habitats, and resting sites, zoological gardens represent highly interesting places to study mosquito ecology. In order to better assess the risk of mosquito-borne disease-agent transmission in zoos, potential vector species must be known, as well as the communities in which they occur. For this reason, species composition and dynamics were examined in 2016 in two zoological gardens in Germany. Using different methods for mosquito sampling, a total of 2,257 specimens belonging to 20 taxa were collected. Species spectra depended on the collection method but generally differed between the two zoos, while species compositions and relative abundances varied seasonally in both of them. As both sampled zoos were located in the same climatic region and potential breeding sites within the zoos were similar, the differences in mosquito compositions are attributed to immigration of specimens from surrounding landscapes, although the different sizes of the zoos and the different blood host populations available probably also have an impact. Based on the differences in species composition and the various biological characteristics of the species, the risk of certain pathogens to be transmitted must also be expected to differ between the zoos.
Collapse
Affiliation(s)
- Eva C Heym
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Doreen Walther
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| |
Collapse
|
5
|
Garcia-Sánchez DC, Pinilla GA, Quintero J. Ecological characterization of Aedes aegypti larval habitats (Diptera: Culicidae) in artificial water containers in Girardot, Colombia. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:289-297. [PMID: 29125250 DOI: 10.1111/jvec.12269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The establishment of habitats for immature Ae. aegypti is regulated by biotic and abiotic factors and interactions between these factors. This study aimed to determine the effects of physico-chemical variables and planktonic algae on immature Ae. aegypti habitats in 101 water tanks (50 of them containing Ae. aegypti pupae and/or larvae) in Girardot, Colombia. Physical data were collected from the water tanks (volume, capacity, material, detritus, and location), along with the physico-chemical variables (temperature, pH, conductivity, redox potential, dissolved oxygen, percentage of oxygen saturation, nitrates, nitrites, and orthophosphates). The richness and abundance of the planktonic organisms were also measured. A chi-square test showed that the occurrence of detritus was greater and the container volume was smaller in the tanks that were positive for larvae. Only Cyanobacteria had a positive correlation with the abundance of immature-stage Ae. aegypti. The results could be important for understanding the vector ecology and envisaging its probable control in the domestic water tanks of Girardot.
Collapse
Affiliation(s)
- Diana C Garcia-Sánchez
- Eje de Salud Pública, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Facultad de Ciencias, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gabriel A Pinilla
- Facultad de Ciencias, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juliana Quintero
- Eje de Salud Pública, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
6
|
Chagas CRF, Valkiūnas G, de Oliveira Guimarães L, Monteiro EF, Guida FJV, Simões RF, Rodrigues PT, de Albuquerque Luna EJ, Kirchgatter K. Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis. Malar J 2017; 16:83. [PMID: 28212654 PMCID: PMC5316177 DOI: 10.1186/s12936-017-1729-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of zoos in conservation programmes has increased significantly in last decades, and the health of captive animals is essential to guarantee success of such programmes. However, zoo birds suffer from parasitic infections, which often are caused by malaria parasites and related haemosporidians. Studies determining the occurrence and diversity of these parasites, aiming better understanding infection influence on fitness of captive birds, are limited. METHODS In 2011-2015, the prevalence and diversity of Plasmodium spp. and Haemoproteus spp. was examined in blood samples of 677 captive birds from the São Paulo Zoo, the largest zoo in Latin America. Molecular and microscopic diagnostic methods were used in parallel to detect and identify these infections. RESULTS The overall prevalence of haemosporidians was 12.6%. Parasites were mostly detected by the molecular diagnosis, indicating that many birds harbour subclinical or abortive infections. In this project, birds of 17 orders (almost half of all the orders currently accepted in taxonomy of birds), 29 families, and 122 species, were tested, detecting positive individuals in 27% of bird species. Birds from the Anatidae were the most prevalently infected (64.7% of all infected animals). In all, infections with parasites of the genus Plasmodium (overall prevalence 97.6%) predominated when compared to those of the genus Haemoproteus (2.4%). In total, 14 cytochrome b (cytb) lineages of Plasmodium spp. and 2 cytb lineages of Haemoproteus spp. were recorded. Eight lineages were new. One of the reported lineages was broad generalist while others were reported in single or a few species of birds. Molecular characterization of Haemoproteus ortalidum was developed. CONCLUSION This study shows that many species of birds are at risk in captivity. It is difficult to stop haemosporidian parasite transmission in zoos, but is possible to reduce the infection rate by treating the infected animals or/and while keeping them in facilities free from mosquitoes. Protocols of quarantine should be implemented whenever an animal is transferred between bird maintaining institutions. This is the first survey of haemosporidians in captive birds from different orders maintained in zoos. It is worth emphasizing the necessity of applying practices to control these parasites in management and husbandry of animals in captivity.
Collapse
Affiliation(s)
| | | | - Lilian de Oliveira Guimarães
- Malaria Research Center, Superintendence for Endemic Disease Control, São Paulo, Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho, Aguiar 470, São Paulo, SP, 05403-000, Brazil
| | - Eliana Ferreira Monteiro
- Malaria Research Center, Superintendence for Endemic Disease Control, São Paulo, Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho, Aguiar 470, São Paulo, SP, 05403-000, Brazil
| | | | - Roseli França Simões
- Malaria Research Center, Superintendence for Endemic Disease Control, São Paulo, Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho, Aguiar 470, São Paulo, SP, 05403-000, Brazil
| | - Priscila Thihara Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, SP, 05508-900, Brazil
| | - Expedito José de Albuquerque Luna
- Virology Laboratory, Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar 470, São Paulo, SP, 05403-000, Brazil
| | - Karin Kirchgatter
- Malaria Research Center, Superintendence for Endemic Disease Control, São Paulo, Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho, Aguiar 470, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
7
|
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, Schmidt-Chanasit J, Lühken R. Host-feeding patterns of mosquito species in Germany. Parasit Vectors 2016; 9:318. [PMID: 27259984 PMCID: PMC4893232 DOI: 10.1186/s13071-016-1597-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito-borne pathogens are of growing importance in many countries of Europe including Germany. At the same time, the transmission cycles of most mosquito-borne pathogens (e.g. viruses or filarial parasites) are not completely understood. There is especially a lack of knowledge about the vector capacity of the different mosquito species, which is strongly influenced by their host-feeding patterns. While this kind of information is important to identify the relevant vector species, e.g. to direct efficient control measures, studies about the host-feeding patterns of mosquito species in Germany are scarce and outdated. Methods Between 2012 and 2015, 775 blood-fed mosquito specimens were collected. Sampling was conducted with Heavy Duty Encephalitis Vector Survey traps, Biogents Sentinel traps, gravid traps, hand-held aspirators, sweep nets, and human-bait collection. The host species for each mosquito specimen was identified with polymerase chain reactions and subsequent Sanger sequencing of the cytochrome b gene. Results A total of 32 host species were identified for 23 mosquito species, covering 21 mammalian species (including humans) and eleven bird species. Three mosquito species accounted for nearly three quarters of all collected blood-fed mosquitoes: Aedes vexans (363 specimens, 46.8 % of all mosquito specimens), Culex pipiens pipiens form pipiens (100, 12.9 %) and Ochlerotatus cantans (99, 12.8 %). Non-human mammals dominated the host species (572 specimens, 73.8 % of all mosquito specimens), followed by humans (152, 19.6 %) and birds (51, 6.6 %). The most common host species were roe deer (Capreolus capreolus; 258 mosquito specimens, 33.3 % of all mosquito specimens, 65 % of all mosquito species), humans (Homo sapiens; 152, 19.6 %, 90 %), cattle (Bos taurus; 101, 13.0 %, 60 %), and wild boar (Sus scrofa; 116, 15.0 %, 50 %). There were no statistically significant differences in the spatial-temporal host-feeding patterns of the three most common mosquito species. Conclusions Although the collected blood-fed mosquito species had a strong overlap of host species, two different host-feeding groups were identified with mosquito species feeding on (i) non-human mammals and humans or (ii) birds, non-human mammals, and humans, which make them potential vectors of pathogens only between mammals or between mammals and birds, respectively. Due to the combination of their host-feeding patterns and wide distribution in Germany, Cx. pipiens pipiens form pipiens and Cx. torrentium are potentially most important vectors for pathogens transmitted from birds to humans and the species Ae. vexans for pathogens transmitted from non-human mammals to humans. Finally, the presented study indicated a much broader host range compared to the classifications found in the literature for some of the species, which highlights the need for studies on the host-feeding patterns of mosquitoes to further assess their vector capacity and the disease ecology in Europe. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1597-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Börstler
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Rolf Garms
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Andreas Krüger
- Department of Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Institute for Dipterology, Speyer, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.
| |
Collapse
|
8
|
Schönenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, Mathis A, Silaghi C. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:39-52. [PMID: 26685926 DOI: 10.1111/mve.12155] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The avian zoonotic agent for West Nile virus (WNV) can cause neuroinvasive disease in horses and humans and is expanding its range in Europe. Analyses of the risk for transmission to these hosts in non-endemic areas are necessary. Host preferences of mosquitoes (Diptera: Culicidae), the main vectors of WNV, were determined in Switzerland using animal-baited trap (horse, chickens) experiments at a natural and a periurban site. This was undertaken on four occasions during May-September 2014. In addition, the hosts of 505 blood-fed mosquitoes collected in a zoo and in the field were determined. Mosquito data obtained in the animal bait experiments were corrected for host weight and body surface area and by Kleiber's scaling factor. Collections of 11-14 different mosquito species were achieved with these approaches. Statistically significant host preferences were identified in three species in both approaches. The other species showed opportunistic feeding behaviours to varying extents. Specifically, the invasive species Hulecoeteomyia japonica (= Aedes japonicus) was identified for the first time as feeding on avians in nature. Abundance data, spatiotemporal activity and laboratory vector competence for WNV suggested that, in addition to the main WNV vector Culex pipiens, H. japonica and Aedimorphus vexans (= Aedes vexans) are the most likely candidate bridge vectors for WNV transmission in Switzerland.
Collapse
Affiliation(s)
- A C Schönenberger
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - S Wagner
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - H C Tuten
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - F Schaffner
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - P Torgerson
- Section of Epidemiology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - S Furrer
- Zürich Zoologischer Garten (Zoo Zürich), Zurich, Switzerland
| | - A Mathis
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - C Silaghi
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Wang Y, Suman DS, Bertrand J, Dong L, Gaugler R. Dual-treatment autodissemination station with enhanced transfer of an insect growth regulator to mosquito oviposition sites. PEST MANAGEMENT SCIENCE 2014; 70:1299-1304. [PMID: 24307332 DOI: 10.1002/ps.3702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/30/2013] [Accepted: 12/04/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The Asian tiger mosquito, Aedes albopictus (Skuse), transmits important arboviral diseases and displaces native species. This peridomestic mosquito deposits eggs in natural and artificial containers. Container larval habitats tend to be cryptic and, therefore, difficult to reach by conventional insecticide treatments. We have developed an autodissemination station that transfers the insect growth regulator, pyriproxyfen, from the station to oviposition sites. Mosquitoes visiting the station become contaminated with an oil sticker followed by pyriproxyfen powder before exiting. RESULTS In a room (31 m(3) ) bioassay a single station consistently achieved 100% Ae. albopictus pupal mortality against 10 oviposition containers. In a greenhouse (200 m(3) ) assay with two stations and 12 oviposition cups, 91.7% of the cups had been contaminated as shown, and 57.1% pupal mortality was recorded. Pyriproxyfen transfer was also detected by visualizing mosquito 'tarsal prints' using a fluorescent dye. CONCLUSIONS The oil and pyriproxyfen powder dual-treatment station enhanced autodissemination efficacy by increasing toxicant attachment and retention on contaminated females. The autodissemination station offers a targeted, less environmentally damaging approach to manage cryptic container species.
Collapse
Affiliation(s)
- Yi Wang
- Center for Vector Biology, Rutgers University, New Brunswick, NJ, USA
| | | | | | | | | |
Collapse
|
10
|
Tuten HC, Bridges WC, Paul KS, Adler PH. Blood-feeding ecology of mosquitoes in zoos. MEDICAL AND VETERINARY ENTOMOLOGY 2012; 26:407-416. [PMID: 22390304 DOI: 10.1111/j.1365-2915.2012.01012.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To determine if the unique host assemblages in zoos influence blood-feeding by mosquitoes (Diptera: Culicidae), a sampling programme was conducted in Greenville and Riverbanks Zoos, South Carolina, U.S.A., from April 2009 to October 2010. A total of 4355 female mosquitoes of 14 species were collected, of which 106 individuals of nine species were blood-fed. The most common taxa were Aedes albopictus (Skuse), Aedes triseriatus (Say), Anopheles punctipennis (Say), Culex erraticus (Dyar & Knab), Culex pipiens complex (L.) and Culex restuans (Theobald). Molecular analyses (cytochrome b) of bloodmeals revealed that mosquitoes fed on captive animals, humans and wildlife, and took mixed bloodmeals. Host species included one amphibian, 16 birds, 10 mammals (including humans) and two reptiles. Minimum dispersal distances after feeding on captive hosts ranged from 15.5 m to 327.0 m. Mosquito-host associations generally conformed to previous accounts, indicating that mosquito behaviour inside zoos reflects that outside zoos. However, novel variation in host use, including new, exotic host records, warrants further investigation. Zoos, thus, can be used as experiment environments in which to study mosquito behaviour, and the findings extrapolated to non-zoo areas, while providing medical and veterinary benefits to zoo animals, employees and patrons.
Collapse
Affiliation(s)
- H C Tuten
- Department of Entomology, Soils and Plant Sciences, Clemson University, Clemson, SC, U.S.A.
| | | | | | | |
Collapse
|