1
|
Rathor L, Curry S, Park Y, McElroy T, Robles B, Sheng Y, Chen WW, Min K, Xiao R, Lee MH, Han SM. Mitochondrial stress in GABAergic neurons non-cell autonomously regulates organismal health and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585932. [PMID: 38585797 PMCID: PMC10996468 DOI: 10.1101/2024.03.20.585932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
Collapse
|
2
|
Abstract
Degenerin/Epithelial Sodium Channels (DEG/ENaCs) are a large family of animal-specific non-voltage gated ion channels, with enriched expression in neuronal and epithelial tissues. While neuronal DEG/ENaCs were originally characterized as sensory receptor channels, recent studies indicate that several DEG/ENaC family members are also expressed throughout the central nervous system. Human genome-wide association studies have linked DEG/ENaC-coding genes with several neurologic and psychiatric disorders, including epilepsy and panic disorder. In addition, studies in rodent models further indicate that DEG/ENaC activity in the brain contributes to many behaviors, including those related to anxiety and long-term memory. Although the exact neurophysiological functions of DEG/ENaCs remain mostly unknown, several key studies now suggest that multiple family members might exert their neuronal function via the direct modulation of synaptic processes. Here, we review and discuss recent findings on the synaptic functions of DEG/ENaCs in both vertebrate and invertebrate species, and propose models for their possible roles in synaptic physiology.
Collapse
Affiliation(s)
- Alexis S Hill
- a Department of Biology , Washington University in St. Louis , St. Louis , USA
| | - Yehuda Ben-Shahar
- a Department of Biology , Washington University in St. Louis , St. Louis , USA
| |
Collapse
|
3
|
The genetic architecture of degenerin/epithelial sodium channels in Drosophila. G3-GENES GENOMES GENETICS 2013; 3:441-50. [PMID: 23449991 PMCID: PMC3583452 DOI: 10.1534/g3.112.005272] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022]
Abstract
Degenerin/epithelial sodium channels (DEG/ENaC) represent a large family of animal-specific membrane proteins. Although the physiological functions of most family members are not known, some have been shown to act as nonvoltage gated, amiloride-sensitive sodium channels. The DEG/ENaC family is exceptionally large in genomes of Drosophila species relative to vertebrates and other insects. To elucidate the evolutionary history of the DEG/ENaC family in Drosophila, we took advantage of the genomic and genetic information available for 12 Drosophila species that represent all the major species groups in the Drosophila clade. We have identified 31 family members (termed pickpocket genes) in Drosophila melanogaster, which can be divided into six subfamilies, which are represented in all 12 species. Structure prediction analyses suggested that some subunits evolved unique structural features in the large extracellular domain, possibly supporting mechanosensory functions. This finding is further supported by experimental data that show that both ppk1 and ppk26 are expressed in multidendritic neurons, which can sense mechanical nociceptive stimuli in larvae. We also identified representative genes from five of the six DEG/ENaC subfamilies in a mosquito genome, suggesting that the core DEG/ENaC subfamilies were already present early in the dipteran radiation. Spatial and temporal analyses of expression patterns of the various pickpocket genes indicated that paralogous genes often show very different expression patterns, possibly indicating that gene duplication events have led to new physiological or cellular functions rather than redundancy. In summary, our analyses support a rapid early diversification of the DEG/ENaC family in Diptera followed by physiological and/or cellular specialization. Some members of the family may have diversified to support the physiological functions of a yet unknown class of ligands.
Collapse
|
4
|
Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. J Neurosci 2012; 32:11879-89. [PMID: 22915128 DOI: 10.1523/jneurosci.1376-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trimeric sodium channels of the DEG/ENaC family have important roles in neurons, but the specific functions of different subunits present in heteromeric channels are poorly understood. We previously reported that the Drosophila DEG/ENaC subunit Ppk25 is essential in a small subset of gustatory neurons for activation of male courtship behavior, likely through detection of female pheromones. Here we show that, like mutations in ppk25, mutations in another Drosophila DEG/ENaC subunit gene, nope, specifically impair male courtship of females. nope regulatory sequences drive reporter gene expression in gustatory neurons of the labellum wings, and legs, including all gustatory neurons in which ppk25 function is required for male courtship of females. In addition, gustatory-specific knockdown of nope impairs male courtship. Further, the impaired courtship response of nope mutant males to females is rescued by targeted expression of nope in the subset of gustatory neurons in which ppk25 functions. However, nope and ppk25 have nonredundant functions, as targeted expression of ppk25 does not compensate for the lack of nope and vice versa. Moreover, Nope and Ppk25 form specific complexes when coexpressed in cultured cells. Together, these data indicate that the Nope and Ppk25 polypeptides have specific, nonredundant functions in a subset of gustatory neurons required for activation of male courtship in response to females, and suggest the hypothesis that Nope and Ppk25 function as subunits of a heteromeric DEG/ENaC channel required for gustatory detection of female pheromones.
Collapse
|
5
|
Abstract
All animals use a sophisticated array of receptor proteins to sense their external and internal environments. Major advances have been made in recent years in understanding the molecular and genetic bases for sensory transduction in diverse modalities, indicating that both metabotropic and ionotropic pathways are important in sensory functions. Here, I review the historical background and recent advances in understanding the roles of a relatively newly discovered family of receptors, the degenerin/epithelial sodium channels (DEG/ENaC). These animal-specific cation channels show a remarkable sequence and functional diversity in different species and seem to exert their functions in diverse sensory modalities. Functions for DEG/ENaC channels have been implicated in mechanosensation as well as chemosensory transduction pathways. In spite of overall sequence diversity, all family members share a unique protein topology that includes just two transmembrane domains and an unusually large and highly structured extracellular domain, that seem to be essential for both their mechanical and chemical sensory functions. This review will discuss many of the recent discoveries and controversies associated with sensory function of DEG/ENaC channels in both vertebrate and invertebrate model systems, covering the role of family members in taste, mechanosensation, and pain.
Collapse
|
6
|
Molecular modeling of mechanosensory ion channel structural and functional features. PLoS One 2010; 5:e12814. [PMID: 20877470 PMCID: PMC2943245 DOI: 10.1371/journal.pone.0012814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/20/2010] [Indexed: 01/31/2023] Open
Abstract
The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.
Collapse
|
7
|
Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000636. [PMID: 19730689 PMCID: PMC2729924 DOI: 10.1371/journal.pgen.1000636] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/07/2009] [Indexed: 11/19/2022] Open
Abstract
When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP3R), encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cβ (EGL-8) and phospholipase Cγ (PLC-3), which catalyse the production of IP3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch–induced Ca2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP3R in two specific responses mediated by ASH. In order to avoid potential hazards, animals detect and discriminate between a wide range of aversive stimuli. To detect some of these stimuli, animals use polymodal sensory neurons, that is neurons of a single type that can detect a range of different stimuli and transmit an appropriate signal to the downstream nervous system. Pain-sensing nociceptors in humans and the ASH neurons in C. elegans are both polymodal. The ASH neurons mediate responses to high osmotic strength, nose touch, high ambient oxygen, and volatile and non-volatile compounds. It remains unclear how these cells detect and discriminate between these different stimuli. We show that signalling through the second messenger inositol 1,4,5-trisphosphate (IP3) and its receptor (IP3R) is required in ASH for animals to respond to nose touch. We also show that IP3Rs are required for the response to the volatile compound benzaldehyde. However, these signalling components are not required for a range of other ASH-mediated responses. Thus, we have identified a signalling mechanism that is specific to a small subset of ASH-mediated responses. These results add to our understanding of how ASH discriminates between a variety of stimuli and thus to our understanding of polymodal neurons in general.
Collapse
|
8
|
Abstract
Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might modulate neuronal function by mechanisms in addition to their H(+)-evoked opening. Within ASIC channel's large extracellular domain, we identified sequence resembling that in scorpion toxins that inhibit K(+) channels. Therefore, we tested the hypothesis that ASIC channels might inhibit K(+) channel function by coexpressing ASIC1a and the high-conductance Ca(2+)- and voltage-activated K(+) (BK) channel. We found that ASIC1a associated with BK channels and inhibited their current. Reducing extracellular pH disrupted the association and relieved the inhibition. BK channels, in turn, altered the kinetics of ASIC1a current. In addition to BK, ASIC1a inhibited voltage-gated Kv1.3 channels. Other ASIC channels also inhibited BK, although acidosis-dependent relief of inhibition varied. These results reveal a mechanism of ion channel interaction and reciprocal regulation. Finding that a reduced pH activated ASIC1a and relieved BK inhibition suggests that extracellular protons may enhance the activity of channels with opposing effects on membrane voltage. The wide and varied expression patterns of ASICs, BK, and related K(+) channels suggest broad opportunities for this signaling system to alter neuronal function.
Collapse
|
9
|
Fronius M, Clauss WG. Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflugers Arch 2007; 455:775-85. [PMID: 17874325 DOI: 10.1007/s00424-007-0332-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
The epithelial Na+ channel (ENaC) is the rate-limiting step for Na+ absorption in various vertebrate epithelia and deeply enmeshed in the control of salt and water homeostasis. The phylogenetic relationship of ENaC molecules to mechano-sensitive Degenerins from Caenorhabditis elegans indicates that ENaC might be mechano-sensitive as well. Primarily, it was suggested that ENaC might be activated by membrane stretch. However, this issue still remains to be clarified because controversial results were published. Recent publications indicate that shear stress represents an adequate stimulus, activating ENaC via increasing the single-channel open probability. Basing on the experimental evidence published within the past years and integrating this knowledge into a model related to the mechano-sensitive receptor complex known from C. elegans, we introduce a putative mechanism concerning the mechano-sensitivity of ENaC. We suggest that mechano-sensitive ENaC activation represents a nonhormonal regulatory mechanism. This feature could be of considerable physiological significance because many Na+-absorbing epithelia are exposed to shear forces. Furthermore, it may explain the wide distribution of ENaC proteins in nonepithelial tissues. Nevertheless, it remains a challenge for future studies to explore the mechanism how ENaC is controlled by mechanical forces and shear stress in particular.
Collapse
Affiliation(s)
- Martin Fronius
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Wartweg 95, 35392, Giessen, Germany.
| | | |
Collapse
|
10
|
Katzen F. Gateway®recombinational cloning: a biological operating system. Expert Opin Drug Discov 2007; 2:571-89. [DOI: 10.1517/17460441.2.4.571] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Bounoutas A, Chalfie M. Touch sensitivity in Caenorhabditis elegans. Pflugers Arch 2007; 454:691-702. [PMID: 17285303 DOI: 10.1007/s00424-006-0187-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 10/31/2006] [Indexed: 11/26/2022]
Abstract
The nematode Caenorhabditis elegans was the first organism for which touch insensitive mutants were obtained. The study of the genes defective in these mutants has led to the identification of components of a mechanosensory complex needed for specific cells to sense gentle touch to the body. Multiple approaches using genetics, cell biology, biochemistry, and electrophysiology have characterized a channel complex, containing two DEG/ENaC pore-forming subunits and several other proteins, that transduces the touch response. Other mechanical responses, sensed by other cells using a variety of other components, are less well understood in C. elegans. Many of these other senses may use TRP channels, although DEG/ENaC channels have also been implicated.
Collapse
Affiliation(s)
- Alexander Bounoutas
- Department of Biological Sciences, Columbia University, 1012 Fairchild, MC#2446, 1012 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
12
|
Bazopoulou D, Tavernarakis N. Mechanosensitive Ion Channels in Caenorhabditis elegans. CURRENT TOPICS IN MEMBRANES 2007; 59:49-79. [PMID: 25168133 DOI: 10.1016/s1063-5823(06)59003-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Caenorhabditis elegans depends critically on mechanosensory perception to negotiate its natural habitat, the soil. The worm displays a rich repertoire of mechanosensitive behaviors, which can be easily examined in the laboratory. This, coupled with the availability of sophisticated genetic and molecular biology tools, renders C. elegans a particularly attractive model organism to study the transduction of mechanical stimuli to biological responses. Systematic genetic analysis has facilitated the dissection of the molecular mechanisms that underlie mechanosensation in the nematode. Studies of various worm mechanosensitive behaviors have converged to identify highly specialized plasma membrane ion channels that are required for the conversion of mechanical energy to cellular signals. Strikingly, similar mechanosensitive ion channels appear to function at the core of the mechanotransduction apparatus in higher organisms, including humans. Thus, the mechanisms responsible for the detection of mechanical stimuli are likely conserved across metazoans. The nematode offers a powerful platform for elucidating the fundamental principles that govern the function of metazoan mechanotransducers. This chapter evaluates the current understanding of mechanotransduction in C. elegans and focuses on the role of mechanosensitive ion channels in specific mechanosensory behavioral responses. The chapter also outlines potential unifying themes, common to mechanosensory transduction in diverse species.
Collapse
Affiliation(s)
- Dafne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| |
Collapse
|
13
|
|
14
|
Salinas M, Rash LD, Baron A, Lambeau G, Escoubas P, Lazdunski M. The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. J Physiol 2006; 570:339-54. [PMID: 16284080 PMCID: PMC1464308 DOI: 10.1113/jphysiol.2005.095810] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 11/09/2005] [Indexed: 12/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are excitatory neuronal cation channels, involved in physiopathological processes related to extracellular pH fluctuation such as nociception, ischaemia, perception of sour taste and synaptic transmission. The spider peptide toxin psalmotoxin 1 (PcTx1) has previously been shown to inhibit specifically the proton-gated cation channel ASIC1a. To identify the binding site of PcTx1, we produced an iodinated form of the toxin ((125)I-PcTx1Y(N)) and developed a set of binding and electrophysiological experiments on several chimeras of ASIC1a and the PcTx1-insensitive channels ASIC1b and ASIC2a. We show that (125)I-PcTx1Y(N) binds specifically to ASIC1a at a single site, with an IC(50) of 128 pM, distinct from the amiloride blocking site. Results obtained from chimeras indicate that PcTx1 does not bind to ASIC1a transmembrane domains (M1 and M2), involved in formation of the ion pore, but binds principally on both cysteine-rich domains I and II (CRDI and CRDII) of the extracellular loop. The post-M1 and pre-M2 regions, although not involved in the binding site, are crucial for the ability of PcTx1 to inhibit ASIC1a current. The linker domain between CRDI and CRDII is important for their correct spatial positioning to form the PcTx1 binding site. These results will be useful for the future identification or design of new molecules acting on ASICs.
Collapse
Affiliation(s)
- Miguel Salinas
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS Université de Nice Sophia-Antipolis, UMR-6097, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
| | | | | | | | | | | |
Collapse
|
15
|
Matsushima Y, Adán C, Garesse R, Kaguni LS. Drosophila Mitochondrial Transcription Factor B1 Modulates Mitochondrial Translation but Not Transcription or DNA Copy Number in Schneider Cells. J Biol Chem 2005; 280:16815-20. [PMID: 15749697 DOI: 10.1074/jbc.m500569200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
16
|
O'Hagan R, Chalfie M. Mechanosensation in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 69:169-203. [PMID: 16492465 DOI: 10.1016/s0074-7742(05)69006-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Robert O'Hagan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | | |
Collapse
|
17
|
Syntichaki P, Tavernarakis N. Genetic Models of Mechanotransduction: The NematodeCaenorhabditis elegans. Physiol Rev 2004; 84:1097-153. [PMID: 15383649 DOI: 10.1152/physrev.00043.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into a biological response, constitutes the basis for a plethora of fundamental biological processes such as the senses of touch, balance, and hearing and contributes critically to development and homeostasis in all organisms. Despite this profound importance in biology, we know remarkably little about how mechanical input forces delivered to a cell are interpreted to an extensive repertoire of output physiological responses. Recent, elegant genetic and electrophysiological studies have shown that specialized macromolecular complexes, encompassing mechanically gated ion channels, play a central role in the transformation of mechanical forces into a cellular signal, which takes place in mechanosensory organs of diverse organisms. These complexes are highly efficient sensors, closely entangled with their surrounding environment. Such association appears essential for proper channel gating and provides proximity of the mechanosensory apparatus to the source of triggering mechanical energy. Genetic and molecular evidence collected in model organisms such as the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse highlight two distinct classes of mechanically gated ion channels: the degenerin (DEG)/epithelial Na+channel (ENaC) family and the transient receptor potential (TRP) family of ion channels. In addition to the core channel proteins, several other potentially interacting molecules have in some cases been identified, which are likely parts of the mechanotransducing apparatus. Based on cumulative data, a model of the sensory mechanotransducer has emerged that encompasses our current understanding of the process and fulfills the structural requirements dictated by its dedicated function. It remains to be seen how general this model is and whether it will withstand the impiteous test of time.
Collapse
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
18
|
Matsushima Y, Garesse R, Kaguni LS. Drosophila Mitochondrial Transcription Factor B2 Regulates Mitochondrial DNA Copy Number and Transcription in Schneider Cells. J Biol Chem 2004; 279:26900-5. [PMID: 15060065 DOI: 10.1074/jbc.m401643200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor B2 (d-mt-TFB2), a protein that plays a role in mitochondrial transcription and mitochondrial DNA (mtDNA) replication in Drosophila. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB2 to 5% of its normal level in Schneider cells. RNAi knock-down of d-mtTFB2 reduces the abundance of specific mitochondrial RNA transcripts 2- to 8-fold and decreases the copy number of mtDNA approximately 3-fold. In a corollary manner, we find that overexpression of d-mtTFB2 increases both the abundance of mitochondrial RNA transcripts and the copy number of mtDNA. In a comparative experiment, we find that overexpression of Drosophila mitochondrial transcription factor A (d-TFAM) increases mtDNA copy number with no significant effect on mitochondrial transcripts. This argues for a direct role for mtTFB2 in mitochondrial transcription and suggests that, if TFAM serves a role in transcription, its endogenous level limits mtDNA copy number but not transcription. Furthermore, we suggest that mtTFB2 increases mtDNA copy number by increasing the frequency of initiation of DNA replication, whereas TFAM serves to stabilize and package mtDNA in mitochondrial nucleoids. Our work represents the first study to document the function of mtTFB2 in vivo, establishing a dual role in regulation of both transcription and replication, and provides a benchmark for comparative biochemical studies in various animal systems.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
19
|
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002; 82:735-67. [PMID: 12087134 DOI: 10.1152/physrev.00007.2002] [Citation(s) in RCA: 795] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Institut de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
20
|
In vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J Neurosci 2000. [PMID: 10729338 DOI: 10.1523/jneurosci.20-07-02575.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanosensory signaling mediated by mechanically gated ion channels constitutes the basis for the senses of touch and hearing and contributes fundamentally to the development and homeostasis of all organisms. Despite this profound importance in biology, little is known of the molecular identities or functional requirements of mechanically gated ion channels. We report a genetically based structure-function analysis of the candidate mechanotransducing channel subunit MEC-4, a core component of a touch-sensing complex in Caenorhabditis elegans and a member of the DEG/ENaC superfamily. We identify molecular lesions in 40 EMS-induced mec-4 alleles and further probe residue and domain function using site-directed approaches. Our analysis highlights residues and subdomains critical for MEC-4 activity and suggests possible roles of these in channel assembly and/or function. We describe a class of substitutions that disrupt normal channel activity in touch transduction but remain permissive for neurotoxic channel hyperactivation, and we show that expression of an N-terminal MEC-4 fragment interferes with in vivo channel function. These data advance working models for the MEC-4 mechanotransducing channel and identify residues, unique to MEC-4 or the MEC-4 degenerin subfamily, that might be specifically required for mechanotransducing function. Because many other substitutions identified by our study affect residues conserved within the DEG/ENaC channel superfamily, this work also provides a broad view of structure-function relations in the superfamily as a whole. Because the C. elegans genome encodes representatives of a large number of eukaryotic channel classes, we suggest that similar genetic-based structure-activity studies might be generally applied to generate insight into the in vivo function of diverse channel types.
Collapse
|