1
|
Silvera MC, Prieto D. 1950s-1990s: The pioneering era of insect neuroscience in Uruguay. Neuroscience 2025; 568:265-272. [PMID: 39827938 DOI: 10.1016/j.neuroscience.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Insect research has significantly advanced neuroscience by addressing fundamental questions, with groundbreaking discoveries emerging from research carried out in Uruguay. Powered by technological advances, the field has seen milestones in ultrastructure, neuronal and synaptic structure, and complex behavioral findings. Key contributions include the first formal description of chemical synapses, the identification of synaptic vesicle origins in the endoplasmic reticulum, and pioneering work on eye induction and development. Uruguay's research has also provided critical insights into neural degeneration and repair mechanisms, the functional microanatomy of the visual pathway, and mechanoreception. This review highlights four decades of Uruguayan legacy in insect neuroscience, underscoring how a small, yet vibrant, community of researchers has embraced interdisciplinary collaborations and innovative methodologies. Additionally, this review addresses the evolving role of women in the field and the collaborative spirit that has propelled scientific discovery, marking a critical juncture in the development of insect neuroscience. Despite limited resources, Uruguay has played a pivotal role in advancing our understanding of brain organization, neuronal-glial interactions, and connectomics, making lasting contributions to both local and global neuroscience.
Collapse
Affiliation(s)
- María Constanza Silvera
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Prieto
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
2
|
Sastry L, Rylee J, Mahato S, Zelhof AC. Proximity labeling reveals interactions necessary to maintain the distinct apical domains of Drosophila photoreceptors. J Cell Sci 2024; 137:jcs262223. [PMID: 39540276 PMCID: PMC11827603 DOI: 10.1242/jcs.262223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Specialized membrane and cortical protein regions are common features of cells and are utilized to isolate differential cellular functions. In Drosophila photoreceptors, the apical membrane domain is defined by two distinct morphological membranes: the rhabdomere microvilli and the stalk membrane. To define the apical cortical protein complexes, we performed proximity labeling screens utilizing the rhabdomeric-specific protein PIP82 as bait. We found that the PIP82 interactome is enriched in actin-binding and cytoskeleton proteins, as well as proteins for cellular trafficking. Analysis of one target, Bifocal, with PIP82 revealed two independent pathways for localization to the rhabdomeric membrane and an additional mechanism of crosstalk between the protein complexes of the rhabdomeric and stalk membranes. The loss of Bifocal, and enhancement in the PIP82, bifocal double mutant, resulted in the additional distribution of Crumbs, an apical stalk membrane protein, to the lateral basal photoreceptor membrane. This phenotype was recapitulated by the knockdown of the catalytic subunit of Protein phosphatase 1, a known interactor with Bifocal. Taken together, these results expand our understanding of the molecular mechanisms underlying the generation of the two distinct photoreceptor apical domains.
Collapse
Affiliation(s)
- Lalitha Sastry
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Johnathan Rylee
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew C. Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Choi C, Lee GJ, Chang S, Song YM, Kim DH. Inspiration from Visual Ecology for Advancing Multifunctional Robotic Vision Systems: Bio-inspired Electronic Eyes and Neuromorphic Image Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412252. [PMID: 39402806 DOI: 10.1002/adma.202412252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Indexed: 11/29/2024]
Abstract
In robotics, particularly for autonomous navigation and human-robot collaboration, the significance of unconventional imaging techniques and efficient data processing capabilities is paramount. The unstructured environments encountered by robots, coupled with complex missions assigned to them, present numerous challenges necessitating diverse visual functionalities, and consequently, the development of multifunctional robotic vision systems has become indispensable. Meanwhile, rich diversity inherent in animal vision systems, honed over evolutionary epochs to meet their survival demands across varied habitats, serves as a profound source of inspirations. Here, recent advancements in multifunctional robotic vision systems drawing inspiration from natural ocular structures and their visual perception mechanisms are delineated. First, unique imaging functionalities of natural eyes across terrestrial, aerial, and aquatic habitats and visual signal processing mechanism of humans are explored. Then, designs and functionalities of bio-inspired electronic eyes are explored, engineered to mimic key components and underlying optical principles of natural eyes. Furthermore, neuromorphic image sensors are discussed, emulating functional properties of synapses, neurons, and retinas and thereby enhancing accuracy and efficiency of robotic vision tasks. Next, integration examples of electronic eyes with mobile robotic/biological systems are introduced. Finally, a forward-looking outlook on the development of bio-inspired electronic eyes and neuromorphic image sensors is provided.
Collapse
Affiliation(s)
- Changsoon Choi
- Center for Quantum Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gil Ju Lee
- School of Electrical and Electronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Jiang H, Tsoi CC, Yu W, Ma M, Li M, Wang Z, Zhang X. Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection. LIGHT, SCIENCE & APPLICATIONS 2024; 13:256. [PMID: 39294111 PMCID: PMC11410978 DOI: 10.1038/s41377-024-01580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 09/20/2024]
Abstract
Natural selection has driven arthropods to evolve fantastic natural compound eyes (NCEs) with a unique anatomical structure, providing a promising blueprint for artificial compound eyes (ACEs) to achieve static and dynamic perceptions in complex environments. Specifically, each NCE utilises an array of ommatidia, the imaging units, distributed on a curved surface to enable abundant merits. This has inspired the development of many ACEs using various microlens arrays, but the reported ACEs have limited performances in static imaging and motion detection. Particularly, it is challenging to mimic the apposition modality to effectively transmit light rays collected by many microlenses on a curved surface to a flat imaging sensor chip while preserving their spatial relationships without interference. In this study, we integrate 271 lensed polymer optical fibres into a dome-like structure to faithfully mimic the structure of NCE. Our ACE has several parameters comparable to the NCEs: 271 ommatidia versus 272 for bark beetles, and 180o field of view (FOV) versus 150-180o FOV for most arthropods. In addition, our ACE outperforms the typical NCEs by ~100 times in dynamic response: 31.3 kHz versus 205 Hz for Glossina morsitans. Compared with other reported ACEs, our ACE enables real-time, 180o panoramic direct imaging and depth estimation within its nearly infinite depth of field. Moreover, our ACE can respond to an angular motion up to 5.6×106 deg/s with the ability to identify translation and rotation, making it suitable for applications to capture high-speed objects, such as surveillance, unmanned aerial/ground vehicles, and virtual reality.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- Photonics Research Institute (PRI), The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Chi Chung Tsoi
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- Photonics Research Institute (PRI), The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Weixing Yu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China
| | - Mengchao Ma
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
- Photonics Research Institute (PRI), The Hong Kong Polytechnic University, 999077, Hong Kong, China.
- Research Institute for Advanced Manufacturing (RIAM), The Hong Kong Polytechnic University, 999077, Hong Kong, China.
| |
Collapse
|
5
|
Kittelmann M, McGregor AP. Looking across the gap: Understanding the evolution of eyes and vision among insects. Bioessays 2024; 46:e2300240. [PMID: 38593308 DOI: 10.1002/bies.202300240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.
Collapse
Affiliation(s)
- Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
6
|
Wolterhoff N, Hiesinger PR. Synaptic promiscuity in brain development. Curr Biol 2024; 34:R102-R116. [PMID: 38320473 PMCID: PMC10849093 DOI: 10.1016/j.cub.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Rathore S, Meece M, Charlton-Perkins M, Cook TA, Buschbeck EK. Probing the conserved roles of cut in the development and function of optically different insect compound eyes. Front Cell Dev Biol 2023; 11:1104620. [PMID: 37065850 PMCID: PMC10102356 DOI: 10.3389/fcell.2023.1104620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut, we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus. In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Charlton-Perkins
- Division of Developmental Biology and Department of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genetics, Department of Ophthalmological, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| |
Collapse
|
8
|
Kiral FR, Dutta SB, Linneweber GA, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan BA, Hiesinger PR. Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Rep 2021; 37:110145. [PMID: 34936868 DOI: 10.1016/j.celrep.2021.110145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Suchetana B Dutta
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerit Arne Linneweber
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Selina Hilgert
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Caroline Poppa
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Max von Kleist
- MF1 Bioinformatics, Robert Koch-Institute, 13353 Berlin, Germany
| | - Bassem A Hassan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
9
|
Pichaud F, Casares F. Shaping an optical dome: The size and shape of the insect compound eye. Semin Cell Dev Biol 2021; 130:37-44. [PMID: 34810110 DOI: 10.1016/j.semcdb.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
The insect compound eye is the most abundant eye architecture on earth. It comes in a wide variety of shapes and sizes, which are exquisitely adapted to specific ecosystems. Here, we explore the organisational principles and pathways, from molecular to tissular, that underpin the building of this organ and highlight why it is an excellent model system to investigate the relationship between genes and tissue form. The compound eye offers wide fields of view, high sensitivity in motion detection and infinite depth of field. It is made of an array of visual units called ommatidia, which are precisely tiled in 3D to shape the retinal tissue as a dome-like structure. The eye starts off as a 2D epithelium, and it acquires its 3D organisation as ommatidia get into shape. Each ommatidium is made of a complement of retinal cells, including light-detecting photoreceptors and lens-secreting cells. The lens cells generate the typical hexagonal facet lens that lies atop the photoreceptors so that the eye surface consists of a quasi-crystalline array of these hexagonal facet-lenses. This array is curved to various degree, depending on the size and shape of the eye, and on the region of the retina. This curvature sets the resolution and visual field of the eye and is determined by i) the number and size of the facet lens - large ommatidial lenses can be used to generate flat, higher resolution areas, while smaller facets allow for stronger curvature of the eye, and ii) precise control of the inter facet-lens angle, which determines the optical axis of the each ommatidium. In this review we discuss how combinatorial variation in eye primordium shape, ommatidial number, facet lens size and inter facet-lens angle underpins the wide variety of insect eye shapes, and we explore what is known about the mechanisms that might control these parameters.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, WC1E 6BT London, United Kingdom.
| | - Fernando Casares
- CABD-Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
10
|
Freelance CB, Magrath MJL, Elgar MA, Wong BBM. Long‐term captivity is associated with changes to sensory organ morphology in a critically endangered insect. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Michael J. L. Magrath
- School of BioSciences The University of Melbourne Parkville Vic. Australia
- Department of Wildlife Conservation and Science Zoos Victoria Parkville Vic. Australia
| | - Mark A. Elgar
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Bob B. M. Wong
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
11
|
Ji W, Wu LF, Altschuler SJ. Analysis of growth cone extension in standardized coordinates highlights self-organization rules during wiring of the Drosophila visual system. PLoS Genet 2021; 17:e1009857. [PMID: 34731164 PMCID: PMC8565740 DOI: 10.1371/journal.pgen.1009857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
A fascinating question in neuroscience is how ensembles of neurons, originating from different locations, extend to the proper place and by the right time to create precise circuits. Here, we investigate this question in the Drosophila visual system, where photoreceptors re-sort in the lamina to form the crystalline-like neural superposition circuit. The repeated nature of this circuit allowed us to establish a data-driven, standardized coordinate system for quantitative comparison of sparsely perturbed growth cones within and across specimens. Using this common frame of reference, we investigated the extension of the R3 and R4 photoreceptors, which is the only pair of symmetrically arranged photoreceptors with asymmetric target choices. Specifically, we found that extension speeds of the R3 and R4 growth cones are inherent to their cell identities. The ability to parameterize local regularity in tissue organization facilitated the characterization of ensemble cellular behaviors and dissection of mechanisms governing neural circuit formation.
Collapse
Affiliation(s)
- Weiyue Ji
- Biophysics Graduate Group, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
12
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
13
|
Wilson R, Wakefield A, Roberts N, Jones G. Artificial light and biting flies: the parallel development of attractive light traps and unattractive domestic lights. Parasit Vectors 2021; 14:28. [PMID: 33413591 PMCID: PMC7789162 DOI: 10.1186/s13071-020-04530-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
Light trapping is an important tool for monitoring insect populations. This is especially true for biting Diptera, where light traps play a crucial role in disease surveillance by tracking the presence and abundance of vector species. Physiological and behavioural data have been instrumental in identifying factors that influence dipteran phototaxis and have spurred the development of more effective light traps. However, the development of less attractive domestic lights has received comparatively little interest but could be important for reducing interactions between humans and vector insects, with consequences for reducing disease transmission. Here, we discuss how dipteran eyes respond to light and the factors influencing positive phototaxis, and conclude by identifying key areas for further research. In addition, we include a synthesis of attractive and unattractive wavelengths for a number of vector species. A more comprehensive understanding of how Diptera perceive and respond to light would allow for more efficient vector sampling as well as potentially limiting the risk posed by domestic lighting.
Collapse
Affiliation(s)
- Roksana Wilson
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Andrew Wakefield
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Nicholas Roberts
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
14
|
Porter ML, Cronin TW, Dick CW, Simon N, Dittmar K. Visual system characterization of the obligate bat ectoparasite Trichobius frequens (Diptera: Streblidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101007. [PMID: 33341370 DOI: 10.1016/j.asd.2020.101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
As an obligate ectoparasite of bats, the bat fly Trichobius frequens (Diptera: Streblidae) inhabits the same subterranean environment as their nocturnal bat hosts. In this study, we characterize the macromorphology, optical architecture, rhabdom anatomy, photoreceptor absorbance, and opsin expression of the significantly reduced visual system in T. frequens resulting from evolution in the dark. The eyes develop over a 21-22 day pupal developmental period, with pigmentation appearing on pupal day 11. After eclosion as an adult, T. frequens eyes consist of on average 8 facets, each overlying a fused rhabdom consisting of anywhere from 11 to 18 estimated retinula cells. The dimensions of the facets and fused rhabdoms are similar to those measured in other nocturnal insects. T. frequens eyes are functional as shown by expression of a Rh1 opsin forming a visual pigment with a peak sensitivity to 487 nm, similar to other dipteran Rh1 opsins. Future studies will evaluate how individuals with such reduced capabilities for spatial vision as well as sensitivity still capture enough visual information to use flight to maneuver through dark habitats.
Collapse
Affiliation(s)
| | | | - Carl W Dick
- Western Kentucky University, Bowling Green, KY, USA; The Field Museum, Chicago, IL, USA
| | - Noah Simon
- University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | |
Collapse
|
15
|
Zelhof AC, Mahato S, Liang X, Rylee J, Bergh E, Feder LE, Larsen ME, Britt SG, Friedrich M. The brachyceran de novo gene PIP82, a phosphorylation target of aPKC, is essential for proper formation and maintenance of the rhabdomeric photoreceptor apical domain in Drosophila. PLoS Genet 2020; 16:e1008890. [PMID: 32579558 PMCID: PMC7340324 DOI: 10.1371/journal.pgen.1008890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
The Drosophila apical photoreceptor membrane is defined by the presence of two distinct morphological regions, the microvilli-based rhabdomere and the stalk membrane. The subdivision of the apical membrane contributes to the geometrical positioning and the stereotypical morphology of the rhabdomeres in compound eyes with open rhabdoms and neural superposition. Here we describe the characterization of the photoreceptor specific protein PIP82. We found that PIP82's subcellular localization demarcates the rhabdomeric portion of the apical membrane. We further demonstrate that PIP82 is a phosphorylation target of aPKC. PIP82 localization is modulated by phosphorylation, and in vivo, the loss of the aPKC/Crumbs complex results in an expansion of the PIP82 localization domain. The absence of PIP82 in photoreceptors leads to misshapped rhabdomeres as a result of misdirected cellular trafficking of rhabdomere proteins. Comparative analyses reveal that PIP82 originated de novo in the lineage leading to brachyceran Diptera, which is also characterized by the transition from fused to open rhabdoms. Taken together, these findings define a novel factor that delineates and maintains a specific apical membrane domain, and offers new insights into the functional organization and evolutionary history of the Drosophila retina.
Collapse
Affiliation(s)
- Andrew C. Zelhof
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Xulong Liang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jonathan Rylee
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Emma Bergh
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Lauren E. Feder
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Matthew E. Larsen
- Department of Neurology and Ophthalmology, Dell Medical School, University of Texas, Austin, Texas, United States of America
| | - Steven G. Britt
- Department of Neurology and Ophthalmology, Dell Medical School, University of Texas, Austin, Texas, United States of America
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
16
|
Altered ocular parameters from circadian clock gene disruptions. PLoS One 2019; 14:e0217111. [PMID: 31211778 PMCID: PMC6581257 DOI: 10.1371/journal.pone.0217111] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of refractive errors is poorly understood. Myopia (nearsightedness) in particular both blurs vision and predisposes the eye to many blinding diseases during adulthood. Based on past findings of diurnal variations in the dimensions of the eyes of humans and other vertebrates, altered diurnal rhythms of these ocular dimensions with experimentally induced myopia, and evolving evidence that ambient light exposures influence refractive development, we assessed whether disturbances in circadian signals might alter the refractive development of the eye. In mice, retinal-specific knockout of the clock gene Bmal1 induces myopia and elongates the vitreous chamber, the optical compartment separating the lens and the retina. These alterations simulate common ocular findings in clinical myopia. In Drosophila melanogaster, knockouts of the clock genes cycle or period lengthen the pseudocone, the optical component of the ommatidium that separates the facet lens from the photoreceptors. Disrupting circadian signaling thus alters optical development of the eye in widely separated species. We propose that mechanisms of myopia include circadian dysregulation, a frequent occurrence in modern societies where myopia also is both highly prevalent and increasing at alarming rates. Addressing circadian dysregulation may improve understanding of the pathogenesis of refractive errors and introduce novel therapeutic approaches to ameliorate myopia development in children.
Collapse
|
17
|
Mahato S, Nie J, Plachetzki DC, Zelhof AC. A mosaic of independent innovations involving eyes shut are critical for the evolutionary transition from fused to open rhabdoms. Dev Biol 2018; 443:188-202. [PMID: 30243673 DOI: 10.1016/j.ydbio.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
A fundamental question in evolutionary biology is how developmental processes are modified to produce morphological innovations while abiding by functional constraints. Here we address this question by investigating the cellular mechanism responsible for the transition between fused and open rhabdoms in ommatidia of apposition compound eyes; a critical step required for the development of visual systems based on neural superposition. Utilizing Drosophila and Tribolium as representatives of fused and open rhabdom morphology in holometabolous insects respectively, we identified three changes required for this innovation to occur. First, the expression pattern of the extracellular matrix protein Eyes Shut (EYS) was co-opted and expanded from mechanosensory neurons to photoreceptor cells in taxa with open rhabdoms. Second, EYS homologs obtained a novel extension of the amino terminus leading to the internalization of a cleaved signal sequence. This amino terminus extension does not interfere with cleavage or function in mechanosensory neurons, but it does permit specific targeting of the EYS protein to the apical photoreceptor membrane. Finally, a specific interaction evolved between EYS and a subset of Prominin homologs that is required for the development of open, but not fused, rhabdoms. Together, our findings portray a case study wherein the evolution of a set of molecular novelties has precipitated the origin of an adaptive photoreceptor cell arrangement.
Collapse
Affiliation(s)
- Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jing Nie
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David C Plachetzki
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Andrew C Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
18
|
Ilić M, Meglič A, Kreft M, Belušič G. The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts. Front Cell Neurosci 2018; 12:34. [PMID: 29467626 PMCID: PMC5808286 DOI: 10.3389/fncel.2018.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
Microvillar photoreceptors are intrinsically capable of detecting the orientation of e-vector of linearly polarized light. They provide most invertebrates with an additional sensory channel to detect important features of their visual environment. However, polarization sensitivity (PS) of photoreceptors may lead to the detection of polarization-induced false colors and intensity contrasts. Most insect photoreceptors are thus adapted to have minimal PS. Flies have twisted rhabdomeres with microvilli rotated along the length of the ommatidia to reduce PS. The additional UV-absorbing sensitizing pigment on their opsin minimizes PS in the ultraviolet. We recorded voltage from Drosophila photoreceptors R1-6 to measure the spectral dependence of PS and found that PS in the UV is invariably negligible but can be substantial above 400 nm. Using modeling, we demonstrate that in R1-6 without the sensitizing pigment, PS in the UV (PS UV ) would exceed PS in the visible part of the spectrum (PS VIS ) by a factor PS UV /PS VIS = 1.2-1.8, as lower absorption of Rh1 rhodopsin reduces self-screening. We use polarimetric imaging of objects relevant to fly polarization vision to show that their degree of polarization outdoors is highest in the short-wavelength part of the spectrum. Thus, under natural illumination, the sensitizing pigment in R1-6 renders even those cells with high PS in the visible part unsuitable for proper polarization vision. We assume that fly ventral polarization vision can be mediated by R7 alone, with R1-6 serving as an unpolarized reference channel.
Collapse
Affiliation(s)
| | | | | | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Astigarraga S, Douthit J, Tarnogorska D, Creamer MS, Mano O, Clark DA, Meinertzhagen IA, Treisman JE. Drosophila Sidekick is required in developing photoreceptors to enable visual motion detection. Development 2018; 145:dev.158246. [PMID: 29361567 DOI: 10.1242/dev.158246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
The assembly of functional neuronal circuits requires growth cones to extend in defined directions and recognize the correct synaptic partners. Homophilic adhesion between vertebrate Sidekick proteins promotes synapse formation between retinal neurons involved in visual motion detection. We show here that Drosophila Sidekick accumulates in specific synaptic layers of the developing motion detection circuit and is necessary for normal optomotor behavior. Sidekick is required in photoreceptors, but not in their target lamina neurons, to promote the alignment of lamina neurons into columns and subsequent sorting of photoreceptor axons into synaptic modules based on their precise spatial orientation. Sidekick is also localized to the dendrites of the direction-selective T4 and T5 cells, and is expressed in some of their presynaptic partners. In contrast to its vertebrate homologs, Sidekick is not essential for T4 and T5 to direct their dendrites to the appropriate layers or to receive synaptic contacts. These results illustrate a conserved requirement for Sidekick proteins in establishing visual motion detection circuits that is achieved through distinct cellular mechanisms in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica Douthit
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Dorota Tarnogorska
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
20
|
Juusola M, Dau A, Song Z, Solanki N, Rien D, Jaciuch D, Dongre SA, Blanchard F, de Polavieja GG, Hardie RC, Takalo J. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. eLife 2017; 6:26117. [PMID: 28870284 PMCID: PMC5584993 DOI: 10.7554/elife.26117] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements. Fruit flies have five eyes: two large compound eyes which support vision, plus three smaller single lens eyes which are used for navigation. Each compound eye monitors 180° of space and consists of roughly 750 units, each containing eight light-sensitive cells called photoreceptors. This relatively wide spacing of photoreceptors is thought to limit the sharpness, or acuity, of vision in fruit flies. The area of the human retina (the light-sensitive surface at back of our eyes) that generates our sharpest vision contains photoreceptors that are 500 times more densely packed. Despite their differing designs, human and fruit fly eyes work via the same general principles. If we, or a fruit fly, were to hold our gaze completely steady, the world would gradually fade from view as the eye adapted to the unchanging visual stimulus. To ensure this does not happen, animals continuously make rapid, automatic eye movements called microsaccades. These refresh the image on the retina and prevent it from fading. Yet it is not known why do they not also cause blurred vision. Standard accounts of vision assume that the retina and the brain perform most of the information processing required, with photoreceptors simply detecting how much light enters the eye. However, Juusola, Dau, Song et al. now challenge this idea by showing that photoreceptors are specially adapted to detect the fluctuating patterns of light that enter the eye as a result of microsaccades. Moreover, fruit fly eyes resolve small moving objects far better than would be predicted based on the spacing of their photoreceptors. The discovery that photoreceptors are well adapted to deal with eye movements changes our understanding of insect vision. The findings also disprove the 100-year-old dogma that the spacing of photoreceptors limits the sharpness of vision in compound eyes. Further studies are required to determine whether photoreceptors in the retinas of other animals, including humans, have similar properties.
Collapse
Affiliation(s)
- Mikko Juusola
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - An Dau
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Narendra Solanki
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Diana Rien
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - David Jaciuch
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sidhartha Anil Dongre
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Florence Blanchard
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Gonzalo G de Polavieja
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Jouni Takalo
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
Chung WS, Marshall NJ. Complex Visual Adaptations in Squid for Specific Tasks in Different Environments. Front Physiol 2017; 8:105. [PMID: 28286484 PMCID: PMC5323406 DOI: 10.3389/fphys.2017.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/08/2017] [Indexed: 11/13/2022] Open
Abstract
In common with their major competitors, the fish, squid are fast moving visual predators that live over a great range of depths in the ocean. Both squid and fish show a variety of adaptations with respect to optical properties, receptors and their underlying neural circuits, and these adaptations are often linked to the light conditions of their specific niche. In contrast to the extensive investigations of adaptive strategies in fish, vision in response to the varying quantity and quality of available light, our knowledge of visual adaptations in squid remains sparse. This study therefore undertook a comparative study of visual adaptations and capabilities in a number of squid species collected between 0 and 1,200 m. Histology, magnetic resonance imagery (MRI), and depth distributions were used to compare brains, eyes, and visual capabilities, revealing that the squid eye designs reflect the lifestyle and the versatility of neural architecture in its visual system. Tubular eyes and two types of regional retinal deformation were identified and these eye modifications are strongly associated with specific directional visual tasks. In addition, a combination of conventional and immuno-histology demonstrated a new form of a complex retina possessing two inner segment layers in two mid-water squid species which they rhythmically move across a broad range of depths (50–1,000 m). In contrast to their relatives with the regular single-layered inner segment retina live in the upper mesopelagic layer (50–400 m), the new form of retinal interneuronal layers suggests that the visual sensitivity of these two long distance vertical migrants may increase in response to dimmer environments.
Collapse
Affiliation(s)
- Wen-Sung Chung
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
22
|
Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proc Natl Acad Sci U S A 2016; 113:3982-5. [PMID: 26976565 DOI: 10.1073/pnas.1517953113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to acquire images under low-light conditions is critical for many applications. However, to date, strategies toward improving low-light imaging primarily focus on developing electronic image sensors. Inspired by natural scotopic visual systems, we adopt an all-optical method to significantly improve the overall photosensitivity of imaging systems. Such optical approach is independent of, and can effectively circumvent the physical and material limitations of, the electronics imagers used. We demonstrate an artificial eye inspired by superposition compound eyes and the retinal structure of elephantnose fish. The bioinspired photosensitivity enhancer (BPE) that we have developed enhances the image intensity without consuming power, which is achieved by three-dimensional, omnidirectionally aligned microphotocollectors with parabolic reflective sidewalls. Our work opens up a previously unidentified direction toward achieving high photosensitivity in imaging systems.
Collapse
|
23
|
|
24
|
The Developmental Rules of Neural Superposition in Drosophila. Cell 2015; 162:120-33. [PMID: 26119341 DOI: 10.1016/j.cell.2015.05.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/21/2015] [Accepted: 05/15/2015] [Indexed: 11/17/2022]
Abstract
Complicated neuronal circuits can be genetically encoded, but the underlying developmental algorithms remain largely unknown. Here, we describe a developmental algorithm for the specification of synaptic partner cells through axonal sorting in the Drosophila visual map. Our approach combines intravital imaging of growth cone dynamics in developing brains of intact pupae and data-driven computational modeling. These analyses suggest that three simple rules are sufficient to generate the seemingly complex neural superposition wiring of the fly visual map without an elaborate molecular matchmaking code. Our computational model explains robust and precise wiring in a crowded brain region despite extensive growth cone overlaps and provides a framework for matching molecular mechanisms with the rules they execute. Finally, ordered geometric axon terminal arrangements that are not required for neural superposition are a side product of the developmental algorithm, thus elucidating neural circuit connectivity that remained unexplained based on adult structure and function alone.
Collapse
|