1
|
Guan T, Liu X, Zhang L, Ren C, Feng Y, Yang Z, Xiao L. Soybean-Derived Bioactive Components in Prevention and Intervention of Lung Cancer. Mol Nutr Food Res 2025:e70105. [PMID: 40344500 DOI: 10.1002/mnfr.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Soybean (Glycine max) is one of Asia's most valuable oil crops, offering a rich source of dietary protein and bioactive compounds with diverse clinical applications. Key bioactive phytochemicals in soybean, including isoflavones, flavonoids, carotenoids, phytosterols, soyasaponins, fatty acids, and protein isolates, are known for their potential health benefits. These compounds exert functional properties by modulating critical metabolic pathways, such as the mitogen-activated protein kinase (MAPK), estrogen receptor (ER), and nuclear factor kappa-B (NF-κB) pathways. With a growing body of epidemiological and clinical evidence supporting the anticancer potential of soybean, this review systematically examines the role of soybean-derived bioactive components in the prevention and treatment of lung cancer. To our knowledge, this is the first review to focus specifically on the impact of soy-derived bioactive components on lung cancer progression and modulation, offering insights into their mechanisms and potential as dietary interventions.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaoxiao Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Longfei Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Chenxi Ren
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yining Feng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Yao J, Zhu F, Feng Y, Gu C, Wang T, Li X, Yang H, Hu X, Bonnet PA, Meng X. Research Progress on the Structure-activity Relationship and Mechanism of Flavonoid Derivatives in the Treatment of Lung Cancer. Molecules 2025; 30:1827. [PMID: 40333837 PMCID: PMC12029265 DOI: 10.3390/molecules30081827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. The difficulty in early diagnosis, combined with the tendency for tumor invasion and metastasis, creates significant challenges for current therapeutic approaches. Additionally, the pharmaceutical agents currently used to treat NSCLC often come with severe side effects and can lead to drug resistance. As a result, there is an urgent need to develop new therapeutic agents with fewer side effects that can effectively overcome resistance mechanisms. Flavonoids, a prominent class of natural compounds, have shown promise in preventing and treating various cancers. By structurally optimizing flavonoids, it is possible to enhance their anticancer activity and improve their pharmacokinetic properties. This article reviews the different mechanisms of action and structure-activity relationships (SARs) of flavonoid derivatives in treating NSCLC, aiming to provide a scientific foundation for developing new therapeutic agents.
Collapse
Affiliation(s)
- Jiacheng Yao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Y.); (Y.F.); (C.G.)
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Feng Zhu
- Yangzijiang Pharmaceutical Group Shanghai Haini Pharmaceutical Co., Ltd., Shanghai 201318, China;
| | - Yikun Feng
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Y.); (Y.F.); (C.G.)
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Chen Gu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Y.); (Y.F.); (C.G.)
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Tianyu Wang
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Xinyu Li
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Hao Yang
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Xiamin Hu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Y.); (Y.F.); (C.G.)
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| | - Pierre-Antoine Bonnet
- IBMM, Faculty of Pharmacy, Montpellier University, CNRS, ENSCM, 34093 Montpellier, France
| | - Xiangguo Meng
- Faculty of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (T.W.); (X.L.); (H.Y.)
| |
Collapse
|
3
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
4
|
Athanasiou E, Papageorgiou S, Dafni MF, Kelesis I, Vasileiou M, Tatsiou T, Kouveloglou V, Kanatas P, Stouras I, Gatsis A, Agiassoti VT, Nasimpian P, Dafnoudis D, Degaita K, Verras GI, Alexiou A, Papadakis M, Kamal MA. The use of Isoflavones as Lung Cancer Chemoprevention Agents and their Implications in Treatment through Radio Sensitization. Curr Med Chem 2025; 32:214-237. [PMID: 38369709 DOI: 10.2174/0109298673278897231229121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/20/2024]
Abstract
Epidemiological trends in cancer research show that lung cancer can affect up to 1 in 15 men and 1 in 17 women. With incidence rates as high as these and significant associated mortality and morbidity, it is no wonder that lung cancer is one of the main areas of research focused on cancer. Advances in targeted treatments and specialized irradiation protocols have allowed the treatment of more advanced cases. However, as the patient numbers grow, so does the need for cancer-preventive strategies. The present narrative review focuses on soy isoflavones' role in the chemoprevention of lung cancer and their possible role in therapeutic adjuncts. Laboratory studies on lung cancer cell lines have shown that isoflavones can induce apoptosis, tamper with the expression of proliferative molecular pathways, and even reduce tumor angiogenesis. Additionally, population-level studies have emerged that correlate the consumption of isoflavonoids with reduced risk for the development of lung cancer. Interestingly enough, the literature also contains small-scale studies with evidence of isoflavones being effective chemotherapeutic adjuncts that are currently understudied. Our literature review underlines such findings and provides a call for the enhancement of research regarding naturally occurring dietary products with possible anticarcinogenic effects.
Collapse
Affiliation(s)
- Efstratios Athanasiou
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Savvas Papageorgiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Marianna-Foteini Dafni
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kelesis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- School of Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Maria Vasileiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Tatsiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Vasiliki Kouveloglou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Kanatas
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Ioannis Stouras
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Athanasios Gatsis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki-Taxiarchoula Agiassoti
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Petros Nasimpian
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Dimitrios Dafnoudis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Applied Bioinformatics Master Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Degaita
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios-Ioannis Verras
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Surgery, General University Hospital of Patras, Patra, Greece
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, 42283, Germany
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
5
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
6
|
Estrogen Receptors Alpha and Beta in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12040907. [PMID: 32276421 PMCID: PMC7226505 DOI: 10.3390/cancers12040907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor (ER) signaling has been widely studied in a variety of solid tumors, where the differential expression of ERα and ERβ subtypes can impact prognosis. ER signaling has only recently emerged as a target of interest in acute myeloid leukemia (AML), an aggressive hematological malignancy with sub-optimal therapeutic options and poor clinical outcomes. In a variety of tumors, ERα activation has proliferative effects, while ERβ targeting results in cell senescence or death. Aberrant ER expression and hypermethylation have been characterized in AML, making ER targeting in this disease of great interest. This review describes the expression patterns of ERα and ERβ in AML and discusses the differing signaling pathways associated with each of these receptors. Furthermore, we assess how these signaling pathways can be targeted by various selective estrogen receptor modulators to induce AML cell death. We also provide insight into ER targeting in AML and discuss pending questions that require further study.
Collapse
|
7
|
Smeriglio A, Calderaro A, Denaro M, Laganà G, Bellocco E. Effects of Isolated Isoflavones Intake on Health. Curr Med Chem 2019; 26:5094-5107. [PMID: 28990503 DOI: 10.2174/0929867324666171006143047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Isoflavones are naturally occurring flavonoids, commonly found in the food consumed for centuries in the East-Asian population, characterized by a structure able to exert nonsteroidal estrogen-like activity on human cells. They have attracted researcher interest all around the word, following the results obtained in epidemiological and clinical studies. The involvement of isoflavones and their metabolites in various biological processes suggests that they can influence several metabolic pathways and can influence the gene expression at epigenetic level, involving effects that probably are due to early life exposure. They show positive health effects on several diseases, especially in the prevention of coronary heart and neurological diseases, hormone-related cancers, osteoporosis, and postmenopausal symptoms. METHODS We have performed a critical evaluation of available literature trough a structured search of bibliographic databases about isoflavones health promoting properties, risk assessment and mechanisms of action. In addition, we supplied useful information on their biochemical properties, sources and bioavailability. RESULTS Although these molecules have been the subjects of numerous researches, their role for the wellness of the human organism remains controversial. Moreover, there are substantial inconsistencies between the results obtained by epidemiologic studies conducted on Eastern population, which found high health promoting properties, and Western clinical trials, which found much less positive effects. CONCLUSION Further epidemiologic studies and well-designed prospective human studies are to determine the beneficial effects of isoflavones exposure, as well as establishing its safe therapeutic.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| |
Collapse
|
8
|
Hu JZ, Rong ZJ, Li M, Li P, Jiang LY, Luo ZX, Duan CY, Cao Y, Lu HB. Silencing of lncRNA PKIA-AS1 Attenuates Spinal Nerve Ligation-Induced Neuropathic Pain Through Epigenetic Downregulation of CDK6 Expression. Front Cell Neurosci 2019; 13:50. [PMID: 30873006 PMCID: PMC6401634 DOI: 10.3389/fncel.2019.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
Neuropathic pain (NP) is among the most intractable comorbidities of spinal cord injury. Dysregulation of non-coding RNAs has also been implicated in the development of neuropathic pain. Here, we identified a novel lncRNA, PKIA-AS1, by using lncRNA array analysis in spinal cord tissue of spinal nerve ligation (SNL) model rats, and investigated the role of PKIA-AS1 in SNL-mediated neuropathic pain. We observed that PKIA-AS1 was significantly upregulated in SNL model rats and that PKIA-AS1 knockdown attenuated neuropathic pain progression. Alternatively, overexpression of PKIA-AS1 was sufficient to induce neuropathic pain-like symptoms in uninjured rats. We also found that PKIA-AS1 mediated SNL-induced neuropathic pain by directly regulating the expression and function of CDK6, which is essential for the initiation and maintenance of neuroinflammation and neuropathic pain. Therefore, our study identifies PKIA-AS1 as a novel therapeutic target for neuroinflammation related neuropathic pain.
Collapse
Affiliation(s)
- Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Xiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Chun-Yue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Mechanism study of isoflavones as an anti-retinoblastoma progression agent. Oncotarget 2017; 8:88401-88409. [PMID: 29179444 PMCID: PMC5687614 DOI: 10.18632/oncotarget.19365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023] Open
Abstract
Isoflavones, bioactive soy compounds, are known to exhibit anticancer activities. The present study investigated the anticancer activities of isoflavones on human retinoblastoma Y79 cells in vitro and in vivo. An MTT cell viability assay showed that the half maximal inhibitory concentration value of isoflavones against human retinoblastoma Y79 cells is 1.23 ± 0.42 μmol/l. Flow cytometry analysis indicated that isoflavones blocked G1/S progression. Western blot analysis demonstrated that the mammalian target of rapamycin (mTOR) pathway in Y79 cells was inhibited by isoflavones, with a concomitant decrease in cyclin E1, which accounted for the isoflavone-mediated G1 phase arrest. Isoflavones also inhibited human retinoblastoma growth in vivo; western blot analysis showed inhibition of mTOR and downregulation of cyclin E1 in an isoflavone-treated xenograft mouse model. Together, these results illustrate that isoflavones inhibit retinoblastoma tumour growth in vitro and vivo and that inactivation of the mTOR pathway and downregulation of cyclin E1 is involved in this action. The results of this study suggest that isoflavones could be tested as promising anti-retinoblastoma agent.
Collapse
|
10
|
Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60:9413-9436. [PMID: 28654265 DOI: 10.1021/acs.jmedchem.6b01026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Gloria Castellano
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | | |
Collapse
|
11
|
Guo Y, Shen L, Yao X, Liu Y, Liu Y, Chen H, Min K, Zheng X. Spectroscopic and molecular docking study on the structure-affinity relationship and mechanism in the interaction of genistein and its derivatives with bovine serum albumin. LUMINESCENCE 2017; 32:1368-1384. [DOI: 10.1002/bio.3333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/07/2017] [Accepted: 03/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Lixian Shen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Xu Yao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Yang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Yunmei Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Ke Min
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| |
Collapse
|
12
|
Ghosh A, Ghosh S, Dasgupta D, Ghosh A, Datta S, Sikdar N, Datta S, Chowdhury A, Banerjee S. Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1 in Hepatocellular Carcinoma. Int J Biol Sci 2016; 12:30-41. [PMID: 26722215 PMCID: PMC4679396 DOI: 10.7150/ijbs.12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/04/2015] [Indexed: 01/04/2023] Open
Abstract
The precise mechanism by which HBx protein of hepatitis B virus (HBV) impacts on hepato-carcinogenesis remain largely elusive despite strong evidences for its' involvement in the process. Here, we have investigated the role of HBx on expression of a novel gene hELG1/ATAD5, which is required for genome maintenance and its' importance in hepatocarcinogenesis. This study has for the first time showed that the expression of this gene was significantly higher in human cancer such as HBV-associated hepatocellular carcinoma (HCC) and in different HCC cell lines compared to normal liver. In addition, a significant elevation in ATAD5 expression was also found in HBx transfected HCC cell lines implicating HBx mediated transcriptional regulation on ATAD5. Using different deletion mutant constructs of putative promoter, the active promoter region was first identified here and subsequently the regulatory region of HBx was mapped by promoter-luciferase assay. But ChIP assay with anti-HBx antibody revealed that HBx was not physically present in ATAD5 transcription machinery whereas anti-E2F1 antibody showed the presence of E2F1 in the complex. Luciferase assay with E2F1 binding site mutant had further confirmed it. Moreover, both loss-and gain-of-function studies of ATAD5 showed that ATAD5 could enhance HBV production in transfected cells whereas knock down of ATAD5 increased the sensitivity of HCC cell line to chemotherapeutics 5-fluorouracil. Overall, this data suggests that a positive feedback loop regulation between ATAD5 and HBV contributed to both viral replication and chemo-resistance of HCC cells.
Collapse
Affiliation(s)
- Alip Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debanjali Dasgupta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Somenath Datta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Simanti Datta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- 3. Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
13
|
Messina S, Bitto A, Vita GL, Aguennouz M, Irrera N, Licata N, Sframeli M, Bruschetta D, Minutoli L, Altavilla D, Vita G, Squadrito F. Modulation of neuronal nitric oxide synthase and apoptosis by the isoflavone genistein in Mdx mice. Biofactors 2015; 41:324-9. [PMID: 26332024 DOI: 10.1002/biof.1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/08/2022]
Abstract
Dystrophin lack in DMD causes neuronal nitric oxide synthase (nNOS) membrane delocalization which in turn promotes functional muscle ischemia, and exacerbates muscle injury. Apoptosis and the exhaustion of muscle regenerative capacity are implicated in Duchenne muscular dystrophy (DMD) pathogenesis and therefore are relevant therapeutic targets. Genistein has been reported to have pro-proliferative effects, promoting G1/S cell phase transition through the induction of cyclin D1, and anti-apoptotic properties. We previously showed that genistein could reduce muscle necrosis and enhance regeneration with an augmented number of myogenin-positive satellite cells and myonuclei, ameliorating muscle function in mdx mice. In this study we evaluated the underlying mechanisms of genistein effect on muscle specimens of mdx and wild type mice treated for five weeks with genistein (2 mg/kg/i.p. daily) or vehicle. Western blot analysis show that genistein increased cyclin D1 and nNOS expression; and showed an antiapoptotic effect, modulating the expression of BAX and Bcl-2. Our results suggest that this isoflavone might enhance the regenerative spurt in mdx mice muscle restoring nNOS, promoting G1/S phase transition in muscle cell, and inhibiting apoptosis. Further studies with longer time treatment or using different experimental approaches are needed to better investigate the underlying mechanisms of such results.
Collapse
Affiliation(s)
- Sonia Messina
- Department of Neurosciences, University of Messina, Messina, Italy
- Centro Clinico Nemo Sud, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Gian Luca Vita
- Department of Neurosciences, University of Messina, Messina, Italy
- Centro Clinico Nemo Sud, Messina, Italy
| | | | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Norma Licata
- Department of Neurosciences, University of Messina, Messina, Italy
| | | | - Daniele Bruschetta
- Department of Biomorphology and Biotechnologies, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Department of Neurosciences, University of Messina, Messina, Italy
- Centro Clinico Nemo Sud, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM. Genistein and cancer: current status, challenges, and future directions. Adv Nutr 2015; 6:408-19. [PMID: 26178025 PMCID: PMC4496735 DOI: 10.3945/an.114.008052] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Primary prevention through lifestyle interventions is a cost-effective alternative for preventing a large burden of chronic and degenerative diseases, including cancer, which is one of the leading causes of morbidity and mortality worldwide. In the past decade, epidemiologic and preclinical evidence suggested that polyphenolic phytochemicals present in many plant foods possess chemopreventive properties against several cancer forms. Thus, there has been increasing interest in the potential cancer chemopreventive agents obtained from natural sources, such as polyphenols, that may represent a new, affordable approach to curb the increasing burden of cancer throughout the world. Several epidemiologic studies showed a relation between a soy-rich diet and cancer prevention, which was attributed to the presence of a phenolic compound, genistein, present in soy-based foods. Genistein acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Targeting caspases, B cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, kinesin-like protein 20A (KIF20A), extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear transcription factor κB (NF-κB), mitogen-activated protein kinase (MAPK), inhibitor of NF-κB (IκB), Wingless and integration 1 β-catenin (Wnt/β-catenin), and phosphoinositide 3 kinase/Akt (PI3K/Akt) signaling pathways may act as the molecular mechanisms of the anticancer, therapeutic effects of genistein. Genistein also shows synergistic behavior with well-known anticancer drugs, such as adriamycin, docetaxel, and tamoxifen, suggesting a potential role in combination therapy. This review critically analyzes the available literature on the therapeutic role of genistein on different types of cancer, focusing on its chemical features, plant food sources, bioavailability, and safety.
Collapse
Affiliation(s)
- Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, United Kingdom
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBERobn (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Spain
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India; and
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
15
|
Khan N, Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett 2015; 359:155-64. [PMID: 25644088 DOI: 10.1016/j.canlet.2015.01.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/10/2023]
Abstract
Lung cancer is a prominent cause of cancer-associated mortality worldwide. The main reason for high mortality due to lung cancer is attributable to the fact that the diagnosis is generally made when it has spread beyond a curable stage and cannot be treated surgically or with radiation therapy. Therefore, new approaches like dietary modifications could be extremely useful in reducing lung cancer incidences. Several fruits and vegetables offer a variety of bioactive compounds to afford protection against several diseases, including lung cancer. A number of research studies involving dietary agents provide strong evidence for their role in the prevention and treatment of lung cancer, and have identified their molecular mechanisms of action and potential targets. In this review article, we summarize data from in-vitro and in-vivo studies and where available, in clinical trials, on the effects of some of the most promising dietary agents against lung cancer.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Wei WY, Yan LH, Wang XT, Li L, Cao WL, Zhang XS, Zhan ZX, Yu H, Xie YB, Xiao Q. E2F-1 overexpression inhibits human gastric cancer MGC-803 cell growth in vivo. World J Gastroenterol 2015; 21:491-501. [PMID: 25593464 PMCID: PMC4292280 DOI: 10.3748/wjg.v21.i2.491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the influence of E2F-1 on the growth of human gastric cancer (GC) cells in vivo and the mechanism involved.
METHODS: E2F-1 recombinant lentiviral vectors were injected into xenograft tumors of MGC-803 cells in nude mice, and then tumor growth was investigated. Overexpression of transcription factor E2F-1 was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting analysis. Apoptosis rates were determined using a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Expression levels of certain cell cycle regulators and apoptosis-related proteins, such as Bax, survivin, Bcl-2, cyclin D1, S-phase kinase-associated protein 2, and c-Myc were examined by Western blotting and RT-PCR.
RESULTS: Xenograft tumors of MGC-803 cells in nude mice injected with E2F-1 recombinant lentiviral vectors stably overexpressed the E2F-1 gene as measured by semi-quantitative RT-PCR (relative mRNA expression: 0.10 ± 0.02 vs 0.05 ± 0.02 for control vector and 0.06 ± 0.03 for no infection; both P < 0.01) and Western blotting (relative protein expression: 1.90 ± 0.05 vs 1.10 ± 0.03 in control vector infected and 1.11 ± 0.02 for no infection; both P < 0.01). The growth-curve of tumor volumes revealed that infection with E2F-1 recombinant lentiviral vectors significantly inhibited the growth of human GC xenografts (2.81 ± 1.02 vs 6.18 ± 1.15 in control vector infected and 5.87 ± 1.23 with no infection; both P < 0.05) at 15 d after treatment. TUNEL analysis demonstrated that E2F-1 overexpression promoted tumor cell apoptosis (18.6% ± 2.3% vs 6.7% ± 1.2% in control vector infected 6.3% ± 1.2% for no infection; both P < 0.05). Furthermore, lentiviral vector-mediated E2F-1 overexpression increased the expression of Bax and suppressed survivin, Bcl-2, cyclin D1, Skp2, and c-Myc expression in tumor tissue.
CONCLUSION: E2F-1 inhibits growth of GC cells via regulating multiple signaling pathways, and may play an important role in targeted therapy for GC.
Collapse
|
17
|
Bonelli P, Tuccillo FM, Borrelli A, Schiattarella A, Buonaguro FM. CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361020. [PMID: 24605326 PMCID: PMC3925518 DOI: 10.1155/2014/361020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
The regulation of cell growth and division occurs in an accurate sequential manner. It is dictated by the accumulation of cyclins (CCNs) and cyclin-dependent kinases (CDKs) complexes and degradation of CCNs. In human tumors, instead, the cell cycle is deregulated, causing absence of differentiation and aberrant cell growth. Oncogenic alterations of CCNs, CDKs, and CDKIs have been reported in more than 90% of human cancers, and the most frequent are those related to the G1 phase. Several molecular mechanisms, including gene overexpression, chromosomal translocations, point mutations, insertions and deletions, missense and frame shift mutation, splicing, or methylation, may be responsible for these alterations. The cell cycle regulators are involved in tumor progression given their association with cancers characterized by higher incidence of relapses and chemotherapy resistance. In the last decade anticancer drug researches focused on new compounds, able to target molecules related to changes in genes associated with tumor status. Recently, the studies have focused on the restoration of cell cycle control modulating molecular targets involved in cancer-cell alterations. This paper aims to correlate alterations of cell cycle regulators with human cancers and therapeutic responsivity.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Antonietta Schiattarella
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| |
Collapse
|
18
|
Lavergne M, Jourdan ML, Blechet C, Guyetant S, Pape AL, Heuze-Vourc'h N, Courty Y, Lerondel S, Sobilo J, Iochmann S, Reverdiau P. Beneficial role of overexpression of TFPI-2 on tumour progression in human small cell lung cancer. FEBS Open Bio 2013; 3:291-301. [PMID: 23905012 PMCID: PMC3722576 DOI: 10.1016/j.fob.2013.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 12/18/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a potent inhibitor of plasmin, a protease which is involved in tumour progression by activating (MMPs). This therefore makes TFPI-2 a potential inhibitor of invasiveness and the development of metastases. In this study, low levels of TFPI-2 expression were found in 65% of patients with small cell lung cancer (SCLC), the most aggressive type of lung cancer. To study the impact of TFPI-2 in tumour progression, TFPI-2 was overexpressed in NCI-H209 SCLC cells which were orthotopically implanted in nude mice. Investigations showed that TFPI-2 inhibited lung tumour growth. Such inhibition could be explained in vitro by a decrease in tumour cell viability, blockade of G1/S phase cell cycle transition and an increase in apoptosis shown in NCI-H209 cells expressing TFPI-2. We also demonstrated that TFPI-2 upregulation in NCI-H209 cells decreased MMP expression, particularly by downregulating MMP-1 and MMP-3. Moreover, TFPI-2 inhibited phosphorylation of the MAPK signalling pathway proteins involved in the induction of MMP transcripts, among which MMP-1 was predominant in SCLC tissues and was inversely expressed with TFPI-2 in 35% of cases. These results suggest that downregulation of TFPI-2 expression could favour the development of SCLC. The Tissue Factor Pathway Inhibitor-2 inhibits small cell lung cancer growth Monitoring of small cell lung cancer growth in a mouse orthotopic model by imaging Increasing information on the role of TFPI-2 in human lung tumour cells Increasing information on TFPI-2 and protease expression in human tissue samples
Collapse
Affiliation(s)
- Marion Lavergne
- EA 6305, Université François Rabelais de Tours, Tours F-37032, France ; Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, Tours F-37032, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|