1
|
Prasad GL, Pai A, PT S. Short course of low-dose steroids for management of delayed pericontusional edema after mild traumatic brain injury - A retrospective study. Surg Neurol Int 2025; 16:23. [PMID: 39926471 PMCID: PMC11799702 DOI: 10.25259/sni_948_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/28/2024] [Indexed: 02/11/2025] Open
Abstract
Background Secondary insults such as brain edema is commonly observed after traumatic brain injury (TBI) and remains an important cause of neurological deterioration. Based on the corticosteroid randomisation after significant head injury (CRASH) trial findings, Brain Trauma Foundation guidelines recommend against giving steroids in TBI. However, the findings of two recent clinical studies suggest that there may be a subset of patients who may benefit from steroids. Methods This study was a retrospective, single-center, 4-year study. The study analyzed patients who had received systemic corticosteroids for pericontusional delayed edema after TBI. The time interval to steroid prescription, drug dosage, time to symptomatic improvement, and complications were analyzed. Results There were 19 males and eight females. Mean age was 42.1 years (range, 21-91 years). Except for one, all were mild TBI categories. All patients had brain contusions on computed tomography. Dexamethasone was used in tapering doses over 5-10 days, starting with 12 mg/day. The mean interval to steroid prescription after the trauma was 5.9 days, and the mean and median duration was 7 days. All, except one, had symptomatic improvement. The mean time to complete improvement in symptoms was 2.8 days. There were no complications pertinent to steroid usage in any of our cases. Conclusion This is the third clinical study to document the efficacy of systemic corticosteroids for delayed cerebral edema after TBI. As steroids are excellent drugs for vasogenic edema, the timing and dosage of steroids are two important factors that will determine their efficacy in TBI. We strongly feel that there needs to be more robust clinical trials with good patient numbers to confirm these findings.
Collapse
Affiliation(s)
- G. Lakshmi Prasad
- Department of Neurosurgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | |
Collapse
|
2
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Shushanyan RA, Avtandilyan NV, Grigoryan AV, Karapetyan AF. The role of oxidative stress and neuroinflammatory mediators in the pathogenesis of high-altitude cerebral edema in rats. Respir Physiol Neurobiol 2024; 327:104286. [PMID: 38825093 DOI: 10.1016/j.resp.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
High-altitude environments present extreme conditions characterized by low barometric pressure and oxygen deficiency, which can disrupt brain functioning and cause edema formation. The objective of the present study is to investigate several biomolecule expressions and their role in the development of High Altitude Cerebral Edema in a rat model. Specifically, the study focuses on analyzing the changes in total arginase, nitric oxide, and lipid peroxidation (MDA) levels in the brain following acute hypobaric hypoxic exposure (7620 m, SO2=8.1 %, for 24 h) along with the histopathological assessment. The histological examination revealed increased TNF-α activity, and an elevated number of mast cells in the brain, mainly in the hippocampus and cerebral cortex. The research findings demonstrated that acute hypobaric hypoxic causes increased levels of apoptotic cells, shrinkage, and swelling of neurons, accompanied by the formation of protein aggregation in the brain parenchyma. Additionally, the level of nitric oxide and MDA was found to have increased (p<0.0001), however, the level of arginase decreased indicating active lipid peroxidation and redox imbalance in the brain. This study provides insights into the pathogenesis of HACE by evaluating some biomolecules that play a pivotal role in the inflammatory response and the redox landscape in the brain. The findings could have significant implications for understanding the neuronal dysfunction and the pathological mechanisms underlying HACE development.
Collapse
Affiliation(s)
| | - Nikolay V Avtandilyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia
| | - Anna V Grigoryan
- Department of Human and Animal Physiology, Yerevan State University, Armenia
| | - Anna F Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, Armenia
| |
Collapse
|
4
|
Zheng F, Zhang L, Chen H, Zang Y, Chen X, Li Y. Radiomics for predicting MGMT status in cerebral glioblastoma: comparison of different MRI sequences. JOURNAL OF RADIATION RESEARCH 2024; 65:350-359. [PMID: 38650477 PMCID: PMC11115443 DOI: 10.1093/jrr/rrae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Indexed: 04/25/2024]
Abstract
Using radiomics to predict O6-methylguanine-DNA methyltransferase promoter methylation status in patients with newly diagnosed glioblastoma and compare the performances of different MRI sequences. Preoperative MRI scans from 215 patients were included in this retrospective study. After image preprocessing and feature extraction, two kinds of machine-learning models were established and compared for their performances. One kind was established using all MRI sequences (T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient), and the other kind was based on single MRI sequence as listed above. For the machine-learning model based on all sequences, a total of seven radiomic features were selected with the Maximum Relevance and Minimum Redundancy algorithm. The predictive accuracy was 0.993 and 0.750 in the training and validation sets, respectively, and the area under curves were 1.000 and 0.754 in the two sets, respectively. For the machine-learning model based on single sequence, the numbers of selected features were 8, 10, 10, 13, 9, 7 and 6 for T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient, respectively, with predictive accuracies of 0.797-1.000 and 0.583-0.694 in the training and validation sets, respectively, and the area under curves of 0.874-1.000 and 0.538-0.697 in the two sets, respectively. Specifically, T1-weighted image-based model performed best, while contrast enhancement-based model performed worst in the independent validation set. The machine-learning models based on seven different single MRI sequences performed differently in predicting O6-methylguanine-DNA methyltransferase status in glioblastoma, while the machine-learning model based on the combination of all sequences performed best.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
- Department of Radiology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Lingling Zhang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Hongyan Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yuying Zang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Xuzhu Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yiming Li
- Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| |
Collapse
|
5
|
Lee J, Baniewicz E, Peterkin NL, Greenman D, Griffin AD, Jikaria N, Turtzo LC, Luby M, Latour LL. Edema progression in proximity to traumatic microbleeds: evolution of cytotoxic and vasogenic edema on serial MRI. NEUROIMAGE. REPORTS 2024; 4:100199. [PMID: 38558768 PMCID: PMC10976922 DOI: 10.1016/j.ynirp.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Introduction Although cerebral edema is common following traumatic brain injury (TBI), its formation and progression are poorly understood. This is especially true for the mild TBI population, who rarely undergo magnetic resonance imaging (MRI) studies, which can pick up subtle structural details not visualized on computed tomography, in the first few days after injury. This study aimed to visually classify and quantitatively measure edema progression in relation to traumatic microbleeds (TMBs) in a cohort of primarily mild TBI patients up to 30 days after injury. Researchers hypothesized that hypointense lesions on Apparent Diffusion Coefficient (ADC) detected acutely after injury would evolve into hyperintense Fluid Attenuated Inversion Recover (FLAIR) lesions. Methods This study analyzed the progression of cerebral edema after acute injury using multimodal MRI to classify TMBs as potential edema-related biomarkers. ADC and FLAIR MRI were utilized for edema classification at three different timepoints: ≤48 hours, ~1 week, and 30 days after injury. Hypointense lesions on ADC (ADC+) suggested the presence of cytotoxic edema while hyperintense lesions on FLAIR (FLAIR+) suggested vasogenic edema. Signal intensity Ratio (SIR) calculations were made using ADC and FLAIR to quantitatively confirm edema progression. Results Our results indicated the presence of ADC+ lesions ≤48 hours and ~1 week were associated with FLAIR+ lesions at ~1 week and 30 days, respectively, suggesting some progression of cytotoxic edema to vasogenic edema over time. Ten out of 15 FLAIR+ lesions at 30 days (67%) were ADC+ ≤48 hours. However, ADC+ lesions ≤48 hours were not associated with FLAIR+ lesions at 30 days; 10 out of 25 (40%) ADC+ lesions ≤48 hours were FLAIR+ at 30 days, which could indicate that some lesions resolved or were not visualized due to associated atrophy or tissue necrosis. Quantitative analysis confirmed the visual progression of some TMB lesions from ADC+ to FLAIR+. FLAIR SIRs at ~1 week were significantly higher when lesions were ADC+ ≤48 hours (1.22 [1.08-1.32] vs 1.03 [0.97-1.11], p=0.002). Conclusion Awareness of how cerebral edema can evolve in proximity to TMBs acutely after injury may facilitate identification and monitoring of patients with traumatic cerebrovascular injury and assist in development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jacquie Lee
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
- American University, Washington (DC), United States
| | - Emily Baniewicz
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
| | - Nicole L. Peterkin
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
| | - Danielle Greenman
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
- University of California Riverside, Department of Psychology, Riverside, (CA), United States
| | - Allison D. Griffin
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
- Vanderbilt University Institute of Imaging Science, Department of Radiology & Radiological Sciences, Nashville, (TN), United States
| | - Neekita Jikaria
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
- Penn State College of Medicine, Department of Surgery, Hershey, (PA), United States
| | - L. Christine Turtzo
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
| | - Marie Luby
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
| | - Lawrence L. Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, Bethesda (MD), United States
| |
Collapse
|
6
|
Gribnau A, van Zuylen ML, Coles JP, Plummer MP, Hermanns H, Hermanides J. Cerebral Glucose Metabolism following TBI: Changes in Plasma Glucose, Glucose Transport and Alternative Pathways of Glycolysis-A Translational Narrative Review. Int J Mol Sci 2024; 25:2513. [PMID: 38473761 DOI: 10.3390/ijms25052513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) is a major public health concern with significant consequences across various domains. Following the primary event, secondary injuries compound the outcome after TBI, with disrupted glucose metabolism emerging as a relevant factor. This narrative review summarises the existing literature on post-TBI alterations in glucose metabolism. After TBI, the brain undergoes dynamic changes in brain glucose transport, including alterations in glucose transporters and kinetics, and disruptions in the blood-brain barrier (BBB). In addition, cerebral glucose metabolism transitions from a phase of hyperglycolysis to hypometabolism, with upregulation of alternative pathways of glycolysis. Future research should further explore optimal, and possibly personalised, glycaemic control targets in TBI patients, with GLP-1 analogues as promising therapeutic candidates. Furthermore, a more fundamental understanding of alterations in the activation of various pathways, such as the polyol and lactate pathway, could hold the key to improving outcomes following TBI.
Collapse
Affiliation(s)
- Annerixt Gribnau
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mark L van Zuylen
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatric Intensive Care, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Mark P Plummer
- Intensive Care Unit, Royal Melbourne Hospital, 300 Grattan Street, Parkville, VIC 3050, Australia
| | - Henning Hermanns
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen Hermanides
- Department of Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Seblani M, Ertlen C, Coyle T, Decherchi P, Brezun JM. Combined effect of trifluoperazine and sodium cromoglycate on reducing acute edema and limiting lasting functional impairments after spinal cord injury in rats. Exp Neurol 2024; 372:114612. [PMID: 37993080 DOI: 10.1016/j.expneurol.2023.114612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Edema formation is one of the very first events to occur after spinal cord injury (SCI) leading to an increase of the intrathecal pressure and consequently to serious spinal tissue and functional impairments. Current edema treatments are still symptomatic and/or non-specific. Since edema formation mechanisms are mainly described as vasogenic and cytotoxic, it becomes crucial to understand the interplay between these two subtypes. Acting on key targets to inhibit edema formation may reduce secondary damage and related functional impairments. In this study, we characterize the edema kinetic after T9-10 spinal contusion. We use trifluoperazine (TFP) to block the expression and the functional subcellular localization of aquaporin-4 supposed to be implicated in the cytotoxic edema formation. We also use sodium cromoglycate (SCG) to deactivate mast cell degranulation known to be implicated in the vasogenic edema formation. Our results show a significant reduction of edema after TFP treatment and after TFP-SCG combined treatment compared to control. This reduction is correlated with limited onset of initial sensorimotor impairments particularly after combined treatment. Our results highlight the importance of potential synergetic targets in early edema therapy after SCI as part of tissue sparing strategies.
Collapse
Affiliation(s)
- Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Céline Ertlen
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Thelma Coyle
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Team "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, Cedex 09, France.
| |
Collapse
|
8
|
Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomark Res 2023; 11:35. [PMID: 36991494 DOI: 10.1186/s40364-023-00476-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor's signature in the environment. Tumor changes in response to an intervention complement molecular and genomic translational diagnosis as well as quantitative information. Neuro-oncology has become more prominent in diagnostics and targeted therapies. The classification of tumors has been actively updated, and drug discovery, and delivery in nanoimmunotherapies are advancing in the field of target therapy research. It is important that biomarkers and diagnostic implements be developed and used to assess the prognosis or late effects of long-term survivors. An improved realization of cancer biology has transformed its management with an increasing emphasis on a personalized approach in precision medicine. In the first part, we discuss the biomarker categories in relation to the courses of a disease and specific clinical contexts, including that patients and specimens should both directly reflect the target population and intended use. In the second part, we present the CT perfusion approach that provides quantitative and qualitative data that has been successfully applied to the clinical diagnosis, treatment and application. Furthermore, the novel and promising multiparametric MR imageing approach will provide deeper insights regarding the tumor microenvironment in the immune response. Additionally, we briefly remark new tactics based on MRI and PET for converging on imaging biomarkers combined with applications of bioinformatics in artificial intelligence. In the third part, we briefly address new approaches based on theranostics in precision medicine. These sophisticated techniques merge achievable standardizations into an applicatory apparatus for primarily a diagnostic implementation and tracking radioactive drugs to identify and to deliver therapies in an individualized medicine paradigm. In this article, we describe the critical principles for imaging biomarker characterization and discuss the current status of CT, MRI and PET in finiding imaging biomarkers of early disease.
Collapse
Affiliation(s)
- Fang-Ying Chiu
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Center for Brain and Neurobiology Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Teaching and Research Headquarters for Sustainable Development Goals, Tzu Chi University, Hualien City, 970374, Taiwan.
| | - Yun Yen
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, 116081, Taiwan.
| |
Collapse
|
9
|
Precision Effects of Glibenclamide on MRI Endophenotypes in Clinically Relevant Murine Traumatic Brain Injury. Crit Care Med 2023; 51:e45-e59. [PMID: 36661464 PMCID: PMC9848216 DOI: 10.1097/ccm.0000000000005749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING Preclinical laboratory. SUBJECTS Adult male C57BL/6J mice (n = 54). INTERVENTIONS Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 μg/kg)/high-dose glibenclamide (10 μg/mouse). Seven-day subcutaneous infusions (0.4 μg/hr) were continued. MEASUREMENTS AND MAIN RESULTS Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.
Collapse
|
10
|
Boshra R, Eradath M, Dougherty K, Wu B, Morea BM, Harris M, Pinsk MA, Kastner S. Case studies in neuroscience: reversible signatures of edema following electric and piezoelectric craniotomy drilling in macaques. J Neurophysiol 2022; 128:919-926. [PMID: 36043799 PMCID: PMC9550573 DOI: 10.1152/jn.00108.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo electrophysiology requires direct access to brain tissue, necessitating the development and refinement of surgical procedures and techniques that promote the health and well-being of animal subjects. Here, we report a series of findings noted on structural magnetic resonance imaging (MRI) scans in monkeys with MRI-compatible implants following small craniotomies that provide access for intracranial electrophysiology. We found distinct brain regions exhibiting hyperintensities in T2-weighted scans that were prominent underneath the sites at which craniotomies had been performed. We interpreted these hyperintensities as edema of the neural tissue and found that they were predominantly present following electric and piezoelectric drilling, but not when manual, hand-operated drills were used. Furthermore, the anomalies subsided within 2-3 wk following surgery. Our report highlights the utility of MRI-compatible implants that promote clinical examination of the animal's brain, sometimes revealing findings that may go unnoticed when incompatible implants are used. We show replicable differences in outcome when using electric versus mechanical devices, both ubiquitous in the field. If electric drills are used, our report cautions against electrophysiological recordings from tissue directly underneath the craniotomy for the first 2-3 wk following the procedure due to putative edema.NEW & NOTEWORTHY Close examination of structural MRI in eight nonhuman primates following craniotomy surgeries for intracranial electrophysiology highlights a prevalence of hyperintensities on T2-weighted scans following surgeries conducted using electric and piezoelectric drills, but not when using mechanical, hand-operated drills. We interpret these anomalies as edema of neural tissue that resolved 2-3 wk postsurgery. This finding is especially of interest as electrophysiological recordings from compromised tissue may directly influence the integrity of collected data immediately following surgery.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Manoj Eradath
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Kacie Dougherty
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Britney M Morea
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Michael Harris
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
11
|
Bobholz SA, Lowman AK, Brehler M, Kyereme F, Duenweg SR, Sherman J, McGarry SD, Cochran EJ, Connelly J, Mueller WM, Agarwal M, Banerjee A, LaViolette PS. Radio-Pathomic Maps of Cell Density Identify Brain Tumor Invasion beyond Traditional MRI-Defined Margins. AJNR Am J Neuroradiol 2022; 43:682-688. [PMID: 35422419 PMCID: PMC9089258 DOI: 10.3174/ajnr.a7477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Currently, contrast-enhancing margins on T1WI are used to guide treatment of gliomas, yet tumor invasion beyond the contrast-enhancing region is a known confounding factor. Therefore, this study used postmortem tissue samples aligned with clinically acquired MRIs to quantify the relationship between intensity values and cellularity as well as to develop a radio-pathomic model to predict cellularity using MR imaging data. MATERIALS AND METHODS This single-institution study used 93 samples collected at postmortem examination from 44 patients with brain cancer. Tissue samples were processed, stained with H&E, and digitized for nuclei segmentation and cell density calculation. Pre- and postgadolinium contrast T1WI, T2 FLAIR, and ADC images were collected from each patient's final acquisition before death. In-house software was used to align tissue samples to the FLAIR image via manually defined control points. Mixed-effects models were used to assess the relationship between single-image intensity and cellularity for each image. An ensemble learner was trained to predict cellularity using 5 × 5 voxel tiles from each image, with a two-thirds to one-third train-test split for validation. RESULTS Single-image analyses found subtle associations between image intensity and cellularity, with a less pronounced relationship in patients with glioblastoma. The radio-pathomic model accurately predicted cellularity in the test set (root mean squared error = 1015 cells/mm2) and identified regions of hypercellularity beyond the contrast-enhancing region. CONCLUSIONS A radio-pathomic model for cellularity trained with tissue samples acquired at postmortem examination is able to identify regions of hypercellular tumor beyond traditional imaging signatures.
Collapse
Affiliation(s)
- S A Bobholz
- From the Departments of Biophysics (S.A.B., S.R.D., J.S., S.D.M.)
| | | | - M Brehler
- Radiology (A.L., M.B., M.A., P.S.L.)
| | | | - S R Duenweg
- From the Departments of Biophysics (S.A.B., S.R.D., J.S., S.D.M.)
| | - J Sherman
- From the Departments of Biophysics (S.A.B., S.R.D., J.S., S.D.M.)
| | - S D McGarry
- From the Departments of Biophysics (S.A.B., S.R.D., J.S., S.D.M.)
| | | | | | | | - M Agarwal
- Radiology (A.L., M.B., M.A., P.S.L.)
| | | | - P S LaViolette
- Radiology (A.L., M.B., M.A., P.S.L.)
- Biomedical Engineering (P.S.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Zellos A, Debray D, Indolfi G, Czubkowski P, Samyn M, Hadzic N, Gupte G, Fischler B, Smets F, de Cléty SC, Grenda R, Mozer Y, Mancell S, Jahnel J, Auzinger G, Worth A, Lisman T, Staufner C, Baumann U, Dhawan A, Alonso E, Squires RH, Verkade HJ. Proceedings of ESPGHAN Monothematic Conference 2020: "Acute Liver Failure in Children": Diagnosis and Initial Management. J Pediatr Gastroenterol Nutr 2022; 74:e45-e56. [PMID: 35226643 DOI: 10.1097/mpg.0000000000003341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The Hepatology Committee of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) aims to educate pediatric gastroenterologists, members of ESPGHAN and professionals from other specialties promoting an exchange of clinical expertise in the field of pediatric hepatology. Herewith we have concentrated on detailing the recent advances in acute liver failure in infants and children. METHODS The 2020 ESPGHAN monothematic three-day conference on pediatric hepatology disease, entitled "acute liver failure" (ALF), was organized in Athens, Greece. ALF is a devastating disease with high mortality and most cases remain undiagnosed. As knowledge in diagnosis and treatment of ALF in infants and children has increased in the past decades, the objective was to update physicians in the field with the latest research and developments in early recognition, curative therapies and intensive care management, imaging techniques and treatment paradigms in these age groups. RESULTS In the first session, the definition, epidemiology, various causes of ALF, in neonates and older children and recurrent ALF (RALF) were discussed. The second session was dedicated to new aspects of ALF management including hepatic encephalopathy (HE), coagulopathy, intensive care interventions, acute on chronic liver failure, and the role of imaging in treatment and prognosis. Oral presentations by experts in various fields are summarized highlighting key learning points. CONCLUSIONS The current report summarizes the major learning points from this meeting. It also identifies areas where there is gap of knowledge, thereby identifying the research agenda for the near future.
Collapse
Affiliation(s)
- Aglaia Zellos
- First Department of Pediatrics, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominique Debray
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, Reference Center for Rare Pediatric Liver Diseases, ERN Rare Liver and Transplant Child, Paris, France
| | - Giuseppe Indolfi
- Department Neurofarba University of Florence, Meyer Children's University Hospital of Florence, Florence, Italy
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology and Nutritional Disorders and Pediatrics. The Children's Memorial Health Institute, Warsaw, Poland
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital
| | | | - Girish Gupte
- Birmingham Children's Hospital NHS Trust, Birmingham, UK
| | - Björn Fischler
- Department of Pediatrics, CLINTEC Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Françoise Smets
- Pediatrics, Cliniques universitaires Saint-Luc, Université Catholique de Louvain
| | - Stéphan Clément de Cléty
- Paediatric intensive care, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation & Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Yael Mozer
- Schneider Children's Medical Center, Israel
| | | | | | - Georg Auzinger
- King's College Hospital, Department Chair, Critical Care Cleveland Clinic
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Anil Dhawan
- Variety Children Hospital, Director Paediatric Liver GI and Nutrition and Mowat Labs, King's College Hospital, London, UK
| | - Estelle Alonso
- Siragusa Transplant Center, Ann and Robert H. Lurie Children' Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Henkjan J Verkade
- Department of Paediatrics, University of Groningen, Beatrix Children's Hospital, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
13
|
Turtzo LC, Luby M, Jikaria N, Griffin AD, Greenman D, Bokkers RPH, Parikh G, Peterkin N, Whiting M, Latour LL. Cytotoxic Edema Associated with Hemorrhage Predicts Poor Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:3107-3118. [PMID: 34541886 DOI: 10.1089/neu.2021.0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging (MRI) is used rarely in the acute evaluation of traumatic brain injury (TBI) but may identify findings of clinical importance not detected by computed tomography (CT). We aimed to characterize the association of cytotoxic edema and hemorrhage, including traumatic microbleeds, on MRI obtained within hours of acute head trauma and investigated the relationship to clinical outcomes. Patients prospectively enrolled in the Traumatic Head Injury Neuroimaging Classification study (NCT01132937) with evidence of diffusion-related findings or hemorrhage on neuroimaging were included. Blinded interpretation of MRI for diffusion-weighted lesions and hemorrhage was conducted, with subsequent quantification of apparent diffusion coefficient (ADC) values. Of 161 who met criteria, 82 patients had conspicuous hyperintense lesions on diffusion-weighted imaging (DWI) with corresponding regions of hypointense ADC in proximity to hemorrhage. Median time from injury to MRI was 21 (10-30) h. Median ADC values per patient grouped by time from injury to MRI were lowest within 24 h after injury. The ADC values associated with hemorrhagic lesions are lowest early after injury, with an increase in diffusion during the subacute period, suggesting transformation from cytotoxic to vasogenic edema during the subacute post-injury period. Of 118 patients with outcome data, 60 had Glasgow Outcome Scale Extended scores ≤6 at 30/90 days post-injury. Cytotoxic edema on MRI (odds ratio [OR] 2.91 [1.32-6.37], p = 0.008) and TBI severity (OR 2.51 [1.32-4.74], p = 0.005) were independent predictors of outcome. These findings suggest that in patients with TBI who had findings of hemorrhage on CT, patients with DWI/ADC lesions on MRI are more likely to do worse.
Collapse
Affiliation(s)
- L Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Luby
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Neekita Jikaria
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | | | - Danielle Greenman
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gunjan Parikh
- R Adams Shock Trauma Center and University of Maryland School of Medicine, Baltimore, Maryland, USA.,Division of Neurocritical Care and Emergency Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicole Peterkin
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Mark Whiting
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Lawrence L Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Chen Y, Chen S, Chang J, Wei J, Feng M, Wang R. Perihematomal Edema After Intracerebral Hemorrhage: An Update on Pathogenesis, Risk Factors, and Therapeutic Advances. Front Immunol 2021; 12:740632. [PMID: 34737745 PMCID: PMC8560684 DOI: 10.3389/fimmu.2021.740632] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) has one of the worst prognoses among patients with stroke. Surgical measures have been adopted to relieve the mass effect of the hematoma, and developing targeted therapy against secondary brain injury (SBI) after ICH is equally essential. Numerous preclinical and clinical studies have demonstrated that perihematomal edema (PHE) is a quantifiable marker of SBI after ICH and is associated with a poor prognosis. Thus, PHE has been considered a promising therapeutic target for ICH. However, the findings derived from existing studies on PHE are disparate and unclear. Therefore, it is necessary to classify, compare, and summarize the existing studies on PHE. In this review, we describe the growth characteristics and relevant underlying mechanism of PHE, analyze the contributions of different risk factors to PHE, present the potential impact of PHE on patient outcomes, and discuss the currently available therapeutic strategies.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Whole brain in vivo neuropathology: Imaging site-specific changes in brain structure over time following trimethyltin exposure in rats. Toxicol Lett 2021; 352:54-60. [PMID: 34600096 DOI: 10.1016/j.toxlet.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Presented is a diffusion weighted imaging protocol with measures of apparent diffusion coefficient which when registered to a 3D MRI rat brain atlas provides site-specific information on 173 different brain areas. This protocol coined "in vivo neuropathology" was used to follow the progressive neurotoxic effects of trimethyltin on global gray matter microarchitecture. Four rats were given an IP injection of 7 mg/kg of the neurotoxin trimethyltin and imaged for changes in water diffusivity at 3- and 7-days post injections. At 3 days, there was a significant decrease in apparent diffusion coefficient, a proxy for cytotoxic edema, in several cortical areas and cerebellum. At 7 days the level of injury expanded to include most of the cerebral cortex, hippocampus, olfactory system, and cerebellum/brainstem corroborating much of the work done with traditional histopathology. Analysis is achieved with a minimum number of rats adhering to the laws and regulations around the humane care and use of laboratory animals, providing an alternative to the traditional tests for assessing drug neurotoxicity. "In vivo neuropathology" can minimize the cost, expedite the process, and identify subtle changes in site-specific brain microarchitecture across the entire brain.
Collapse
|
16
|
Vijayakumari AA, Parker D, Osmanlioglu Y, Alappatt JA, Whyte J, Diaz-Arrastia R, Kim JJ, Verma R. Free Water Volume Fraction: An Imaging Biomarker to Characterize Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2021; 38:2698-2705. [PMID: 33913750 PMCID: PMC8590145 DOI: 10.1089/neu.2021.0057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major clinical and public health problem with few therapeutic interventions successfully translated to the clinic. Identifying imaging-based biomarkers characterizing injury severity and predicting long-term functional and cognitive outcomes in TBI patients is crucial for treatment. TBI results in white matter (WM) injuries, which can be detected using diffusion tensor imaging (DTI). Trauma-induced pathologies lead to accumulation of free water (FW) in brain tissue, and standard DTI is susceptible to the confounding effects of FW. In this study, we applied FW DTI to estimate free water volume fraction (FW-VF) in patients with moderate-to-severe TBI and demonstrated its association with injury severity and long-term outcomes. DTI scans and neuropsychological assessments were obtained longitudinally at 3, 6, and 12 months post-injury for 34 patients and once in 35 matched healthy controls. We observed significantly elevated FW-VF in 85 of 90 WM regions in patients compared to healthy controls (p < 0.05). We then presented a patient-specific summary score of WM regions derived using Mahalanobis distance. We observed that MVF at 3 months significantly predicted functional outcome (p = 0.008), executive function (p = 0.005), and processing speed (p = 0.01) measured at 12 months and was significantly correlated with injury severity (p < 0.001). Our findings are an important step toward implementing MVF as a biomarker for personalized therapy and rehabilitation planning for TBI patients.
Collapse
Affiliation(s)
- Anupa Ambili Vijayakumari
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Parker
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yusuf Osmanlioglu
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A. Alappatt
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, TBI Rehabilitation Research Laboratory, Einstein Medical Center Elkins Park, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junghoon J. Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine, The City College of New York, New York, New York, USA
| | - Ragini Verma
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
McInnis C, Garcia MJS, Widjaja E, Frndova H, Huyse JV, Guerguerian AM, Oyefiade A, Laughlin S, Raybaud C, Miller E, Tay K, Bigler ED, Dennis M, Fraser DD, Campbell C, Choong K, Dhanani S, Lacroix J, Farrell C, Beauchamp MH, Schachar R, Hutchison JS, Wheeler AL. Magnetic Resonance Imaging Findings Are Associated with Long-Term Global Neurological Function or Death after Traumatic Brain Injury in Critically Ill Children. J Neurotrauma 2021; 38:2407-2418. [PMID: 33787327 DOI: 10.1089/neu.2020.7514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of children with traumatic brain injury (TBI) who are at risk of death or poor global neurological functional outcome remains a challenge. Magnetic resonance imaging (MRI) can detect several brain pathologies that are a result of TBI; however, the types and locations of pathology that are the most predictive remain to be determined. Forty-two critically ill children with TBI were recruited prospectively from pediatric intensive care units at five Canadian children's hospitals. Pathologies detected on subacute phase MRIs included cerebral hematoma, herniation, cerebral laceration, cerebral edema, midline shift, and the presence and location of cerebral contusion or diffuse axonal injury (DAI) in 28 regions of interest were assessed. Global functional outcome or death more than 12 months post-injury was assessed using the Pediatric Cerebral Performance Category score. Linear modeling was employed to evaluate the utility of an MRI composite score for predicting long-term global neurological function or death after injury, and nonlinear Random Forest modeling was used to identify which MRI features have the most predictive utility. A linear predictive model of favorable versus unfavorable long-term outcomes was significantly improved when an MRI composite score was added to clinical variables. Nonlinear Random Forest modeling identified five MRI variables as stable predictors of poor outcomes: presence of herniation, DAI in the parietal lobe, DAI in the subcortical white matter, DAI in the posterior corpus callosum, and cerebral contusion in the anterior temporal lobe. Clinical MRI has prognostic value to identify children with TBI at risk of long-term unfavorable outcomes.
Collapse
Affiliation(s)
- Carter McInnis
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - María José Solana Garcia
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elysa Widjaja
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Helena Frndova
- Department of Critical Care Medicine, and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Judith Van Huyse
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne-Marie Guerguerian
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Critical Care Medicine, and Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Adeoye Oyefiade
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne Laughlin
- Division of Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, and Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Charles Raybaud
- Division of Neuroradiology, Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elka Miller
- Department of Medical Imaging, and Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Keng Tay
- Department of Radiology, London Health Sciences Centre, London, Ontario, Canada
| | - Erin D Bigler
- Department of Psychological Science and Neuroscience Centre, Brigham Young University, Provo, Utah, USA
| | - Maureen Dennis
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, and University of Toronto, Toronto, Ontario, Canada
| | - Douglas D Fraser
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Schulich School of Medicine University of Western Ontario, Children's Hospital of the London Health Sciences Centre and the Lawson Research Institute, London, Ontario, Canada
| | - Craig Campbell
- Division of Neurology, Children's Hospital of the London Health Sciences Centre and Department of Pediatrics, Epidemiology and Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Karen Choong
- Division of Pediatric Intensive Care, Department of Pediatrics, McMaster Children's Hospital-Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Sonny Dhanani
- Division of Pediatric Intensive Care, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jacques Lacroix
- Division of Pediatric Critical Care, CHU Sainte-Justine, Université de Montréal and Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Catherine Farrell
- Division of Pediatric Critical Care, CHU Sainte-Justine, Université de Montréal and Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Miriam H Beauchamp
- Division of Pediatric Critical Care, CHU Sainte-Justine, Université de Montréal and Centre de Recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Russell Schachar
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James S Hutchison
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Critical Care Medicine, and Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neuroscience and Mental Health Research Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK. Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Karthikeya P. Deshmukh
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
| | - Savas Tasoglu
- Department of Mechanical Engineering Koc University Rumelifeneri Yolu, Sariyer Istanbul 34450 Turkey
- Boğaziçi Institute of Biomedical Engineering Boğaziçi University Istanbul 34684 Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London Imperial College Road, Kensington London SW7 2AZ UK
| |
Collapse
|
19
|
Use of diffusion tensor imaging to assess the vasogenic edema in traumatic pericontusional tissue. NEUROCIRUGÍA (ENGLISH EDITION) 2021; 32:161-169. [PMID: 34218876 DOI: 10.1016/j.neucie.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Cerebral edema is a frequent and serious complication of traumatic brain injury (TBI). Diffusion tensor imaging (DTI) is considered a useful technique to assess white matter integrity after TBI. The objective of this prospective, observational study was to assess the characteristics of the vasogenic edema in the traumatic pericontusional tissue and compare it to the vasogenic edema found in brain tumors. We also included a control group. METHODS Using DTI, the Apparent diffusion coefficient (ADC) and Fractional anisotropy (FA) were measured in the area of vasogenic edema in both TBI and tumor patients. The measurements in the control group were done in the gray and white matter. We included 15 TBI patients, 18 tumor patients and 15 controls. RESULTS ADC and FA showed no differences between TBI and tumor patients (p=0.27 for AF; p=0.79 for ADC). Compared to healthy controls, TBI and tumor patients presented higher ADC values and lower FA values. The differences between TBI and controls were statistically significant (p<0.05). CONCLUSIONS In this prospective observational study using DTI-MRI in a selected group of mild and moderate TBI patients with vasogenic pericontusional edema we have shown that there were no significant differences of the ADC and FA values compared to brain tumor patients. Furthermore, healthy controls showed significant lower ADC values and higher FA values compared to TBI and tumor patients. Future studies, using DTI-MRI, should address whether any therapy has a favorable impact on the vasogenic edema of TBI patients with brain contusions.
Collapse
|
20
|
Pérez-Bárcena J, Castaño-León AM, Lagares Gómez-Abascal A, Barea-Mendoza JA, Navarro Maín B, Pomar Pons J, Periañez Párraga LDM, Ibáñez Domínguez J, Chico-Fernández M, Llompart-Pou JA, Frontera Juan G. Dexamethasone for the treatment of traumatic brain injured patients with brain contusions and pericontusional edema: Study protocol for a prospective, randomized and double blind trial. Medicine (Baltimore) 2021; 100:e24206. [PMID: 33546038 PMCID: PMC7837989 DOI: 10.1097/md.0000000000024206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) constitutes a leading cause of death and disability. Patients with TBI and cerebral contusions developing pericontusional edema are occasionally given dexamethasone on the belief that this edema is similar to that of tumors, in which the beneficial effect of dexamethasone has been demonstrated. METHODS The DEXCON TBI trial is a multicenter, pragmatic, randomized, triple-blind, placebo controlled trial to quantify the effects of dexamethasone on the prognosis of TBI patients with brain contusions and pericontusional edema. Adult patients who fulfill the elegibility criteria will be randomized to dexamethasone/placebo in a short and descending course: 4 mg/6 h (2 days); 4 mg/8 hours (2 days); 2 mg/6 hours (2 days); 2 mg/8 hours (2 days); 1 mg/8 hours (2 days); 1 mg/12 hours (2 days). The primary outcome is the Glasgow Scale Outcome Extended (GOSE) performed 1 month and 6 months after TBI. Secondary outcomes are: number of episodes of neurological deterioration; symptoms associated with TBI; adverse events; volume of pericontusional edema before and after 12 days of treatment; results of the neuropsychological tests one month and 6 months after TBI. The main analysis will be on an "intention-to-treat" basis. Logistic regression will estimate the effect of dexamethasone/placebo on GOSE at one month and at 6 months, dichotomized in unfavorable outcome (GOSE 1-6) and favorable outcome (GOSE 7-8). Efficacy will also be analyzed using the 'sliding dichotomy'. An interim and safety analysis will be performed including patients recruited during the first year to calculate the conditional power. A study with 600 patients would have 80% power (2 sided alpha = 5%) to detect a 12% absolute increase (from 50% to 62%) in good recovery. DISCUSSION This is a confirmative trial to elucidate the therapeutic efficacy of dexamethasone in a very specific group of TBI patients: patients with brain contusions and pericontusional edema. This trial could become an important milestone for TBI patients as nowadays there is no effective treatment in this type of patients. TRIAL REGISTRATION eudraCT: 2019-004038-41; Clinical Trials.gov: NCT04303065.
Collapse
Affiliation(s)
- Jon Pérez-Bárcena
- Intensive Care Unit, Hospital Universitari Son Espases, Palma de Mallorca
| | - Ana María Castaño-León
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid
| | - Alfonso Lagares Gómez-Abascal
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid
| | | | - Blanca Navarro Maín
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid
| | - Jaume Pomar Pons
- Neuropsychology and Cognition Research Group, Research Institute on Health IDISBA & IUNICS-UIB, Palma de Mallorca
| | | | | | | | | | - Guillem Frontera Juan
- Research Institute on Health IDISBA, Hospital Universitari Son Espases, Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca
| |
Collapse
|
21
|
Jha RM, Mondello S, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Wang KKW, Yang Z, Hayes RL, Poloyac SM, Empey PE, Lafrenaye AD, Yan HQ, Carlson SW, Povlishock JT, Gilsdorf JS, Kochanek PM. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2020; 38:628-645. [PMID: 33203303 DOI: 10.1089/neu.2020.7421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-μg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 μg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Neurology, Neurobiology, and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Zhao SL, Jin G, Bai ZL, Chen JB, Li MW, Li G, Zhuang W, Liu YN, Qin MX. Twenty-four-hour real-time continuous monitoring of acute focal cerebral ischemia in rabbits based on magnetic inductive phase shift. Biomed Eng Online 2020; 19:83. [PMID: 33176808 PMCID: PMC7659095 DOI: 10.1186/s12938-020-00829-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND As a serious clinical disease, ischemic stroke is usually detected through magnetic resonance imaging and computed tomography. In this study, a noninvasive, non-contact, real-time continuous monitoring system was constructed on the basis of magnetic induction phase shift (MIPS) technology. The "thrombin induction method", which conformed to the clinical pathological development process of ischemic stroke, was used to construct an acute focal cerebral ischemia model of rabbits. In the MIPS measurement, a "symmetric cancellation-type" magnetic induction sensor was used to improve the sensitivity and antijamming capability of phase detection. METHODS A 24-h MIPS monitoring experiment was carried out on 15 rabbits (10 in the experimental group and five in the control group). Brain tissues were taken from seven rabbits for the 2% triphenyl tetrazolium chloride staining and verification of the animal model. RESULTS The nonparametric independent-sample Wilcoxon rank sum test showed significant differences (p < 0.05) between the experimental group and the control group in MIPS. Results showed that the rabbit MIPS presented a declining trend at first and then an increasing trend in the experimental group, which may reflect the pathological development process of cerebral ischemic stroke. Moreover, TTC staining results showed that the focal cerebral infarction area increased with the development of time CONCLUSIONS: Our experimental study indicated that the MIPS technology has a potential ability of differentiating the development process of cytotoxic edema from that of vasogenic edema, both of which are caused by cerebral ischemia.
Collapse
Affiliation(s)
- Shuang-Lin Zhao
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Gui Jin
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Ze-Lin Bai
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Jing-Bo Chen
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Li
- Department of Medical Engineering, Beidaihe Rehabilitation and Recuperation Center, Hebei, 066100, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400020, China
| | - Wei Zhuang
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Yue-Ning Liu
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Ming-Xin Qin
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
Hu Y, Seker B, Exner C, Zhang J, Plesnila N, Schwarzmaier SM. Longitudinal Characterization of Blood-Brain Barrier Permeability after Experimental Traumatic Brain Injury by In Vivo 2-Photon Microscopy. J Neurotrauma 2020; 38:399-410. [PMID: 33012249 DOI: 10.1089/neu.2020.7271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vasogenic brain edema (VBE) formation remains an important factor determining the fate of patients with traumatic brain injury (TBI). The spatial and temporal development of VBE, however, remains poorly understood because of the lack of sufficiently sensitive measurement techniques. To close this knowledge gap, we directly visualized the full time course of vascular leakage after TBI by in vivo 2-photon microscopy (2-PM). Male C57BL/6 mice (n = 6/group, 6-8 weeks old) were assigned randomly to sham operation or brain trauma by controlled cortical impact. A cranial window was prepared, and tetramethylrhodamine-dextran (TMRM, MW 40,000 Da) was injected intravenously to visualize blood plasma 4 h, 24 h, 48 h, 72 h, or seven days after surgery or trauma. Three regions with increasing distance to the primary contusion were investigated up to a depth of 300 μm by 2-PM. No TMRM extravasation was detected in sham-operated mice, while already 4 h after TBI vascular leakage was significantly increased (p < 0.05 vs. sham) and reached its maximum at 48 h after injury. Vascular leakage was most pronounced in the vicinity of the contusion. The rate of extravasation showed a biphasic pattern, peaking 4 h and 48-72 h after trauma. Taken together, longitudinal quantification of vascular leakage after TBI in vivo demonstrates that VBE formation after TBI develops in a biphasic manner suggestive of acute and delayed mechanisms. Further studies using the currently developed dynamic in vivo imaging modalities are needed to investigate these mechanisms and potential therapeutic strategies in more detail.
Collapse
Affiliation(s)
- Yue Hu
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Burcu Seker
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carina Exner
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Junping Zhang
- First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Department of Anesthesiology, Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
24
|
Moll A, Lara M, Pomar J, Orozco M, Frontera G, Llompart-Pou JA, Moratinos L, González V, Ibáñez J, Pérez-Bárcena J. Effects of dexamethasone in traumatic brain injury patients with pericontusional vasogenic edema: A prospective-observational DTI-MRI study. Medicine (Baltimore) 2020; 99:e22879. [PMID: 33120830 PMCID: PMC7581187 DOI: 10.1097/md.0000000000022879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cerebral edema is a frequent and serious complication in traumatic brain injury (TBI) patients. The objective is to study the effect of dexamethasone in patients with brain contusions, and to assess its effect on the vasogenic component of the pericontusional edema.Prospective-observational study to quantify, using magnetic resonance imaging, the volume of the edema before and after 10 days of dexamethasone in patients with brain contusions. Using diffusion tensor imaging, we have examined the effect of dexamethasone on fractional anisotropy (FA) and apparent diffusion coefficient (ADC). To assess changes, the pre- and post-treatment values for each patient were compared using a paired-samples Student t test.We included 30 TBI patients, 15 in each group. The volume of the vasogenic edema in the group of patients treated with dexamethasone decreased from 22 to 19 mL and this decrease was statistically significant (P < .05). Nevertheless, in the non-steroids group the volume of the vasogenic edema increased from 11 to 15 mL. There was a significant decrease in the ADC value (from 1.78-1.59; P < .05); and a significant increase in the FA value (0.09-0.11; P < .05) in the patients treated with dexamethasone.Using diffusion tensor imaging we have shown in a selected group of TBI patients with vasogenic pericontusional edema, a reduction of edema volume, a decrease in the ADC and an increase in the FA after treatment with dexamethasone. However, we have no data if such results are beneficial in terms of improving functional outcome.
Collapse
Affiliation(s)
| | - Mónica Lara
- Neurosurgical Department, Son Espases Hospital
| | - Jaume Pomar
- Neuropsychology and Cognition Research Group, Research Institute on Health IDISBA & IUNICS-UIB
| | | | - Guiem Frontera
- Research Institute on Health IDISBA, Son Espases Hospital
| | | | | | | | | | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases Hospital, Palma de Mallorca, Spain
| |
Collapse
|
25
|
Kulkarni P, Bhosle MR, Lu SF, Simon NS, Iriah S, Brownstein MJ, Ferris CF. Evidence of early vasogenic edema following minor head impact that can be reduced with a vasopressin V1a receptor antagonist. Brain Res Bull 2020; 165:218-227. [PMID: 33053434 DOI: 10.1016/j.brainresbull.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Does minor head impact without signs of structural brain damage cause short-term changes in vasogenic edema as measured by an increase apparent diffusion coefficient (ADC) using diffusion weighted imaging? If so, could the increase in vasogenic edema be treated with a vasopressin V1a receptor antagonist? We hypothesized that SRX251, a highly selective V1a antagonist, would reduce vasogenic edema in response to a single minor head impact. METHODS Lightly anesthetized male rats were subjected to a sham procedure or a single hit to the forehead using a closed skull, momentum exchange model. Animals recovered in five min and were injected with saline vehicle (n = 8) or SRX251 (n = 8) at 15 min post head impact and again 7-8 hrs later. At 2 h, 6 h, and 24 h post injury, rats were anesthetized and scanned for increases in ADC, a neurological measure of vasogenic edema. Sham rats (n = 6) were exposed to anesthesia and scanned at all time points but were not hit or treated. Images were registered to and analyzed using a 3D MRI rat atlas providing site-specific data on 150 different brain areas. These brain areas were parsed into 11 major brain regions. RESULTS Untreated rats with brain injury showed a significant increase in global brain vasogenic edema as compared to sham and SRX251 treated rats. Edema peaked at 6 h in injured, untreated rats in three brain regions where changes in ADC were observed, but returned to sham levels by 24 h. There were regional variations in the time course of vasogenic edema and drug efficacy. Edema was significantly reduced in cerebellum and thalamus with SRX251 treatment while the basal ganglia did not show a response to treatment. CONCLUSION A single minor impact to the forehead causes regional increases in vasogenic edema that peak at 6 h but return to baseline within a day in a subset of brain regions. Treatment with a selective V1a receptor antagonist can reduce much of the edema.
Collapse
Affiliation(s)
- Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States
| | - Mansi R Bhosle
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States
| | - Shi-Fang Lu
- Azevan Pharmaceuticals, Bethlehem, PA, United States; Dept.of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Neal S Simon
- Azevan Pharmaceuticals, Bethlehem, PA, United States; Dept.of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Sade Iriah
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States
| | | | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern Univ, Boston, MA, United States; Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.
| |
Collapse
|
26
|
Lara M, Moll A, Mas A, Picado MJ, Gassent C, Pomar J, Llompart-Pou JA, Brell M, Ibáñez J, Pérez-Bárcena J. Use of diffusion tensor imaging to assess the vasogenic edema in traumatic pericontusional tissue. Neurocirugia (Astur) 2020; 32:S1130-1473(20)30080-4. [PMID: 32709492 DOI: 10.1016/j.neucir.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Cerebral edema is a frequent and serious complication of traumatic brain injury (TBI). Diffusion tensor imaging (DTI) is considered a useful technique to assess white matter integrity after TBI. The objective of this prospective, observational study was to assess the characteristics of the vasogenic edema in the traumatic pericontusional tissue and compare it to the vasogenic edema found in brain tumors. We also included a control group. METHODS Using DTI, the Apparent diffusion coefficient (ADC) and Fractional anisotropy (FA) were measured in the area of vasogenic edema in both TBI and tumor patients. The measurements in the control group were done in the gray and white matter. We included 15 TBI patients, 18 tumor patients and 15 controls. RESULTS ADC and FA showed no differences between TBI and tumor patients (p=0.27 for AF; p=0.79 for ADC). Compared to healthy controls, TBI and tumor patients presented higher ADC values and lower FA values. The differences between TBI and controls were statistically significant (p<0.05). CONCLUSIONS In this prospective observational study using DTI-MRI in a selected group of mild and moderate TBI patients with vasogenic pericontusional edema we have shown that there were no significant differences of the ADC and FA values compared to brain tumor patients. Furthermore, healthy controls showed significant lower ADC values and higher FA values compared to TBI and tumor patients. Future studies, using DTI-MRI, should address whether any therapy has a favorable impact on the vasogenic edema of TBI patients with brain contusions.
Collapse
Affiliation(s)
- Mónica Lara
- Neurosurgical Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Apolonia Moll
- Radiology Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Antonio Mas
- Radiology Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - María José Picado
- Radiology Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Carmen Gassent
- Radiology Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Jaume Pomar
- Neuropsychology and Cognition Research Group, Research Institute on Health IDISBA & IUNICS-UIB, Palma de Mallorca, Spain
| | | | - Marta Brell
- Neurosurgical Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Javier Ibáñez
- Neurosurgical Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, Palma de Mallorca, Spain.
| |
Collapse
|
27
|
Lietke S, Zausinger S, Patzig M, Holtmanspötter M, Kunz M. CT-Based Classification of Acute Cerebral Edema: Association with Intracranial Pressure and Outcome. J Neuroimaging 2020; 30:640-647. [PMID: 32462690 DOI: 10.1111/jon.12736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain edema after acute cerebral lesions may lead to raised intracranial pressure (ICP) and worsen outcome. Notwithstanding, no CT-based scoring system to quantify edema formation exists. This retrospective correlative analysis aimed to establish a valid and definite CT score quantifying brain edema after common acute cerebral lesions. METHODS A total of 169 CT investigations in 60 patients were analyzed: traumatic brain injury (TBI; n = 47), subarachnoid hemorrhage (SAH; n = 70), intracerebral hemorrhage (ICH; n = 42), and ischemic stroke (n = 10). Edema formation was classified as 0: no edema, 1: focal edema confined to 1 lobe, 2: unilateral edema > 1 lobe, 3: bilateral edema, 4: global edema with disappearance of sulcal relief, and 5: global edema with basal cisterns effacement. ICP and Glasgow Outcome Score (GOS) were correlated to edema formation. RESULTS Median ICP values were 12.0, 14.0, 14.9, 18.2, and 25.9 mm Hg in grades 1-5, respectively. Edema grading significantly correlated with ICP (r = .51; P < .0001) in focal and global cerebral edema, particularly in patients with TBI, SAH, and ICH (r = .5, P < .001; r = .5; P < .0001; r = .6, P < .0001, respectively). At discharge, 23.7% of patients achieved a GOS of 5 or 4, 65.0% reached a GOS of 3 or 2, and 11.9% died (GOS 1). CT-score of cerebral edema in all patients correlated with outcome (r = -.3, P = .046). CONCLUSION The proposed CT-based grading of extent of cerebral edema significantly correlated with ICP and outcome in TBI, SAH, and ICH patients and might be helpful for standardized description of CT-images and as parameter for clinical studies, for example, measuring effects of antiedematous therapies.
Collapse
Affiliation(s)
- Stefanie Lietke
- Department of Neurosurgery, Ludwigs-Maximilians University, Munich, Germany
| | - Stefan Zausinger
- Department of Neurosurgery, Ludwigs-Maximilians University, Munich, Germany
| | - Maximilian Patzig
- Institute for Neuroradiology, Ludwig-Maximilians University, Munich, Germany
| | - Markus Holtmanspötter
- Institute for Neuroradiology, Ludwig-Maximilians University, Munich, Germany.,Nuremberg Hospital, Neuroradiology, Paracelsus Medical University, Nürnberg, Germany
| | - Mathias Kunz
- Department of Neurosurgery, Ludwigs-Maximilians University, Munich, Germany
| |
Collapse
|
28
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
29
|
Tan Z, Chen L, Ren Y, Jiang X, Gao W. Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway. Ann Clin Transl Neurol 2020; 7:742-756. [PMID: 32302063 PMCID: PMC7261767 DOI: 10.1002/acn3.51044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE FK866 is an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), which exhibits neuroprotective effects in ischemic brain injury. However, in traumatic brain injury (TBI), the role and mechanism of FK866 remain unclear. The present research was aimed to investigate whether FK866 could attenuate TBI and clarified the underlying mechanisms. METHODS A controlled cortical impact model was established, and FK866 at a dose of 5 mg/kg was administered intraperitoneally at 1 h and 6 h, then twice per day post-TBI until sacrifice. Brain water content, Evans blue dye extravasation, modified neurological severity scores (mNSS), Morris water maze test, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blot were performed. RESULTS The results demonstrated that FK866 significantly mitigated the brain edema, blood-brain barrier (BBB) disruption, and ameliorated the neurological function post-TBI. Moreover, FK866 decreased the number of Iba-1-positive cells, GFAP-positive astrocytes, and AQP4-positive cells. FK866 reduced the protein levels of proinflammatory cytokines and inhibited NF-κB from translocation to the nucleus. FK866 upregulated the expression of Bcl-2, diminished the expression of Bax and caspase 3, and the number of apoptotic cells. Moreover, p38 MAPK and ERK activation were significantly inhibited by FK866. INTERPRETATION FK866 attenuated TBI-induced neuroinflammation and apoptosis, at least in part, through p38/ERK MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zhongju Tan
- Department of GeriatricsThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Lili Chen
- Department of NeurologyXiasha CampusSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yucheng Ren
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaohang Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Wei Gao
- Department of NeurologyChangxing People’s HospitalThe Second Affiliated Hospital of Zhejiang University Changxing CampusChangxingZhejiangChina
| |
Collapse
|
30
|
Rizk T, Turtzo LC, Cota M, Van Der Merwe AJ, Latour L, Whiting MD, Chan L. Traumatic microbleeds persist for up to five years following traumatic brain injury despite resolution of other acute findings on MRI. Brain Inj 2020; 34:773-781. [PMID: 32228304 DOI: 10.1080/02699052.2020.1725835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The primary objective of this study was to track the incidence and progression of traumatic microbleeds (TMBs) for up to five years following traumatic brain injury (TBI). METHODS Thirty patients with mild, moderate, or severe TBI received initial MRI within 48 h of injury and continued in a longitudinal study for up to five years. The incidence and progression of MRI findings was assessed across the five year period. In addition to TMBs, we noted the presence of other imaging findings including diffusion weighted imaging (DWI) lesions, extra-axial and intraventricular hemorrhage, hematoma, traumatic meningeal enhancement (TME), fluid-attenuated inversion recovery (FLAIR) hyperintensities, and encephalomalacia. RESULTS TMBs were observed in 60% of patients at initial presentation. At one-year follow-up, TMBs were more persistent than other neuroimaging findings, with 83% remaining visible on MRI. In patients receiving serial MRI 2-5 years post-injury, acute TMBs were visible on all follow-up scans. In contrast, most other imaging markers of TBI had either resolved or evolved into ambiguous abnormalities on imaging by one year post-injury. CONCLUSIONS These findings suggest that TMBs may serve as a uniquely persistent indicator of TBI and reinforce the importance of acute post-injury imaging for accurate characterization of persistent imaging findings.
Collapse
Affiliation(s)
- Theresa Rizk
- Department of Rehabilitation Medicine, National Institutes of Health Clinical Center , Bethesda, MD, USA
| | - L Christine Turtzo
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, USA
| | - Martin Cota
- Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| | | | - Lawrence Latour
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| | - Mark D Whiting
- Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| | - Leighton Chan
- Department of Rehabilitation Medicine, National Institutes of Health Clinical Center , Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| |
Collapse
|
31
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Guan Y, Li L, Chen J, Lu H. Effect of AQP4-RNAi in treating traumatic brain edema: Multi-modal MRI and histopathological changes of early stage edema in a rat model. Exp Ther Med 2020; 19:2029-2036. [PMID: 32104262 PMCID: PMC7027281 DOI: 10.3892/etm.2020.8456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and permanent disabilities worldwide. Brain edema following TBI remains to be the predominant cause of mortality and disability in patients worldwide. Previous studies have reported that brain edema is closely associated with aquaporin-4 (AQP4) expression. AQP4 is a water channel protein and mediates water homeostasis in a variety of brain disorders. In the current study, a rat TBI model was established, and the features of brain edema following TBI were assessed using multimodal MRI. The results of the multimodal MRI were useful, reliable and were used to evaluate the extent and the type of brain edema following TBI. Brain edema was also successfully alleviated using an intracerebral injection of AQP4 small interfering (si)RNA. The expression of AQP4 and its role in brain edema were also examined in the present study. The AQP4 siRNA was demonstrated to downregulate AQP4 expression following TBI and reduced brain edema at the early stages of TBI (6 and 12 h). The current study revealed the MRI features of brain edema and the changes in AQP4 expression exhibited following TBI, and the results provide important information that can be used to improve the early diagnosis and treatment of brain edema.
Collapse
Affiliation(s)
- Ying Guan
- Department of Ultrasonography, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Jianqiang Chen
- Department of Radiology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hong Lu
- Department of Radiology, The Seventh People's Hospital of Chongqing, Chongqing 400054, P.R. China
| |
Collapse
|
33
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Abstract
We explored the dynamic features of brain edema after traumatic brain injury (TBI) using healthy adult male Wistar rats. After inducing moderate brain injuries in the rats, we divided them randomly among seven groups on the basis of the time elapsed between TBI and examination: 1, 6, 12, 24, 48, 72, and 168 h. All rats were scanned using diffusion-weighted imaging (DWI) to observe tissue changes in the contusion penumbra (CP) after TBI. Immunoglobulin G expression was also detected. At 1 h after TBI, there was an annular light-colored region in the CP where the intercellular space was enlarged, suggesting vasogenic edema. At 6 h, the cells expanded, their nuclei shrank, and the cytoplasm was replaced by vacuoles, indicating intracellular edema. Vasogenic edema and intracellular edema increased 12 h after TBI, but decreased 24 h after TBI, with vasogenic edema increasing 48 h after TBI. By 72 h after TBI, intracellular edema dominated until resolution of all edema by 168 h after TBI. DWI indicated that the relative apparent diffusion coefficient increased markedly at 1 h after TBI, but was reduced at 6 and 12 h after TBI. At 48 h, relative apparent diffusion coefficient increased gradually and then declined at 72 h. In rats, TBI-related changes include dynamic variations in intracellular and vasogenic edema severity. Routine MRI and DWI examinations do not distinguish between the center of trauma and CP; however, the apparent diffusion coefficient diagram can portray variations in CP edema type and degree at different time-points following TBI.
Collapse
Affiliation(s)
- Huanhuan Ren
- Department of Radiology, Chongqing Seventh People's Hospital, Chongqing, China
| | | |
Collapse
|
35
|
Mohamed AZ, Corrigan F, Collins-Praino LE, Plummer SL, Soni N, Nasrallah FA. Evaluating spatiotemporal microstructural alterations following diffuse traumatic brain injury. Neuroimage Clin 2019; 25:102136. [PMID: 31865019 PMCID: PMC6931220 DOI: 10.1016/j.nicl.2019.102136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffuse traumatic brain injury (TBI) is known to lead to microstructural changes within both white and grey matter detected in vivo with diffusion tensor imaging (DTI). Numerous studies have shown alterations in fractional anisotropy (FA) and mean diffusivity (MD) within prominent white matter tracts, but few have linked these to changes within the grey matter with confirmation via histological assessment. This is especially important as alterations in the grey matter may be predictive of long-term functional deficits. METHODS A total of 33 male Sprague Dawley rats underwent severe closed-head TBI. Eight animals underwent tensor-based morphometry (TBM) and DTI at baseline (pre-TBI), 24 hours (24 h), 7, 14, and 30 days post-TBI. Immunohistochemical analysis for the detection of ionised calcium-binding adaptor molecule 1 (IBA1) to assess microglia number and percentage of activated cells, β-amyloid precursor protein (APP) as a marker of axonal injury, and myelin basic protein (MBP) to investigate myelination was performed at each time-point. RESULTS DTI showed significant alterations in FA and RD in numerous white matter tracts including the corpus callosum, internal and external capsule, and optic tract and in the grey-matter in the cortex, thalamus, and hippocampus, with the most significant effects observed at 14 D post-TBI. TBM confirmed volumetric changes within the hippocampus and thalamus. Changes in DTI were in line with significant axonal injury noted at 24 h post-injury via immunohistochemical analysis of APP, with widespread microglial activation seen within prominent white matter tracts and the grey matter, which persisted to 30 D within the hippocampus and thalamus. Microstructural alterations in MBP+ve fibres were also noted within the hippocampus and thalamus, as well as the cortex. CONCLUSION This study confirms the widespread effects of diffuse TBI on white matter tracts which could be detected via DTI and extends these findings to key grey matter regions, with a comprehensive investigation of the whole brain. In particular, the hippocampus and thalamus appear to be vulnerable to ongoing pathology post-TBI, with DTI able to detect these alterations supporting the clinical utility in evaluating these regions post-TBI.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia
| | - Frances Corrigan
- Head Injury Laboratory, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Lyndsey E Collins-Praino
- Cognition, Aging and Neurodegenerative Disease Laboratory (CANDL), Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephanie L Plummer
- Translational Neuropathology Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Neha Soni
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Cox CS, Juranek J, Bedi S. Clinical trials in traumatic brain injury: cellular therapy and outcome measures. Transfusion 2019; 59:858-868. [PMID: 30737818 DOI: 10.1111/trf.14834] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/01/2018] [Indexed: 12/23/2022]
Abstract
Clinical trials for traumatic brain injury (TBI) have not successfully produced a new therapeutic for neuroprotection or neurorestoration, despite multiple attempts. Stem cell-based therapies and/or cellular therapies have been developed over the past 20 years such that clinical trials are now in Phase II and III stages for neurologic diseases such as TBI and stroke. Many of the vexing issues from past clinical failures still exist today, namely, preclinical data that may not translate to clinical trial because of design and injury heterogeneity that poorly stratifies enrolled patients. Recognition of these problems has led us to advocate for outcome measures that are clinically meaningful, but do not represent a global functional "score." Specifically, we seek to measure those early physiologically relevant outcomes (intracranial pressure, edema, and therapeutic intensity) and later structural outcomes in regions of interest that are linked to putative mechanisms of action of cell based therapies. Early approval of therapeutics that are successful by these metrics would then allow further access to treatments that could be further tested via patient registries and other surveillance for ultimate adoption. Continuing to do the same thing with each iterative trial will assure the same results.
Collapse
Affiliation(s)
- Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School at University of Texas Health Sciences Center, Houston, Texas
| | - Jennifer Juranek
- Department of Pediatrics, McGovern Medical School at University of Texas Health Sciences Center, Houston, Texas
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern Medical School at University of Texas Health Sciences Center, Houston, Texas
| |
Collapse
|
37
|
Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. How to Translate Time: The Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. J Neurotrauma 2019; 36:1724-1737. [PMID: 30628544 PMCID: PMC7643768 DOI: 10.1089/neu.2018.6261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) triggers multiple pathobiological responses with differing onsets, magnitudes, and durations. Identifying the therapeutic window of individual pathologies is critical for successful pharmacological treatment. Dozens of experimental pharmacotherapies have been successfully tested in rodent models, yet all of them (to date) have failed in clinical trials. The differing time scales of rodent and human biological and pathological processes may have contributed to these failures. We compared rodent versus human time scales of TBI-induced changes in cerebral glucose metabolism, inflammatory processes, axonal integrity, and water homeostasis based on published data. We found that the trajectories of these pathologies run on different timescales in the two species, and it appears that there is no universal "conversion rate" between rodent and human pathophysiological processes. For example, the inflammatory process appears to have an abbreviated time scale in rodents versus humans relative to cerebral glucose metabolism or axonal pathologies. Limitations toward determining conversion rates for various pathobiological processes include the use of differing outcome measures in experimental and clinical TBI studies and the rarity of longitudinal studies. In order to better translate time and close the translational gap, we suggest 1) using clinically relevant outcome measures, primarily in vivo imaging and blood-based proteomics, in experimental TBI studies and 2) collecting data at multiple post-injury time points with a frequency exceeding the expected information content by two or three times. Combined with a big data approach, we believe these measures will facilitate the translation of promising experimental treatments into clinical use.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland
| | - Robert Vink
- Division of Health Science, University of South Australia, Adelaide, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Mayumi Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
38
|
Zhang HM, Chen W, Liu RN, Zhao Y. Notch inhibitor can attenuate apparent diffusion coefficient and improve neurological function through downregulating NOX2-ROS in severe traumatic brain injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3847-3854. [PMID: 30510400 PMCID: PMC6231429 DOI: 10.2147/dddt.s174037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction Secondary brain injury is a major factor that affects the prognosis and outcome of traumatic brain injury (TBI) patients. Secondary brain edema is considered to be an initiating factor in secondary brain injury after TBI. A previous study has indicated that Notch signaling activation contributes to neuron death in mice affected by stroke; however, its role in neuronal oxidation stress for brain edema after TBI is not well established. Apparent diffusion coefficient (ADC) values can represent the brain edema after TBI. Methods We established a rat model of acute craniocerebral injury, using functional MRI to evaluate the ADC and cerebral blood flow values. The present study was designed to determine the effect of Notch inhibitor DAPT upon oxidation stress for brain edema after TBI. Rats were randomly distributed into five groups, control group, severe TBI group, severe TBI + vehicle group, severe TBI + DAPT group, and severe TBI + DPI group. All rats were sacrificed at 24 hours after TBI. Results Our data indicated that Notch signaling inhibitor DAPT significantly reduced the ADC values and improved the neurological function after TBI. In addition, DAPT decreased NOX2 levels and the ROS levels. Furthermore, DPI can decrease NOX2 levels and ROS levels. Conclusion This study indicated that DAPT Notch signal inhibitors can inhibit NOX2-ROS generation, reduce the ADC values, relieve cerebral edema, and improve nerve function.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, People's Republic of China, .,Emergency Department, The Second Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, People's Republic of China
| | - Wei Chen
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Rui-Ning Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, People's Republic of China,
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, People's Republic of China,
| |
Collapse
|
39
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
40
|
Ogawa K, Suzuki Y, Akimoto T, Shiobara K, Hara M, Morita A, Kamei S, Soma M. Relationship between Cytotoxicity in the Hippocampus and an Abnormal High Intensity Area on the Diffusion-weighted Images of Three Patients with Transient Global Amnesia. Intern Med 2018; 57:2631-2639. [PMID: 29709925 PMCID: PMC6191596 DOI: 10.2169/internalmedicine.0251-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective An abnormal high intensity area (HIA) on diffusion-weighted imaging (DWI) indicates the presence of cytotoxic edema and has been reported to be observed in the hippocampus of patients with transient global amnesia (TGA). The appearance of an HIA on DWI is usually delayed after the onset of patients with amnesia in TGA; thus, the significance of the HIA was evaluated in patients with TGA. Methods Three adult TGA patients who had a unilateral HIA on DWI (right, n=2; left, n=1) were enrolled. These patients were hospitalized due to acute-onset amnesia. Amnesia subsided within 24 hours of hospitalization in all three patients. Results The HIA was confined to the upper lateral zone of the body in the unilateral hippocampus where the CA1 region exists. The lesions were confirmed after the improvement of amnesia in the three patients. The location of the lesions corresponded to the watershed area where the upper and lower hippocampal arteries were anastomosed. Conclusion Cytotoxicity caused by glutamate-mediated calcium influx in the neurons of the CA1 region was recently reported in the pathogenesis of TGA. Based on the pathogenesis, the cytotoxicity was considered to have been caused by calcium overload throughout the entire CA1 region, and amnesia occurred due to this cytotoxicity. The cytotoxicity was more marked in the lesions because of the lower blood flow in the watershed area and was prolonged after the function of the CA1 region (excluding the watershed area) improved, which led to cytotoxic edema in the lesions.
Collapse
Affiliation(s)
- Katsuhiko Ogawa
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | - Yutaka Suzuki
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Japan
| | - Takayoshi Akimoto
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | - Keiji Shiobara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | - Akihiko Morita
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | - Satoshi Kamei
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Japan
| | - Masayoshi Soma
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Japan
| |
Collapse
|
41
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
42
|
Vlodavsky E, Palzur E, Shehadeh M, Soustiel JF. Post-traumatic cytotoxic edema is directly related to mitochondrial function. J Cereb Blood Flow Metab 2017; 37:166-177. [PMID: 26672111 PMCID: PMC5363733 DOI: 10.1177/0271678x15621068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023]
Abstract
Cerebral edema represents a major threat following traumatic brain injury. However, therapeutic measures for control of intracranial pressure alone have failed to restore cerebral metabolism and improve neurological outcome. Since mitochondrial damage results in ATP depletion and deactivation of membrane ionic pumps, we hypothesized that modulation of ATP bioavailability may directly affect cytotoxic edema. Intracranial pressure measurements were performed in Sprague-Dawley rats treated by intraperitoneal injection of dimethylsulfoxide (vehicle), cyclosporine A (CsA), or Oligomycin B (OligB) following cortical contusion and further correlated with water content, mitochondrial damage, and electron microscopic assessment of neuronal and axonal edema. As hypothesized, ultra-structural figures of edema closely correlated with intracranial pressure elevation, increased water content and mitochondrial membrane permeabilization expressed by loss of transmembrane mitochondrial potential. Further, mitochondrial damage evidenced ultra-structurally by figures of swollen mitochondria with severely distorted cristae correlated with both cytotoxic edema and mitochondrial dysfunction. Importantly, cerebral edema and mitochondrial impairment were significantly worsened by treatment with OligB, whereas a noticeable improvement could be observed in animals that received injections of CsA. Since OligB and CsA are responsible for symmetrical and opposite effects on oxidative metabolism, these findings support the hypothesis of a causative relationship between edema and mitochondrial function.
Collapse
Affiliation(s)
- Eugene Vlodavsky
- Institute of Pathology, Rambam Medical Center, Haifa, Israel.,The Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eilam Palzur
- Eliachar Research Laboratory, Galilee Medical Center, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia, Israel
| | - Mona Shehadeh
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jean F Soustiel
- Eliachar Research Laboratory, Galilee Medical Center, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia, Israel .,Department of Neurosurgery, Galilee Medical Center, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia, Israel
| |
Collapse
|
43
|
Winkler EA, Minter D, Yue JK, Manley GT. Cerebral Edema in Traumatic Brain Injury. Neurosurg Clin N Am 2016; 27:473-88. [DOI: 10.1016/j.nec.2016.05.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
45
|
Alvarez H, Sasaki-Adams D, Castillo M. Resolution of brainstem edema after treatment of a dural tentorial arteriovenous fistula. Interv Neuroradiol 2015; 21:603-8. [PMID: 26116648 PMCID: PMC4757332 DOI: 10.1177/1591019915591741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a patient with a petrosal arterio-venous dural fistula draining into the ponto-mesencephalic and medullary venous systems presenting with edema of the brain stem and complete reversal of magnetic resonance imaging (MRI) abnormalities after combined endovascular and surgical treatments. The venous anatomy of the posterior fossa and the significance of the venous involvement as the cause of clinical symptoms and imaging abnormalities in cerebro-medullary vascular lesions are discussed.
Collapse
Affiliation(s)
- Hortensia Alvarez
- Division Interventional Neuroradiology. University of North Carolina at Chapel Hill, USA
| | - Deanna Sasaki-Adams
- Department of Neurosurgery. University of North Carolina at Chapel Hill, USA
| | - Mauricio Castillo
- Division of Neuroradiology, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
46
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
47
|
Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury. Brain Res 2015; 1611:18-28. [PMID: 25770057 DOI: 10.1016/j.brainres.2015.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/04/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a major contributor to mortality and morbidity. The pathophysiology involves development of brain edema. Therapeutic options are limited as the mechanisms are not fully understood. Changes in the function of the blood-brain barrier (BBB), as well as variations in aquaporin expression, have been proposed to be involved in the development of the edema but the contribution of each factor has not been fully elucidated. In order to evaluate these mechanisms, in a potential window of opportunity, the early dynamic response was studied using an animal model causing a moderate TBI. Sprague-Dawley rats were subjected to blunt controlled head trauma and followed for up to four days by magnetic-resonance-imaging, immunohistofluorescence, immunohistochemistry, and quantitative protein analysis. Non-traumatized animals served as controls. TBI resulted in a midline shift and a decrease in Apparent Diffusion Coefficient, indicating a hemispheric enlargement due to cytotoxic edema. The tight junction protein Zona Occludens-1 was decreased (-25%) and associated with an increased IgG permeability (+20%) in the perilesional brain tissue in accordance with a BBB breakdown. The total amount of AQP4 protein decreased (-20%). The disruption of the BBB lasted for 4 days while the impact on AQP4 levels disappeared between day 1 and 4. Our findings shows that blunt focal brain injury results in an early development of brain edema involving both cytotoxic and vasogenic components, a persistent BBB breakdown and a temporary decrease in AQP4, and indicates that both types of edemas and mechanisms should be targeted in TBI treatment.
Collapse
Affiliation(s)
- Jonas Blixt
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Eli Gunnarson
- Department of Women׳s and Children׳s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Michael Wanecek
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|