1
|
Dulken BW, Kingsley L, Zdravkovic S, Cespedes O, Qian X, Suster DI, Charville GW. CHRNA6 RNA In Situ Hybridization Is a Useful Tool for the Diagnosis of Extraskeletal Myxoid Chondrosarcoma. Mod Pathol 2024; 37:100464. [PMID: 38447752 DOI: 10.1016/j.modpat.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is an uncommon mesenchymal neoplasm characteristically composed of uniform-appearing round to spindle-shaped cells with eosinophilic cytoplasm and abundant myxoid extracellular matrix. Although the majority of cases harbor a pathognomonic t(9;22) translocation that fuses EWSR1 with the orphan nuclear receptor NR4A3, there are less common variants that partner NR4A3 with TAF15, TCF12, or TFG. By immunohistochemistry, EMC has features of both cartilaginous and neuroendocrine differentiation, as evidenced by inconsistent expression of S100 protein and synaptophysin or INSM1, respectively, in a subset of cases. Given the limitations of available immunohistochemical stains for the diagnosis of EMC, we analyzed genome-wide gene expression microarray data to identify candidate biomarkers based on differential expression in EMC in comparison with other mesenchymal neoplasms. This analysis pointed to CHRNA6 as the gene with the highest relative expression in EMC (96-fold; P = 8.2 × 10-26) and the only gene with >50-fold increased expression in EMC compared with other tumors. Using RNA chromogenic in situ hybridization, we observed strong and diffuse expression of CHRNA6 in 25 cases of EMC, including both EWSR1-rearranged and TAF15-rearranged variants. All examined cases of histologic mimics were negative for CHRNA6 overexpression; however, limited CHRNA6 expression, not reaching a threshold of >5 puncta or 1 aggregate of chromogen in >25% of cells, was observed in 69 of 685 mimics (10.1%), spanning an array of mesenchymal tumors. Taken together, these findings suggest that, with careful interpretation and the use of appropriate thresholds, CHRNA6 RNA chromogenic in situ hybridization is a potentially useful ancillary histologic tool for the diagnosis of EMC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Humans
- Male
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Chondrosarcoma/genetics
- Chondrosarcoma/pathology
- Chondrosarcoma/diagnosis
- Chondrosarcoma/metabolism
- Immunohistochemistry
- In Situ Hybridization/methods
- Neoplasms, Connective and Soft Tissue/genetics
- Neoplasms, Connective and Soft Tissue/pathology
- Neoplasms, Connective and Soft Tissue/diagnosis
- Neoplasms, Connective Tissue/genetics
- Neoplasms, Connective Tissue/pathology
- Neoplasms, Connective Tissue/diagnosis
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Ben W Dulken
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Leandra Kingsley
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Sabrina Zdravkovic
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Oscar Cespedes
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Xiaohua Qian
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - David I Suster
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Rutgers, New Jersey
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
2
|
Liu Y, Cheng He R, Munguba GC, Lee RK. Parvalbumin expression changes with retinal ganglion cell degeneration. Front Neurosci 2023; 17:1227116. [PMID: 37901418 PMCID: PMC10600448 DOI: 10.3389/fnins.2023.1227116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background Glaucoma is one of the main causes of irreversible visual field loss and blindness worldwide. Vision loss in this multifactorial neurodegenerative disease results from progressive degeneration of retinal ganglion cells (RGCs) and their axons. Identifying molecular markers that can be measured objectively and quantitatively may provide essential insights into glaucoma diagnosis and enhance pathophysiology understanding. Methods The chronic, progressive DBA/2J glaucomatous mouse model of glaucoma and C57BL6/J optic nerve crush (ONC) mouse model were used in this study. Changes in PVALB expression with RGC and optic nerve degeneration were assessed via gene expression microarray analysis, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry. Results Microarray analysis of the retinal gene expression in the DBA/2J mice at different ages showed that the expression of PVALB was downregulated as the mice aged and developed glaucoma with retinal ganglion cell loss. Analysis of qRT-PCR results demonstrated PVALB at the mRNA level was reduced in the retinas and optic nerves of old DBA/2J mice and in those after ONC compared to baseline young DBA2/J mice. PVALB protein expression measured by Western blot was also significantly reduced signal in the retinas and optic nerves of old DBA/2J mice and those eyes with crushed nerves. Immunohistochemical staining results demonstrated that there were fewer PVALB-positive cells in the ganglion cell layer (GCL) of the retina and staining pattern changed in the optic nerve from old DBA/2J mice as well as in mice eyes following ONC. Conclusion PVALB is abundantly expressed both by RGCs' soma in the retinas and RGCs' axons in the optic nerves of C57BL/6J. Furthermore, the expression level of PVALB decreases with RGC degeneration in the glaucomatous DBA/2J mice and after ONC injury of C57BL6/6J, indicating that PVALB is a reliable RGC molecular marker that can be used to study retinal and optic nerve degeneration.
Collapse
Affiliation(s)
- Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, United States
| | - Rossana Cheng He
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, United States
- Department of Surgery, Mount Sinai Hospital, New York, NY, United States
| | - Gustavo C. Munguba
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, United States
- Envision Eye Specialists, Ocala, FL, United States
| | - Richard K. Lee
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, United States
| |
Collapse
|
3
|
Wang J, Struebing FL, Geisert EE. Commonalities of optic nerve injury and glaucoma-induced neurodegeneration: Insights from transcriptome-wide studies. Exp Eye Res 2021; 207:108571. [PMID: 33844961 PMCID: PMC9890784 DOI: 10.1016/j.exer.2021.108571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.
Collapse
Affiliation(s)
- Jiaxing Wang
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Germany,Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eldon E. Geisert
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA,Corresponding author: (E.E. Geisert)
| |
Collapse
|
4
|
Geisert EE, Williams RW. Using BXD mouse strains in vision research: A systems genetics approach. Mol Vis 2020; 26:173-187. [PMID: 32180682 PMCID: PMC7058434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits-from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Collapse
Affiliation(s)
- Eldon E. Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE Atlanta GA, 30322
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S Manassas St, Memphis TN 38163
| |
Collapse
|
5
|
Laboissonniere LA, Goetz JJ, Martin GM, Bi R, Lund TJS, Ellson L, Lynch MR, Mooney B, Wickham H, Liu P, Schwartz GW, Trimarchi JM. Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep 2019; 9:15778. [PMID: 31673015 PMCID: PMC6823391 DOI: 10.1038/s41598-019-52215-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/11/2019] [Indexed: 01/27/2023] Open
Abstract
Retinal ganglion cells can be classified into more than 40 distinct subtypes, whether by functional classification or transcriptomics. The examination of these subtypes in relation to their physiology, projection patterns, and circuitry would be greatly facilitated through the identification of specific molecular identifiers for the generation of transgenic mice. Advances in single cell transcriptomic profiling have enabled the identification of molecular signatures for cellular subtypes that are only rarely found. Therefore, we used single cell profiling combined with hierarchical clustering and correlate analyses to identify genes expressed in distinct populations of Parvalbumin-expressing cells and functionally classified RGCs. RGCs were manually isolated based either upon fluorescence or physiological distinction through cell-attached recordings. Microarray hybridization and RNA-Sequencing were employed for the characterization of transcriptomes and in situ hybridization was utilized to further characterize gene candidate expression. Gene candidates were identified based upon cluster correlation, as well as expression specificity within physiologically distinct classes of RGCs. Further, we identified Prph, Ctxn3, and Prkcq as potential candidates for ipRGC classification in the murine retina. The use of these genes, or one of the other newly identified subset markers, for the generation of a transgenic mouse would enable future studies of RGC-subtype specific function, wiring, and projection.
Collapse
Affiliation(s)
- Lauren A Laboissonniere
- Department of Molecular Genetics and Microbiology 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | - Jillian J Goetz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | | | - Ran Bi
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, IA, 50011, USA
| | - Terry J S Lund
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Laura Ellson
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Madison R Lynch
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bailey Mooney
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hannah Wickham
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peng Liu
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, IA, 50011, USA
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | | |
Collapse
|
6
|
Liu Y, Tapia ML, Yeh J, He RC, Pomerleu D, Lee RK. Differential Gamma-Synuclein Expression in Acute and Chronic Retinal Ganglion Cell Death in the Retina and Optic Nerve. Mol Neurobiol 2019; 57:698-709. [PMID: 31463876 DOI: 10.1007/s12035-019-01735-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 11/28/2022]
Abstract
We used genetic naturally occurring glaucoma (DBA/2J) and experimentally induced optic nerve crush (ONC) as models to study gamma-synuclein expression change in retinal ganglion cells and optic nerves. Gene chip microarray analysis demonstrated downregulated expression of the gamma-synuclein gene in DBA/2J mice as they developed age-associated glaucoma with concomitant with retinal ganglion cell loss. Real-time PCR, Western blot, and immunostaining results confirmed that the expression of gamma-synuclein at the mRNA and protein level was significantly reduced in the retinas and optic nerves of aged DBA/2J mice. We also observed similar reduced expression of gamma-synuclein in the retinas from mice after optic nerve crush. Surprisingly, the expression of gamma-synuclein was increased in optic nerves after crush. This is the first study demonstrating gamma-synuclein-expressing cells accumulate in the optic nerve crush site. Gamma-synuclein was found in axons colocalizing largely with neurofilaments in control mice without injury but was found inside cells within the scar in the crush site. Gamma-synuclein expression is predominantly expressed at the optic nerve crush site associated with CD68+ macrophage-like cells, not GFAP-expressing astroglial cells, suggesting gamma-synuclein expression is associated with glial scar formation inhibitory to optic nerve regeneration. We propose gamma-synuclein labels macrophage-like cells recruited to the site of acute optic nerve injury.
Collapse
Affiliation(s)
- Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Mary L Tapia
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Justin Yeh
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Rossana Cheng He
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dustin Pomerleu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.,Eye Surgery Associates, Vermont South Medical Centre, 645 Burwood Highway, Vermont South, Victoria, 3133, Australia
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Li Y, Struebing FL, Wang J, King R, Geisert EE. Different Effect of Sox11 in Retinal Ganglion Cells Survival and Axon Regeneration. Front Genet 2018; 9:633. [PMID: 30619460 PMCID: PMC6305287 DOI: 10.3389/fgene.2018.00633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose: The present study examines the role of Sox11 in the initial response of retinal ganglion cells (RGCs) to axon damage and in optic nerve regeneration in mouse. Methods: Markers of retinal injury were identified using the normal retina database and optic nerve crush (ONC) database on GeneNetwork2 (www.genenetwork.org). One gene, Sox11, was highly upregulated following ONC. We examined the role of this transcription factor, Sox11, following ONC and optic nerve regeneration in mice. In situ hybridization was performed using the Affymetrix 2-plex Quantigene View RNA In Situ Hybridization Tissue Assay System. Sox11 was partially knocked out by intravitreal injection of AAV2-CMV-Cre-GFP in Sox11 f/f mice. Optic nerve regeneration model used Pten knockdown. Mice were perfused and the retinas and optic nerves were dissected and examined for RGC survival and axon growth. Results: Sox11 was dramatically upregulated in the retina following ONC injury. The level of Sox11 message increased by approximately eightfold 2 days after ONC. In situ hybridization demonstrated low-level Sox11 message in RGCs and cells in the inner nuclear layer in the normal retina as well as a profound increase in Sox11 message within the ganglion cells following ONC. In Sox11 f/f retinas, partially knocking out Sox11 significantly increased RGC survival after ONC as compared to the AAV2-CMV-GFP control group; however, it had little effect on the ability of axon regeneration. Combinatorial downregulation of both Sox11 and Pten resulted in a significant increase in RGC survival as compared to Pten knockdown only. When Pten was knocked down there was a remarkable increase in the number and the length of regenerating axons. Partially knocking out Sox11 in combination with Pten deletion resulted in a fewer regenerating axons. Conclusion: Taken together, these data demonstrate that Sox11 is involved in the initial response of the retina to injury, playing a role in the early attempts of axon regeneration and neuronal survival. Downregulation of Sox11 aids in RGC survival following injury of optic nerve axons, while a partial knockout of Sox11 negates the axon regeneration stimulated by Pten knockdown.
Collapse
Affiliation(s)
- Ying Li
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Felix L Struebing
- Department of Ophthalmology, Emory University, Atlanta, GA, United States.,Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany.,Department for Translational Brain Research, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Rebecca King
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Struebing FL, Lee RK, Williams RW, Geisert EE. Genetic Networks in Mouse Retinal Ganglion Cells. Front Genet 2016; 7:169. [PMID: 27733864 PMCID: PMC5039302 DOI: 10.3389/fgene.2016.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.
Collapse
Affiliation(s)
- Felix L Struebing
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
9
|
Sharma TP, McDowell CM, Liu Y, Wagner AH, Thole D, Faga BP, Wordinger RJ, Braun TA, Clark AF. Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice. Mol Neurodegener 2014; 9:14. [PMID: 24767545 PMCID: PMC4113182 DOI: 10.1186/1750-1326-9-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/18/2014] [Indexed: 12/18/2022] Open
Abstract
Background Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Results Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. Conclusion A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Abbot F Clark
- North Texas Eye Research Institute, Ft, Worth, TX USA.
| |
Collapse
|