1
|
Sanjaykumar SG, Malviya R, Srivastava S, Ahmad I, Uniyal P, Singh B, Nisar N. Chitosan-Peptide Composites for Tissue Engineering Applications: Advances in Treatment Strategies. Curr Protein Pept Sci 2025; 26:185-200. [PMID: 39350425 DOI: 10.2174/0113892037323136240910052119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 04/09/2025]
Abstract
One of the most well-known instances of an interdisciplinary subject is tissue engineering, where experts from many backgrounds collaborate to address important health issues and improve people's quality of life. Many researchers are interested in using chitosan and its derivatives as an alternative to fabricating scaffold engineering and skin grafts in tissue because of its natural abundance, affordability, biodegradability, biocompatibility, and wound healing properties. Nanomaterials based on peptides can provide cells with the essential biological cues required to promote cellular adhesion and are easily fabricated. Due to such worthy properties of chitosan and peptide, they find their application in tissue engineering and regeneration processes. The implementation of hybrids of chitosan and peptide is increasing in the field of tissue engineering and scaffolding for improved cellular adherence and bioactivity. This review covers the individual applications of peptide and chitosan in tissue engineering and further discusses the role of their conjugates in the same. Here, the recent findings are also discussed, along with studies involving the use of these hybrids in tissue engineering applications.
Collapse
Affiliation(s)
- Swati Gupta Sanjaykumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Bhupinder Singh
- Department of Law, Sharda University, Greater Noida, U.P., India
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Veider F, Haddadzadegan S, Sanchez Armengol E, Laffleur F, Kali G, Bernkop-Schnürch A. Inhibition of P-glycoprotein-mediated efflux by thiolated cyclodextrins. Carbohydr Polym 2024; 327:121648. [PMID: 38171673 DOI: 10.1016/j.carbpol.2023.121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Overcoming P-glycoprotein (P-gp)-mediated efflux poses a significant challenge for the pharmaceutical industry. This study investigates the potential of thiolated β-cyclodextrins (β-CD-SHs) as inhibitors of P-gp-mediated efflux in Caco-2 cells. Through a series of transport assays, intracellular accumulation, and efflux of the P-gp substrates Rhodamine 123 (Rh123) and Calcein-AM with and without co-administration of β-CD-SHs were assessed. The results revealed that the cellular uptake of Rh123 and Calcein-AM were enhanced up to 7- and 3-fold, compared to the control, respectively. In efflux studies an up to 2.5-fold reduction of the Rh123 efflux was reached compared the control, indicating a substantial decrease of Rh123 efflux by β-CD-SHs. Furthermore, it was observed that β-CD-SHs led to a decrease in the reactivity of fluorescence-labeled anti-P-gp, suggesting additional effects on the conformation of P-gp. Overall, this study demonstrates the potential of β-CD-SHs as effective modulator of P-gp-mediated drug efflux in Caco-2 cells.
Collapse
Affiliation(s)
- Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Lai C, Lin S, Liu W, Jin Y. Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy. Curr Med Chem 2024; 31:3074-3092. [PMID: 37062062 DOI: 10.2174/0929867330666230416153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/17/2023]
Abstract
Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.
Collapse
Affiliation(s)
- Chunmei Lai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Simin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, 350108, China
| | - Yanqiao Jin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Alhakamy NA, Naveen NR, Gorityala S, Kurakula M, Hosny KM, Safhi AY, Bukhary DM, Bukhary HA, Sabei FY, Mushtaq RY, Murshid SS. Development of Novel S-Protective Thiolated-Based Mucoadhesive Tablets for Repaglinide: Pharmacokinetic Study. Polymers (Basel) 2022; 14:polym14173529. [PMID: 36080604 PMCID: PMC9460926 DOI: 10.3390/polym14173529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers have an essential role in drug localization and target-specific actions in oral delivery systems. The current work aims to develop and characterize a new mucoadhesive polysaccharide polymer (thiolated xanthan gum-TXG and S-Protected thiolated xanthan gum-STX) that was further utilized for the preparation of repaglinide mucoadhesive tablets. The thiolation of xanthan gum was carried out by ester formation through the reaction of the hydroxyl group of xanthan gum and the carboxyl group of thioglycolic acid. Synthesis of TXG was optimized using central composite design, and TXG prepared using 5.303 moles/L of TGA and 6.075 g/L of xanthan gum can accomplish the prerequisites of the optimized formulation. Consequently, TXG was further combined with aromatic 2-mercapto-nicotinic acid to synthesize STX. TXG and STX were further studied for Fourier-transform infrared spectroscopy, rheological investigations, and Ellman’s assay (to quantify the number of thiol/disulfide groups). A substantial rise in the viscosity of STX might be due to increased interactions of macromolecules liable for improving the mucosal adhesion strength of thiolated gum. STX was proven safe with the support of cytotoxic study data. Mucoadhesive formulations of repaglinide-containing STX showed the highest ex vivo mucoadhesion strength (12.78 g-RSX-1 and 17.57 g- RSX-2) and residence time (>16 h). The improved cross-linkage and cohesive nature of the matrix in the thiolated and S-protected thiolated formulations was responsible for the controlled release of repaglinide over 16 h. The pharmacokinetic study revealed the greater AUC (area under the curve) and long half-life with the RSX-2 formulation, confirming that formulations based on S-protected thiomers can be favorable drug systems for enhancing the bioavailability of low-solubility drugs.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, India
| | - Shashank Gorityala
- Bioanalytical Chemistry, Labcorp Drug Development, Madison, WI 53704, USA
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence: (M.K.); (K.M.H.)
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.K.); (K.M.H.)
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Immam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Rizg WY, Naveen NR, Kurakula M, Safhi AY, Murshid SS, Mushtaq RY, Abualsunun WA, Alharbi M, Bakhaidar RB, Almehmady AM, Salawi A, Al Fatease A, Hosny KM. Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies. Pharmaceuticals (Basel) 2022; 15:ph15040491. [PMID: 35455488 PMCID: PMC9031896 DOI: 10.3390/ph15040491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Successful drug delivery by mucoadhesive systems depends on the polymer type, which usually gets adherent on hydration. The intended polymers must sustain the association with biomembranes and preserve or accommodate the drug for an extended time. The majority of hydrophilic polymers tend to make weak interactions like noncovalent bonds, which hampers the positioning of dosage forms at the required target sites, leading to inefficient therapeutic outcomes. It is possible to overcome this by functionalizing the natural polymers with thiol moiety. Further, considering that S-protected thiomers can benefit by improving thiol stability at a broad range of pH and enhancing the residence period at the required target, 2-mercapto-nicotinic acid (MA) was utilized in this present study to shield the free thiol groups on thiolated okra (TO). S-protected TO (STO) was synthesized and characterized for various parameters. Glibenclamide-loaded microspheres were formulated using STO (G-STO-M), and the process was optimized. The optimized formulation has shown complete and controlled release of the loaded drug at the end of the dissolution study. Cell viability assay indicated that the thiolated S-protected polymers gelated very well, and the formulated microspheres were safe. Further, G-STO-M showed considerable in vivo mucoadhesion strength. The glucose tolerance test confirmed the efficacy of STO formulation in minimizing the plasma glucose level. These results favor S-protection as an encouraging tool for improving the absorption of poorly aqueous soluble drugs like glibenclamide.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India;
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence:
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (A.S.)
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Ahmad Salawi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (A.S.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Rauf A, Tabish TA, Ibrahim IM, Rauf ul Hassan M, Tahseen S, Abdullah Sandhu M, Shahnaz G, Rahdar A, Cucchiarini M, Pandey S. Design of Mannose-Coated Rifampicin nanoparticles modulating the immune response and Rifampicin induced hepatotoxicity with improved oral drug delivery. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Kottke D, Burckhardt BB, Breitkreutz J, Fischer B. Application and validation of a coaxial liquid core waveguide fluorescence detector for the permeation analysis of desmopressin acetate. Talanta 2021; 226:122145. [DOI: 10.1016/j.talanta.2021.122145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023]
|
8
|
Tras B, Eser Faki H, Ozdemir Kutahya Z, Bahcivan E, Dik B, Bozkurt B, Uney K. Treatment and protective effects of metalloproteinase inhibitors alone and in combination with N-Acetyl cysteine plus vitamin E in rats exposed to aflatoxin B 1. Toxicon 2021; 194:79-85. [PMID: 33617885 DOI: 10.1016/j.toxicon.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the effects of matrix metalloproteinase (MMP) inhibitors dexamethasone and minocycline administrations -both single and in combination with N-acetylcysteine (NAC) and vitamin E-on the tissue distribution and lethal dose (LD)50 of aflatoxin (AF)B1 in rats. We performed this study on male Wistar rats (8-10 weeks) in two phases. In the first phase, rats were administered dexamethasone (5 and 20 mg/kg) and minocycline (45 and 90 mg/kg), both as single treatments and in combination with NAC (200 mg/kg) and vitamin E (600 mg/kg); these treatments followed AFB1 administration (2 mg/kg). In the second phase, the therapeutic effect value (TEV) was calculated to determine the treatment effect on the LD50 level of AFB1. The tissue affinity of AFB1 from high to low was liver, kidney, intestine, brain, heart, spleen, lung, testis, and vitreous humor, respectively. Dexamethasone at the 20 mg/kg dose significantly reduced AFB1 concentrations in the plasma and the other tissues, except for the vitreous humor. The effects of minocycline on the plasma and tissue concentrations of AFB1 varied by dose and tissue. The combinations of dexamethasone or minocycline with NAC and vitamin E increased the AFB1 concentrations in the plasma and all tissues, except for vitreous humor and liver. In male rats, the LD50 value of AFB1 was 11.86 mg/kg. The TEV of dexamethasone (20 mg/kg) was calculated to be 1.5. Dexamethasone can be administered in repeated doses at ≥20 mg/kg to increase survival in AFB1 poisoning.
Collapse
Affiliation(s)
- Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Zeynep Ozdemir Kutahya
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Cukurova, 01930, Adana, Turkey
| | - Emre Bahcivan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kafkas, 36000, Kars, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey.
| | - Banu Bozkurt
- Department of Ophthalmology, Faculty of Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| |
Collapse
|
9
|
Jiang JL, Zhang WZ, Ni WX, Shao JW. Insight on structure-property relationships of carrageenan from marine red algal: A review. Carbohydr Polym 2021; 257:117642. [DOI: 10.1016/j.carbpol.2021.117642] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023]
|
10
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. Int J Biol Macromol 2020; 154:433-445. [DOI: 10.1016/j.ijbiomac.2020.03.148] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
|
12
|
Li J, Regev G, Patel SK, Patton D, Sweeney Y, Graebing P, Grab S, Wang L, Sant V, Rohan LC. Rational Design of a Multipurpose Bioadhesive Vaginal Film for Co-Delivery of Dapivirine and Levonorgestrel. Pharmaceutics 2019; 12:E1. [PMID: 31861267 PMCID: PMC7023193 DOI: 10.3390/pharmaceutics12010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection and unintended pregnancy, which can lead to life-threatening complications, are two major burdens for female reproductive health. To address these pressing health issues, multipurpose prevention technologies (MPTs) are proposed to deliver two or more drugs simultaneously. MPTs could offer several benefits for users such as improved convenience, increased effectiveness, reduced cost, and decreased environmental burden. Here, we report the development, and in vitro and in vivo assessment of a bioadhesive vaginal film as a coitally-independent MPT dosage form for delivering dapivirine (DPV) and levonorgestrel (LNG) to prevent HIV infection and unintended pregnancy, respectively. After confirming the feasibility of bioadhesive film use for weekly drug delivery in vivo through colpophotography and MRI evaluation, the pharmacokinetics (PK) of DPV/LNG single entity and combination bioadhesive films was investigated in pigtailed macaques (n = 5). Both drugs from single entity or combination films were able to provide sustained drug release in vivo. The combination film showed lower local tissue clearance for DPV and exhibited significantly increased plasma concentration for LNG as compared to the single entity film. This proof-of-concept study demonstrates the ability of this novel bioadhesive film platform to deliver LNG and DPV simultaneously as an MPT product for the prevention of HIV infection and unintended pregnancy.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Galit Regev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Sravan Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (D.P.); (Y.S.)
| | - Yvonne Sweeney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (D.P.); (Y.S.)
| | - Philip Graebing
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Sheila Grab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Lin Wang
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.L.); (G.R.); (S.K.P.); (S.G.); (V.S.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (P.G.); (L.W.)
| |
Collapse
|
13
|
Katrajkar K, Darji L, Kethavath D, Thakkar S, Kshirsagar B, Misra M. Shedding light on interaction of so called inactive ingredients (excipients) with permeability-glycoprotein. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Abstract
Oral delivery is the most common method of drug administration with high safety and good compliance for patients. However, delivering therapeutic proteins to the target site via oral route involves tremendous challenge due to unfavourable conditions like biochemical barrier, mucus barrier and epithelial barriers. According to the functional differences of various protein drug delivery systems, the recent advances in pH responsive polymer-based drug delivery system, mucoadhesive polymer-based drug delivery system, absorption enhancers-based drug delivery system and composite polymer-based delivery system all were briefly summarised in this review, which not only clarified the clinic potential of these novel drug delivery systems, but also described the way for increasing oral bioavailability of therapeutic protein.
Collapse
Affiliation(s)
- Shiming He
- a Institute of Military Cognition and Brain Sciences , Beijing , China.,b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Zhongcheng Liu
- b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Donggang Xu
- a Institute of Military Cognition and Brain Sciences , Beijing , China
| |
Collapse
|
15
|
Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv 2017; 15:223-233. [DOI: 10.1080/17425247.2017.1395853] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongqiang Kou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongbo Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianzhi Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
16
|
Denora N, Lopedota A, Perrone M, Laquintana V, Iacobazzi RM, Milella A, Fanizza E, Depalo N, Cutrignelli A, Lopalco A, Franco M. Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates. Acta Biomater 2016; 43:170-184. [PMID: 27427225 DOI: 10.1016/j.actbio.2016.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (<1μm) for catheter administration, low degree of oxidation, and sufficient mucoadhesion property with 9% and 18% of GSH- and NAC-GC based NP retained on pig mucosa bladder after 3h of exposure, respectively. STATEMENT OF SIGNIFICANCE The aim of the present study was first to optimize the synthesis of NAC-GC and GSH-GC, and preserve the oxidation state of the thiol moieties by introducing several optimizations of the already reported synthetic procedures that increase the mucoadhesive properties and avoid pH-dependent aggregation. Second, starting from these optimized thiomers, we studied the feasibility of manufacturing MP and NP by spray-drying techniques. The aim of this second step was to produce mucoadhesive drug delivery systems of adequate size for vesical administration by catheter, and comparable mucoadhesive properties with respect to the processed polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90.
Collapse
|
17
|
Bhalekar MR, Bargaje RV, Upadhaya PG, Madgulkar AR, Kshirsagar SJ. Formulation of mucoadhesive gastric retentive drug delivery using thiolated xyloglucan. Carbohydr Polym 2016; 136:537-42. [DOI: 10.1016/j.carbpol.2015.09.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/01/2022]
|
18
|
Laffleur F, Fischer A, Schmutzler M, Hintzen F, Bernkop-Schnürch A. Evaluation of functional characteristics of preactivated thiolated chitosan as potential therapeutic agent for dry mouth syndrome. Acta Biomater 2015; 21:123-31. [PMID: 25900442 DOI: 10.1016/j.actbio.2015.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The objective of this study was to investigate preactivated thiomers for their potential in the treatment of dry mouth syndrome. METHODS Chitosan-thioglycolic-mercaptonicotinamide conjugates (chitosan-TGA-MNA) were synthesized by the oxidative S-S coupling of chitosan-thioglycolic acid (chitosan-TGA) with 6-mercaptonicotinamide (MNA). Test disks were compressed out of unmodified chitosan, chitosan-TGA (thiomers) and chitosan-TGA-MNA conjugates to investigate cohesive properties, cytotoxicity assays and mucoadhesion studies. RESULTS Immobilizing the MNA achieved higher swelling and cohesive properties of chitosan-TGA-MNA conjugates compared to unmodified chitosan. Rotating cylinder studies displayed a 3.1-fold improvement of mucoadhesiveness of chitosan-TGA-MNA conjugates compared to thiolated polymers. Findings in tensile strength were in good agreement with rotating cylinder ones. Furthermore, preactivated thiomers exhibit higher stability. All conjugates were found non-toxic against Caco-2 cells. CONCLUSION Preactivated thiolated chitosan could be a promising system for the treatment of dry mouth syndrome where mucosa requires lubrication and mucoadhesiveness.
Collapse
|
19
|
Chen X, Zhang Y, Yuan L, Zhang H, Dai W, He B, Wang X, Zhang Q. The P-glycoprotein inhibitory effect and related mechanisms of thiolated chitosan and its S-protected derivative. RSC Adv 2015. [DOI: 10.1039/c5ra19418k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P-gp inhibitory mechanisms mediated by CS-TGA and CS-TGA-6MNA lie in the decreasing membrane fluidity and inhibiting P-gp ATPase activity, while not influencing the expression of P-gp and decreasing ATP level at the investigation concentration.
Collapse
Affiliation(s)
- Xianhui Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Lan Yuan
- Medical and Healthy Analytical Center
- Peking University
- Beijing 100191
- China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
20
|
Laffleur F, Bernkop-Schnürch A. Strategies for improving mucosal drug delivery. Nanomedicine (Lond) 2014; 8:2061-75. [PMID: 24279493 DOI: 10.2217/nnm.13.178] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Within this review we will provide a comprehensive understanding in order to improve existing strategies and to develop new systems to lower the barrier for improving mucosal drug delivery. Mucosal administration of drugs achieves a therapeutical effect as the permeation of significant amounts of a drug is permitted through the absorption membrane. The absorption membrane relies on the mucosal layer and the epithelial tissue. In order to overcome barriers, drug delivery systems have to exhibit various functions and features, such as mucoadhesive and protective activity, solubility improving, permeation and uptake enhancing, and drug release controlling properties. This review also aims to provide an insight of well-distinguished strategies to date, as well as provide a focus on the enhancement of membrane permeability. Furthermore, since the development and functions of drug delivery systems exert a high influence on the ability of drug permeation through membrane, these considerations will also be discussed in this review.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | |
Collapse
|
21
|
Bonengel S, Bernkop-Schnürch A. Thiomers--from bench to market. J Control Release 2014; 195:120-9. [PMID: 24993428 DOI: 10.1016/j.jconrel.2014.06.047] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 01/22/2023]
Abstract
Thiolated polymers or designated thiomers are obtained by immobilization of sulhydryl bearing ligands on the polymeric backbone of well-established polymers such as poly(acrylates) or chitosans. This functionalization leads to significantly improved mucoadhesive properties compared to the corresponding unmodified polymers, as disulfide bonds between thiol groups of thiomers and cysteine-rich glycoproteins of the mucus gel layer are formed. Furthermore, enzyme- and efflux-pump inhibiting as well as improved permeation-enhancing properties are advantages of thiolization. By the covalent attachment of mercaptonicotinamide substructures via disulfide bonds to thiolated polymers these properties are even substantially further improved and stability towards oxidation even in aqueous media can be provided. Meanwhile, more than 50 research groups worldwide are working on thiolated polymers. For certain thiomers the scale up process for industrial production has already been done and GMP material is available. Furthermore, safety of thiolated poly(acrylic acid), thiolated chitosan and thiolated hyaluronic acid could be demonstrated via orientating studies in human volunteers and via various clinical trials. The first product (Lacrimera® eye drops, Croma-Pharma) containing a chitosan-N-acetylcysteine conjugate for treatment of dry eye syndrome will enter the European market this year. It is the only product providing a sustained protective effect on the ocular surface due to its comparatively much more prolonged residence time worldwide. Various further products utilizing, for instance, thiolated hyaluronic acid in ocular surgery are in the pipeline.
Collapse
Affiliation(s)
- Sonja Bonengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
22
|
Kodadová A, Vitková Z, Herdová P, Ťažký A, Oremusová J, Grančai D, Mikuš P. Formulation of sage essential oil (Salvia officinalis, L.) monoterpenes into chitosan hydrogels and permeation study with GC-MS analysis. Drug Dev Ind Pharm 2014; 41:1080-8. [PMID: 24931183 DOI: 10.3109/03639045.2014.927480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.
Collapse
|
23
|
Hauptstein S, Bonengel S, Griessinger J, Bernkop-Schnürch A. Synthesis and characterization of pH tolerant and mucoadhesive (thiol-polyethylene glycol) chitosan graft polymer for drug delivery. J Pharm Sci 2013; 103:594-601. [PMID: 24382680 DOI: 10.1002/jps.23832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 11/11/2022]
Abstract
The objective of this study was to generate a water-soluble thiolated chitosan to enable the permeation-enhancing effect of chitosan at pH of at least 5.5 without losing the advantages of improved mucoadhesive properties. Therefore, the thiol-bearing polyoxyethylene ligand {O-(3-carboxylpropyl)-O'-[2-[3-mercaptopropionylamino)ethyl]-polyethyleneglycol} was conjugated via amide bond formation to the amino group of chitosan. Resulting novel chitosan derivative (Chito-PEG-SH) exhibited 250 μmol free thiol groups per gram polymer. By the attachment of the thiol-bearing PEG ligand, an improvement of permeation-enhancing effect on rat intestine (2.7-fold improvement) as well as on a Caco-2 monolayer model (1.9-fold improvement) could be found. Cytotoxicity studies on Caco-2 cells revealed no change in biocompatibility. Mucoadhesion was improved 3.1-fold by the formation of disulfide bonds with mucus glycoproteins. The mucoadhesive effect of Chito-PEG-SH turned out to be similar to thiolated chitosan and more pronounced than mucoadhesive properties of unmodified chitosan. The graft polymer is soluble in water and aqueous solutions over a broad pH range. In aqueous media, the novel polymer does not precipitate at pH of 8.6 or less. According to these results, Chito-PEG-SH might show potential as auxiliary agent in oral drug delivery where its solubility even up to pH 8 is likely beneficial.
Collapse
Affiliation(s)
- Sabine Hauptstein
- Center for Chemistry and Biomedicine, Center for Molecular Biosciences, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, 6020, Austria
| | | | | | | |
Collapse
|
24
|
Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013; 65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Argentina; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
25
|
Preactivated thiomers for vaginal drug delivery vehicles. Biomaterials 2013; 34:7811-8. [DOI: 10.1016/j.biomaterials.2013.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/12/2013] [Indexed: 11/22/2022]
|
26
|
Müller C, Ma BN, Gust R, Bernkop-Schnürch A. Thiopyrazole preactivated chitosan: combining mucoadhesion and drug delivery. Acta Biomater 2013; 9:6585-93. [PMID: 23321304 DOI: 10.1016/j.actbio.2013.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 01/23/2023]
Abstract
The objective of this study was to develop a preactivated chitosan derivative by the introduction of thioglycolic acid followed by 3-methyl-1-phenylpyrazole-5-thiol (MPPT) coupling via disulfide bond formation. The newly synthesized conjugate was characterized in terms of water-absorbing capacity, cohesive properties, mucoadhesion and drug release kinetics. Further in vitro characterization was conducted regarding permeation enhancement of the model compound fluorescein isothiocyanate dextran (FD4) and cytotoxic effects on Caco-2 cells. Based on the attachment of the hydrophobic residue, chitosan-S-S-MPPT test discs showed increased stability of the polymer matrix as well as improved water uptake and liberation of fluorescein isothiocyanate dextran (FD4) compared to chitosan only. The mucoadhesive qualities on porcine intestinal mucosa could be improved 38-fold based on the enhanced bonding between chitosan-S-S-MPPT and mucus through the thiol/disulfide exchange reaction of polymer and mucosal cysteine-rich domains supported by MPPT as the leaving group. This novel biomaterial presents a disulfide conjugation-based delivery system that releases the antibacterial thiopyrazole when the polymer comes into contact with the intestinal mucosa. These properties, together with the safe toxicological profile, make chitosan-S-S-MPPT a valuable carrier for mucoadhesive drug delivery systems and a promising matrix for the development of antimicrobial excipients.
Collapse
|
27
|
Hintzen F, Laffleur F, Sarti F, Müller C, Bernkop-Schnürch A. In vitro and ex vivo evaluation of an intestinal permeation enhancing self-microemulsifying drug delivery system (SMEDDS). J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50039-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Rahmat D, Müller C, Shahnaz G, Leithner K, Laffleur F, Khan MI, Martien R, Schnürch AB. HEC-cysteamine particles: influence of particle size, zeta potential, morphology and sulfhydryl groups on permeation enhancing properties. Drug Dev Ind Pharm 2012; 39:1338-45. [DOI: 10.3109/03639045.2012.711834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Dünnhaupt S, Barthelmes J, Rahmat D, Leithner K, Thurner CC, Friedl H, Bernkop-Schnürch A. S-protected thiolated chitosan for oral delivery of hydrophilic macromolecules: evaluation of permeation enhancing and efflux pump inhibitory properties. Mol Pharm 2012; 9:1331-41. [PMID: 22489677 DOI: 10.1021/mp200598j] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was the investigation of permeation enhancing and P-glycoprotein (P-gp) inhibition effects of a novel thiolated chitosan, the so-named S-protected thiolated chitosan. Mediated by a carbodiimide, increasing amounts of thioglycolic acid (TGA) were covalently bound to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Mucoadhesive properties of all conjugates were evaluated in vitro on porcine intestinal mucosa based on tensile strength investigations. Permeation enhancing effects were evaluated ex vivo using rat intestinal mucosa and in vitro via Caco-2 cells using the hydrophilic macromolecule FD(4) as the model drug. Caco-2 cells were further used to show P-gp inhibition effects by using Rho-123 as P-gp substrate. Apparent permeability coefficients (P(app)) were calculated and compared to values obtained from each buffer control. Three different thiolated chitosans were generated in the first step of modification, which displayed increasing amounts of covalently attached free thiol groups on the polymer backbone. In the second modification step, more than 50% of these free thiol groups were covalently linked with 6-MNA. Within 3 h of permeation studies on excised rat intestine, P(app) values of all S-protected chitosans were at least 1.3-fold higher compared to those of corresponding thiomers and more than twice as high as that of unmodified chitosan. Additional permeation studies on Caco-2 cells confirmed these results. Because of the chemical modification and higher amount of reactive thiol groups, all S-protected thiolated chitosans exhibit at least 1.4-fold pronounced P-gp inhibition effects in contrast to their corresponding thiomers. These features approve S-protected thiolated chitosan as a promising excipient for various drug delivery systems providing improved permeation enhancing and efflux inhibition effects.
Collapse
Affiliation(s)
- Sarah Dünnhaupt
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzenz-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Müller C, Rahmat D, Sarti F, Leithner K, Bernkop-Schnürch A. Immobilization of 2-mercaptoethylamine on oxidized chitosan: a substantially mucoadhesive and permeation enhancing polymer. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm15164b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
In spite of the numerous barriers inherent in the oral delivery of therapeutically active proteins, research into the development of functional protein-delivery systems is still intense. The effectiveness of such oral protein-delivery systems depend on their ability to protect the incorporated protein from proteolytic degradation in the GI tract and enhance its intestinal absorption without significantly compromising the bioactivity of the protein. Among these delivery systems are polyelectrolyte complexes (PECs) which are composed of polyelectrolyte polymers complexed with a protein via coulombic and other interactions. This review will focus on the current status of PECs with a particular emphasis on the potential and limitations of multi- or inter-polymer PECs used to facilitate oral protein delivery.
Collapse
|
32
|
HEC-cysteamine conjugates: influence of degree of thiolation on efflux pump inhibitory and permeation enhancing properties. Int J Pharm 2011; 422:40-6. [PMID: 22027393 DOI: 10.1016/j.ijpharm.2011.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 11/23/2022]
Abstract
Within the present study hydroxyethyl cellulose-cysteamine conjugates are investigated regarding biocompatibility, in situ gelling, permeation enhancing and efflux pump inhibitory properties. For this purpose, a series of concentrations of sodium periodate was prepared to oxidize HEC leading to ring opening of glucose subunits. The resulting polymers showing varying degrees of oxidation (DO) were then conjugated with cysteamine stabilized via reductive amination. Consequently, HEC-cysteamine conjugates with increasing degree in thiolation were obtained. Since the conjugates are positively charged, potency of cytotoxicity was tested by resazurin assay. In situ gelling properties of the conjugates were studied to investigate change of their viscosity due to inter- and/or intramolecular crosslinking via disulfide bonds. The influence of the presence of the conjugates on transport of rhodamine 123 and fluoresceinisothiocyanate-dextran 4 (FD4) representing model compounds for P-glycoprotein (P-gp) inhibition and permeation enhancing studies, respectively, across Caco-2 cell monolayers was determined. The conjugates showed a degree of thiolation in the range of 316-2158 μmol/g. Within 30 min, dynamic viscosity of the conjugate with the lowest degree of thiolation 0.5% (m/v) increased up to 300-fold. The conjugates showed a degree of thiolation-dependent increase in cytotoxicity but they all were found comparatively low cytotoxic. The addition of the conjugate with thiol group content of 1670 μmol/g resulted in the highest improvement in the transport of both rhodamine 123 and FD4 as compared to buffer control. Accordingly, the degree of thiolation strongly influences the properties of the conjugates and the modulation of the degree of thiolation could be exploited for development of various drug delivery systems.
Collapse
|