1
|
Zhang J, Miao Q, Ma X, He D, Pan Y, Yuan L, Zhai Y, Hu G. Colistin-niclosamide effervescent dry suspension combats colistin-resistant Salmonella in vitro and in vivo. Poult Sci 2024; 103:104492. [PMID: 39500268 PMCID: PMC11570728 DOI: 10.1016/j.psj.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
The increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. It has been reported that niclosamide (NIC) can restore the sensitivity of Gram-negative bacteria to colistin (COL). However, NIC is practically insoluble in water and sparingly soluble in organic solvents, leading to limited therapeutic applications. This study aims to prepare a COL-NIC effervescent dry suspension (CNEDS) and evaluate its antibacterial effect against COL-resistant Salmonella both in vitro and in broiler chickens. With the sedimentation volume ratio as an index, suitable suspending agent, wetting agent, filler and effervescent agent were screened through a single-factor method. The preparation conditions were optimized using the Box-Behnken response surface method to obtain the formulation for CNEDS. The quality evaluation results showed that the successfully prepared CNEDS had a sedimentation volume ratio of 0.99, a drying weight loss of 1.3%, and a re-dispersion capability of 1-2 times, all of which met pharmacopoeial requirements. In terms of pharmacological evaluation, we first demonstrated that CNEDS substantially restored COL sensitivity against COL-resistant bacteria. Subsequently, time-killing analysis, scanning electron microscopy (SEM) and live/dead assays confirmed the antibacterial activity of CNEDS against COL-resistant bacteria. Finally, a Salmonella infection model in broiler chickens was established to further assess the therapeutic effect of CNEDS in vivo. CNEDS improved the survival rate of broiler chickens, reduced the bacterial burden on organs. These findings suggest that CNEDS effectively overcome COL resistance, indicating its potential for the treatment of COL-resistant bacterial infections in broiler chickens.
Collapse
Affiliation(s)
- Junkai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Qingqing Miao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaoyuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, PR China.
| |
Collapse
|
2
|
Zhang J, Wang X, Li P, Gao Y, Wang R, Li S, Yi K, Cui X, Hu G, Zhai Y. Colistin-niclosamide-loaded nanoemulsions and nanoemulsion gels for effective therapy of colistin-resistant Salmonella infections. Front Vet Sci 2024; 11:1492543. [PMID: 39507218 PMCID: PMC11539104 DOI: 10.3389/fvets.2024.1492543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Colistin (COL) is regarded as a last-resort treatment for infections by multidrug-resistant (MDR) Gram-negative bacteria. The emergence of colistin-resistant Enterobacterales poses a significant global public health concern. Our study discovered that niclosamide (NIC) reverses COL resistance in Salmonella via a checkerboard assay. However, poor solubility and bioavailability of NIC pose challenges. In this study, we prepared a self-nanoemulsifying drug delivery system (SNEDDS) co-encapsulating NIC and COL. We characterized the physicochemical properties of the resulting colistin-niclosamide-loaded nanoemulsions (COL/NIC-NEs) and colistin-niclosamide-loaded nanoemulsion gels (COL/NIC-NEGs), assessing their antibacterial efficacy in vitro and in vivo. The COL/NIC-NEs exhibited a droplet size of 19.86 nm with a zeta potential of -1.25 mV. COL/NIC-NEs have excellent stability, significantly enhancing the solubility of NIC while also demonstrating a pronounced sustained-release effect. Antimicrobial assays revealed that the MIC of COL in COL/NIC-NEs was reduced by 16-128 times compared to free COL. Killing kinetics and scanning electron microscopy confirmed enhanced antibacterial activity. Antibacterial mechanism studies reveal that the COL/NIC-NEs and COL/NIC-NEGs could enhance the bactericidal activity by damaging cell membranes, disrupting proton motive force (PMF), inhibiting multidrug efflux pump, and promoting oxidative damage. The therapeutic efficacy of the COL/NIC-NEs and COL/NIC-NEGs is further demonstrated in mouse intraperitoneal infection models with COL-resistant Salmonella. To sum up, COL/NIC-NEs and COL/NIC-NEGs are a potentially effective strategies promising against COL-resistant Salmonella infections.
Collapse
Affiliation(s)
- Junkai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xilong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou, China
| | - Ruiyun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuaihua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kaifang Yi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaodie Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Park J, Han H, Ahn JK. Development of Targeted Drug Delivery System for the Treatment of SARS-CoV-2 Using Aptamer-Conjugated Gold Nanoparticles. Pharmaceutics 2024; 16:1288. [PMID: 39458617 PMCID: PMC11510760 DOI: 10.3390/pharmaceutics16101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The SARS-CoV-2 pandemic has highlighted niclosamide (NIC) as a promising treatment for COVID-19. However, its clinical application is limited due to its poor water solubility, resulting in low bioavailability. Methods: To address this issue, we developed a AuNP-HA-NIC system, which combines gold nanoparticles with hyaluronic acid to enhance drug delivery. Our comprehensive characterization of the system revealed that hyaluronic acid with specific molecular weights, particularly those exposed to electron-beam irradiation between 2 and 20 kGy, produced the most stable nanoparticles for efficient drug loading and delivery. Results: Additionally, the AuNP-HA-NIC system exhibits a significant sensitivity to pH changes, which is a critical feature for targeted drug release. Under acidic conditions mimicking the stomach and small intestine, minimal drug release was observed, indicating the effective prevention of premature drug release in the gastrointestinal tract. Furthermore, the integration of a targeting aptamer established specific binding abilities towards the SARS-CoV-2 spike protein, distinguishing it from other coronaviruses. Conclusions: As research progresses, and with further in vivo testing and optimization, the AuNP-HA-NIC-aptamer system holds great promise as a game-changer in the field of antiviral therapeutics, particularly in the battle against COVID-19.
Collapse
Affiliation(s)
- Junghun Park
- Department of Biologics, Gachon University, Incheon 21936, Republic of Korea;
| | - Hyogu Han
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea;
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jun Ki Ahn
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea;
| |
Collapse
|
4
|
Syamprasad NP, Madje N, Bachannagari J, Jannu AK, Jain S, Tene K, Shantanu PA, Naidu V, Chella N. Niclosamide nanocrystal for enhanced in-vivo efficacy against gastrointestinal stromal tumor via regulating EGFR/STAT-3/DR-4 axis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Yang M, Wang AQ, Padilha EC, Shah P, Hagen NR, Ryu C, Shamim K, Huang W, Xu X. Use of physiological based pharmacokinetic modeling for cross-species prediction of pharmacokinetic and tissue distribution profiles of a novel niclosamide prodrug. Front Pharmacol 2023; 14:1099425. [PMID: 37113753 PMCID: PMC10126473 DOI: 10.3389/fphar.2023.1099425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Niclosamide (Nc) is an FDA-approved anthelmintic drug that was recently identified in a drug repurposing screening to possess antiviral activity against SARS-CoV-2. However, due to the low solubility and permeability of Nc, its in vivo efficacy was limited by its poor oral absorption. Method: The current study evaluated a novel prodrug of Nc (PDN; NCATS-SM4705) in improving in vivo exposure of Nc and predicted pharmacokinetic profiles of PDN and Nc across different species. ADME properties of the prodrug were determined in humans, hamsters, and mice, while the pharmacokinetics (PK) of PDN were obtained in mice and hamsters. Concentrations of PDN and Nc in plasma and tissue homogenates were measured by UPLC-MS/MS. A physiologically based pharmacokinetic (PBPK) model was developed based on physicochemical properties, pharmacokinetic and tissue distribution data in mice, validated by the PK profiles in hamsters and applied to predict pharmacokinetic profiles in humans. Results: Following intravenous and oral administration of PDN in mice, the total plasma clearance (CLp) and volume of distribution at steady-state (Vdss) were 0.061-0.063 L/h and 0.28-0.31 L, respectively. PDN was converted to Nc in both liver and blood, improving the systemic exposure of Nc in mice and hamsters after oral administration. The PBPK model developed for PDN and in vivo formed Nc could adequately simulate plasma and tissue concentration-time profiles in mice and plasma profiles in hamsters. The predicted human CLp/F and Vdss/F after an oral dose were 2.1 L/h/kg and 15 L/kg for the prodrug respectively. The predicted Nc concentrations in human plasma and lung suggest that a TID dose of 300 mg PDN would provide Nc lung concentrations at 8- to 60-fold higher than in vitro IC50 against SARS-CoV-2 reported in cell assays. Conclusion: In conclusion, the novel prodrug PDN can be efficiently converted to Nc in vivo and improves the systemic exposure of Nc in mice after oral administration. The developed PBPK model adequately depicts the mouse and hamster pharmacokinetic and tissue distribution profiles and highlights its potential application in the prediction of human pharmacokinetic profiles.
Collapse
|
6
|
The challenge of repurposing niclosamide: Considering pharmacokinetic parameters, routes of administration, and drug metabolism. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Wang Z, Ren J, Du J, Wang H, Liu J, Wang G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int J Mol Sci 2022; 23:16116. [PMID: 36555754 PMCID: PMC9782559 DOI: 10.3390/ijms232416116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug for the treatment of parasitic infections. However, over the past few years, increasing evidence has shown that niclosamide could treat diseases beyond parasitic diseases, which include metabolic diseases, immune system diseases, bacterial and viral infections, asthma, arterial constriction, myopia, and cancer. Therefore, we systematically reviewed the pharmacological activities and therapeutic prospects of niclosamide in human disease and cancer and summarized the related molecular mechanisms and signaling pathways, indicating that niclosamide is a promising therapeutic player in various human diseases, including cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
8
|
Deogratias G, Shadrack DM, Munissi JJE, Kinunda GA, Jacob FR, Mtei RP, Masalu RJ, Mwakyula I, Kiruri LW, Nyandoro SS. Hydrophobic π-π stacking interactions and hydrogen bonds drive self-aggregation of luteolin in water. J Mol Graph Model 2022; 116:108243. [PMID: 35777224 DOI: 10.1016/j.jmgm.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022]
Abstract
Luteolin is a flavonoid obtained from different plant species. It is known for its versatile biological activities. However, the beneficial effects of luteolin have been limited to small concentrations as a result of poor water solubility. This study aimed at investigating the hydrophobic interaction and hydration of luteolin towards the improvement of its solubility when used as a drug. We report the aggregation properties of luteolin in water by varying the number of monomers using atomistic molecular dynamics simulation. Results show that the equilibrium structure of luteolin occurs in an aggregated state with different structural arrangements. As the monomers size increase, the antiparallel flipped conformation dominates over T-shaped antiparallel, T-shaped parallel, and antiparallel conformations. The formation of intramolecular hydrogen bonding of 0.19 nm between the keto-enol groups results in hydrophobic characteristics. A larger cluster exhibits slow hydrogen bond dynamics for luteolin-luteolin than luteolin-water interaction. Water structure at large cluster size exhibited slow dynamics and low self-diffusion of luteolin. The existence of hydrophobic π-π and hydrogen bonds between luteolin molecules drives strong self-aggregation resulting in poor water solubility. Breakage of these established interactions would result in increased solubility of luteolin in water.
Collapse
Affiliation(s)
- Geradius Deogratias
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania.
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
| | - Joan J E Munissi
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Grace A Kinunda
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Fortunatus R Jacob
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Regina P Mtei
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Rose J Masalu
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania
| | - Issakwisa Mwakyula
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O.Box, 43844-00100, Nairobi, Kenya
| | - Stephen S Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| |
Collapse
|
9
|
Huang F, Jiang X, Sallam MA, Zhang X, He W. A Nanocrystal Platform Based on Metal-Phenolic Network Wrapping for Drug Solubilization. AAPS PharmSciTech 2022; 23:76. [PMID: 35178657 DOI: 10.1208/s12249-022-02220-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
The preparation of drugs into nanocrystals represents a practical pharmaceutical technology to solubilize poorly water-soluble drugs and enhance bioavailability. However, commonly used stabilizers in nanocrystals like polymers and surfactants are frequently inefficient and cannot stabilize nanocrystals for an expected time. This study reports an exquisite platform for nanocrystal production based on a metal-phenolic network (MPN). MPN-wrapped nanocrystal particles (MPN-NPs) were fabricated through an anti-solvent precipitation method using tannic acid and FeIII or AlIII as coupling agents and characterized by dynamic light scattering, transmission electron microscope, ultraviolet and visible spectrophotometry, fourier-transform infrared spectroscopy, and X-ray powder diffraction. In vitro release, cytotoxicity, and stability were mainly studied with MPN-NPs loading paclitaxel. The suitability of MPN as a nanocrystal stabilizer was also investigated for other classical hydrophobic drugs, including simvastatin, andrographolide, atorvastatin calcium, ferulic acid, and famotidine. The results showed that MPN could effectively wrap and stabilize various drug nanocrystals apart from famotidine. The maximum solubilization of MPN towards atorvastatin calcium was up to 1587 folds, and it also exhibited an excellent solubilizing effect on other hydrophobic drugs. We disclosed that the drug was entrapped in MPN in the nanocrystal form, and there were distinct physiochemical interactions between MPN and the payload. Our findings suggested that MPN may be a promising platform for nanocrystal production to address the challenge of low solubility associated with hydrophobic drugs. Graphical abstract.
Collapse
|
10
|
Development of New Dosage forms of Niclosamide with Increased Solubility and Cytotoxic Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02562-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Ousingsawat J, Centeio R, Cabrita I, Talbi K, Zimmer O, Graf M, Göpferich A, Schreiber R, Kunzelmann K. Airway Delivery of Hydrogel-Encapsulated Niclosamide for the Treatment of Inflammatory Airway Disease. Int J Mol Sci 2022; 23:1085. [PMID: 35163010 PMCID: PMC8835663 DOI: 10.3390/ijms23031085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Inês Cabrita
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Moritz Graf
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Achim Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| |
Collapse
|
12
|
Vuai SAH, Sahini MG, Onoka I, Kiruri LW, Shadrack DM. Cation-π interactions drive hydrophobic self-assembly and aggregation of niclosamide in water. RSC Adv 2021; 11:33136-33147. [PMID: 35493563 PMCID: PMC9042188 DOI: 10.1039/d1ra05358b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The beneficial medicinal effects of niclosamide have been reported to be hampered by poor aqueous solubility and so a higher concentration dosage is required. In this work, we have studied the aggregation properties of niclosamide in water by varying the number of monomers. We have employed all-atom classical molecular dynamics simulation in order to explore such properties. The equilibrium structure exists in an aggregated state with structural rearrangements of the stacking units. Niclosamide monomers tend to form clusters in an orderly manner and tend to aggregate in parallel and antiparallel orientations of the phenyl rings as the monomers are increased in number from 4 to 9. Upon increasing the size from 9 to 14, and from 49 to 150, a considerable dominance of the metastable parallel arrangement is observed, resulting in the formation of a closely packed cluster with hydrophobic contacts. The metastable conformation self-arranges to a T-shape before forming a stable planar antiparallel displaced conformation. The aggregated π-π parallel and cation-π antiparallel clusters in water exist in a β-conformer. We further observed that formation of a stable cluster aggregate entails the formation of an intermediate metastable cluster that disperses in solution forming a large stable cluster. We also discovered that movement of the water is faster in less aggregated clusters and as the cluster size increases, the mobility rate becomes much slower.
Collapse
Affiliation(s)
- Said A H Vuai
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma Tanzania
| | - Mtabazi G Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma Tanzania
| | - Isaac Onoka
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma Tanzania
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University P. O. Box 43844-00100 Nairobi Kenya
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania P. O. Box 47 Dodoma Tanzania
| |
Collapse
|
13
|
Cheng M, Liu Q, Gan T, Fang Y, Yue P, Sun Y, Jin Y, Feng J, Tu L. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules 2021; 26:molecules26154481. [PMID: 34361634 PMCID: PMC8348076 DOI: 10.3390/molecules26154481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.
Collapse
Affiliation(s)
- Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Qiaoming Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tiantian Gan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Pengfei Yue
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| |
Collapse
|
14
|
Shamim K, Xu M, Hu X, Lee EM, Lu X, Huang R, Shah P, Xu X, Chen CZ, Shen M, Guo H, Chen L, Itkin Z, Eastman RT, Shinn P, Klumpp-Thomas C, Michael S, Simeonov A, Lo DC, Ming GL, Song H, Tang H, Zheng W, Huang W. Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorg Med Chem Lett 2021; 40:127906. [PMID: 33689873 PMCID: PMC7936759 DOI: 10.1016/j.bmcl.2021.127906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Khalida Shamim
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Xiao Lu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Richard T Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| |
Collapse
|
15
|
Jara MO, Warnken ZN, Sahakijpijarn S, Moon C, Maier EY, Christensen DJ, Koleng JJ, Peters JI, Hackman Maier SD, Williams Iii RO. Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. Int J Pharm 2021; 603:120701. [PMID: 33989748 PMCID: PMC8112893 DOI: 10.1016/j.ijpharm.2021.120701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide’s limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.
Collapse
Affiliation(s)
- Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Zachary N Warnken
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Sawittree Sahakijpijarn
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Chaeho Moon
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Jay I Peters
- UT- Health San Antonio Department of Medicine, Division of Pulmonary/Critical Care Medicine, San Antonio, TX 78229, USA
| | | | - Robert O Williams Iii
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Hobson JJ, Savage AC, Dwyer AB, Unsworth C, Massam J, Arshad U, Pertinez H, Box H, Tatham L, Rajoli RKR, Neary M, Sharp J, Valentijn A, David C, Curley P, Liptrott NJ, McDonald TO, Owen A, Rannard SP. Scalable nanoprecipitation of niclosamide and in vivo demonstration of long-acting delivery after intramuscular injection. NANOSCALE 2021; 13:6410-6416. [PMID: 33885522 DOI: 10.1039/d1nr00309g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The control of COVID-19 across the world requires the formation of a range of interventions including vaccines to elicit an immune response and immunomodulatory or antiviral therapeutics. Here, we demonstrate the nanoparticle formulation of a highly insoluble drug compound, niclosamide, with known anti SARS-CoV-2 activity as a cheap and scalable long-acting injectable antiviral candidate.
Collapse
Affiliation(s)
- James J Hobson
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13010097. [PMID: 33466598 PMCID: PMC7828663 DOI: 10.3390/pharmaceutics13010097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP–VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.
Collapse
|
18
|
Discovery of degradable niclosamide derivatives able to specially inhibit small cell lung cancer (SCLC). Bioorg Chem 2020; 107:104574. [PMID: 33383327 DOI: 10.1016/j.bioorg.2020.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC) is exceedingly tough to treat and easy to develop resistance upon long use of the first-line drug carboplatin or radiotherapy. Novel medicines effective and specific against SCLC are greatly needed. Herein, we focused on the discovery of such a medicine by exploring a drug niclosamide with repurposing strategy. Initial screening efforts revealed that niclosamide, an anthelmintic drug, possessed the in vitro anticancer activity and an obvious sensitivity towards SCLC. This observation inspired the evaluation for two different kinds of niclosamide derivatives. 2 with a degradable ester as a linker exhibited the comparable activity but slightly inferior selectivity to SCLC, by contrast, the cytotoxicities of 4 and 5 with non-degradable ether linkages completely disappeared, clearly validating the importance of 2-free hydroxyl group or 2-hydroxyl group released in the antitumor activity. Mechanism study unfolded that, similar to niclosamide, 2 inhibited growth of cancer cells via p 53 activation and subsequent underwent cytochrome c dependent apoptosis. Further structural modification to afford phosphate sodium 8 with significantly enhanced aqueous solubility (22.1 mg/mL) and a good selectivity towards SCLC demonstrated more promising druggability profiles. Accordingly, niclosamide as an attractive lead hold a huge potential for developing targeted anti-SCLC drugs.
Collapse
|
19
|
Varlamova AI, Movsesyan SO, Arkhipov IA, Khalikov SS, Arisov MV, Kochetkov PP, Abramov VE, Il’in MM, Lokshin BV. Biological Activity and Pharmacokinetic Behavior of Fenbendazole Integrated into a Supramolecular Delivery System with Licorice Extract and Sodium Dioctyl Sulfosuccinate. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020060138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Coban O, Aytac Z, Yildiz ZI, Uyar T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf B Biointerfaces 2020; 197:111391. [PMID: 33129100 DOI: 10.1016/j.colsurfb.2020.111391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
Electrospun nanofibers incorporated with inclusion complex (IC) of niclosamide (NIC) and hydroxypropyl-beta-cyclodextrin (HPβCD) (NIC-HPβCD-IC) was produced from pH-responsive polymer (Eudragit® L100, EUD), which disintegrates at pH values higher than 6, (EUD-NIC-HPβCD-IC-NF) for targeted delivery of NIC to the colon. Pristine EUD nanofibers (EUD-NF), only NIC loaded (EUD-NIC-NF) and physical mixture of NIC and HPβCD loaded EUD nanofibers (EUD-NIC-HPβCD-NF) were also produced as reference. SEM images revealed the bead-free and uniform morphology of nanofibers. XRD, TGA, and DSC were also performed for both NIC-HPβCD-IC and electrospun nanofibers and it was seen that there are some NIC molecules, which cannot make IC. Dissolution studies were carried out for 240 min at pH 1.2 and pH 7 simulating stomach and colon, respectively. EUD-NIC-NF released almost 53 % of NIC in 120 min, whereas EUD-NIC-HPβCD-NF (15 %) and EUD-NIC-HPβCD-IC-NF (8 %) released at most 15 % of NIC in 120 min. Then, remained NIC in the nanofibers released into the colon for the next 120 min. The slight difference in the release of NIC into stomach from EUD-NIC-HPβCD-NF and EUD-NIC-HPβCD-IC-NF might be due to the uncomplexed NIC molecules in EUD-NIC-HPβCD-IC-NF. More importantly, EUD-NIC-HPβCD-IC-NF was quite effective for preventing the release of NIC in the stomach in contrast to EUD-NIC-NF, which has already released more than half amount of NIC in 120 min. In conclusion, this study might open new areas for developing targeted delivery systems by the combination of nanofibers and CD-ICs for hydrophobic drugs such as NIC.
Collapse
Affiliation(s)
- Ozlem Coban
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Martin B, Seguin J, Annereau M, Fleury T, Lai-Kuen R, Neri G, Lam A, Bally M, Mignet N, Corvis Y. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci Rep 2020; 10:18059. [PMID: 33093456 PMCID: PMC7581827 DOI: 10.1038/s41598-020-74809-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle technology in cancer chemotherapy is a promising approach to enhance active ingredient pharmacology and pharmacodynamics. Indeed, drug nanoparticles display various assets such as extended blood lifespan, high drug loading and reduced cytotoxicity leading to better drug compliance. In this context, organic nanocrystal suspensions for pharmaceutical use have been developed in the past ten years. Nanocrystals offer new possibilities by combining the nanoformulation features with the properties of solid dispersed therapeutic ingredients including (i) high loading of the active ingredient, (ii) its bioavailability improvement, and (iii) reduced drug systemic cytotoxicity. However, surprisingly, no antitumoral drug has been marketed as a nanocrystal suspension until now. Etoposide, which is largely used as an anti-cancerous agent against testicular, ovarian, small cell lung, colon and breast cancer in its liquid dosage form, has been selected to develop injectable nanocrystal suspensions designed to be transferred to the clinic. The aim of the present work is to provide optimized formulations for nanostructured etoposide solutions and validate by means of in vitro and in vivo evaluations the efficiency of this multiphase system. Indeed, the etoposide formulated as a nanosuspension by a bottom-up approach showed higher blood life span, reduced tumor growth and higher tolerance in a murine carcinoma cancer model. The results obtained are promising for future clinical evaluation of these etoposide nanosuspensions.
Collapse
Affiliation(s)
- Brice Martin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.,Department of Neurological Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Johanne Seguin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Maxime Annereau
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - Thomas Fleury
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - René Lai-Kuen
- Université de Paris, CNRS, Inserm, Cellular and Molecular Imaging Technology Platform, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Giovanni Neri
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Anita Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Marcel Bally
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Nathalie Mignet
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Yohann Corvis
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
22
|
Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020; 21:260. [PMID: 32944787 DOI: 10.1208/s12249-020-01803-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1-5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Collapse
|
23
|
Witika BA, Makoni PA, Matafwali SK, Chabalenge B, Mwila C, Kalungia AC, Nkanga CI, Bapolisi AM, Walker RB. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1649. [PMID: 32842562 PMCID: PMC7557593 DOI: 10.3390/nano10091649] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Billy Chabalenge
- Department of Market Authorization, Zambia Medicines Regulatory Authority, Lusaka 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Aubrey C. Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (A.C.K.)
| | - Christian I. Nkanga
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, P.O. Box 212, Kinshasa XI, Democratic Republic of the Congo;
| | - Alain M. Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (B.A.W.); (P.A.M.)
| |
Collapse
|
24
|
Fu Q, Jin X, Zhang Z, Lv H. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm 2020; 584:119432. [DOI: 10.1016/j.ijpharm.2020.119432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
|
25
|
Reddy GB, Kerr DL, Spasojevic I, Tovmasyan A, Hsu DS, Brigman BE, Somarelli JA, Needham D, Eward WC. Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) Shows Efficacy Against Osteosarcoma. Mol Cancer Ther 2020; 19:1448-1461. [PMID: 32371588 DOI: 10.1158/1535-7163.mct-19-0689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/17/2019] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Therapeutic advances for osteosarcoma have stagnated over the past several decades, leading to an unmet clinical need for patients. The purpose of this study was to develop a novel therapy for osteosarcoma by reformulating and validating niclosamide, an established anthelminthic agent, as a niclosamide stearate prodrug therapeutic (NSPT). We sought to improve the low and inefficient clinical bioavailability of oral dosing, especially for the relatively hydrophobic classes of anticancer drugs. Nanoparticles were fabricated by rapid solvent shifting and verified using dynamic light scattering and UV-vis spectrophotometry. NSPT efficacy was then studied in vitro for cell viability, cell proliferation, and intracellular signaling by Western blot analysis; ex vivo pulmonary metastatic assay model; and in vivo pharmacokinetic and lung mouse metastatic model of osteosarcoma. NSPT formulation stabilizes niclosamide stearate against hydrolysis and delays enzymolysis; increases circulation in vivo with t 1/2 approximately 5 hours; reduces cell viability and cell proliferation in human and canine osteosarcoma cells in vitro at 0.2-2 μmol/L IC50; inhibits recognized growth pathways and induces apoptosis at 20 μmol/L; eliminates metastatic lesions in the ex vivo lung metastatic model; and when injected intravenously at 50 mg/kg weekly, it prevents metastatic spread in the lungs in a mouse model of osteosarcoma over 30 days. In conclusion, niclosamide was optimized for preclinical drug delivery as a unique prodrug nanoparticle injected intravenously at 50 mg/kg (1.9 mmol/L). This increased bioavailability of niclosamide in the blood stream prevented metastatic disease in the mouse. This chemotherapeutic strategy is now ready for canine trials, and if successful, will be targeted for human trials in patients with osteosarcoma.
Collapse
Affiliation(s)
| | - David L Kerr
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | | | - David S Hsu
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Brian E Brigman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Durham, North Carolina
| | - Jason A Somarelli
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - David Needham
- Duke Cancer Institute, Durham, North Carolina.,Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina.,School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina. .,Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
26
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Nanoliposomal Encapsulation Enhances In Vivo Anti-Tumor Activity of Niclosamide against Melanoma. Anticancer Agents Med Chem 2020; 19:1618-1626. [PMID: 31284876 DOI: 10.2174/1871520619666190705120011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Niclosamide is an FDA-approved and old anti-helminthic drug used to treat parasitic infections. Recent studies have shown that niclosamide has broad anti-tumor effects relevant to the treatment of cancer. However, this drug has a low aqueous solubility hindering its systemic use. Herein, we report the preparation and characterization of niclosamide nanoliposomes and their in vivo anti-tumor effects. METHODS Nanoliposomes were prepared using thin-film method and the drug was encapsulated with a remote loading method. The nanoliposomes were investigated by the observation of morphology, analysis of particle size and zeta potential. Additionally, qualitative and quantitative analyses were performed using HPLC. We assessed the in vitro cytotoxicity of the nanoliposomal niclosamide on B16F10 melanoma cells. Inhibition of tumor growth was investigated in C57BL/6 mice bearing B16F0 melanoma cancer. RESULTS Analytical results indicated that the nanoliposomal system is a homogeneous and stable colloidal dispersion of niclosamide particles. Atomic force microscopy images and particle size analysis revealed that all niclosamide particles had a spherical shape with a diameter of approximately 108nm. According to in vitro and in vivo studies, nanoliposomal niclosamide exhibited a better anti-tumor activity against B16F10 melanoma tumor compared with free niclosamide. CONCLUSION Nanoliposomal encapsulation enhanced the aqueous solubility of niclosamide and improved its anti-tumor properties.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Witika BA, Smith VJ, Walker RB. A Comparative Study of the Effect of Different Stabilizers on the Critical Quality Attributes of Self-Assembling Nano Co-Crystals. Pharmaceutics 2020; 12:pharmaceutics12020182. [PMID: 32102162 PMCID: PMC7076485 DOI: 10.3390/pharmaceutics12020182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/25/2023] Open
Abstract
Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < -30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Vincent J. Smith
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, 6140 South Africa;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
- Correspondence:
| |
Collapse
|
28
|
Assem M, Khowessah OM, Ghorab D. Nano-crystallization as a tool for the enhancement of beclomethasone dipropionate dermal deposition: Formulation, in vitro characterization and ex vivo study. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Evaluation of the Anti-Tumor Activity of Niclosamide Nanoliposomes Against Colon Carcinoma. Curr Mol Pharmacol 2019; 13:245-250. [PMID: 31433764 DOI: 10.2174/1874467212666190821142721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Niclosamide is an established anti-helminthic drug, which has recently been shown to inhibit the growth of various cancer cells. To exploit the potential anti-tumor activity of this drug for systemic use, the problem of low aqueous solubility should be addressed. The present study tested the in vivo anti-tumor effects of a recently developed nanoliposomal preparation of niclosamide in an experimental model of colon carcinoma. METHODS The cytotoxicity of nanoliposomal niclosamide on CT26 colon carcinoma cells was evaluated using the MTT test. Inhibition of tumor growth was investigated in BALB/c mice bearing CT26 colon carcinoma cells. The animals were randomly divided into 4 groups including: 1) untreated control, 2) liposomal doxorubicin (15 mg/kg; single intravenous dose), 3) liposomal niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks), and 4) free niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks). To study therapeutic efficacy, tumor size and survival were monitored in 2-day intervals for 40 days. RESULTS In vitro results indicated that nanoliposomal and free niclosamide could exert cytotoxic effects with IC50 values of 4.5 and 2.5 μM, respectively. According to in vivo studies, nanoliposomal niclosamide showed a higher growth inhibitory activity against CT26 colon carcinoma cells compared with free niclosamide as revealed by delayed tumor growth and prolongation of survival. CONCLUSION Nnaoliposomal encapsulation enhanced anti-tumor properties of niclosamide in an experimental model of colon carcinoma.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm 2019; 141:58-69. [PMID: 31078739 DOI: 10.1016/j.ejpb.2019.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Drug repositioning may be defined as a process when new biological effects for known drugs are identified, leading to recommendations for new therapeutic applications. Niclosamide, present in the Model List of Essential Medicines, from the World Health Organization, has been used since the 1960s for tapeworm infection. Several preclinical studies have been shown its impressive anticancer effects, which led to clinical trials for colon and prostate cancer. Despite high expectations, proof of efficacy and safety are still required, which are associated with diverse biopharmaceutical challenges, such as the physicochemical properties of the drug and its oral absorption, and their relationship with clinical outcomes. Nanostructured systems are innovative drug delivery strategies, which may provide interesting pharmaceutical advantages for this candidate. The aim of this review is to discuss challenges involving niclosamide repositioning for cancer diseases, and the opportunities of therapeutic benefits from nanosctrutured system formulations containing this compound.
Collapse
Affiliation(s)
- Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Patel V, Sharma OP, Mehta TA. Impact of Process Parameters on Particle Size Involved in Media Milling Technique Used for Preparing Clotrimazole Nanocrystals for the Management of Cutaneous Candidiasis. AAPS PharmSciTech 2019; 20:175. [PMID: 31028492 DOI: 10.1208/s12249-019-1368-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Clotrimazole is widely used for the management of cutaneous candidiasis infection. The low solubility of clotrimazole and excipient-related topical side effects (of currently available marketed products) cause the compromised efficacy of the therapy with poor patient compliance. In the present investigation, a clotrimazole nanocrystal-based nanogel was developed. Clotrimazole nanocrystals were optimized with studying the impact of individual process parameters of the media milling technique. The optimum level of individual process parameters was considered in the development of optimized batches. A promising result was obtained with a non-ionic stabilizer, polysorbate 80, at a concentration of 1.5%w/v, showing a distinct reduction in the particle size from above 31 μm to 264 nm and a polydispersity index of 0.211 with media milling at 1500 rpm for 6 h. This result was found to be in concordance with the TEM images, revealing a sharp diminution in particle morphology. Powder X-ray diffraction and differential scanning calorimetry results revealed crystallinity of clotrimazole (CTZ) in nanocrystal form. The optimized nanocrystal suspension was formulated into nanogel with carbopol 934, having a viscosity of 86.43 ± 2.06 Pa s at 25°C, which enhanced the ease of application of CTZ nanocrystals topically. A diffusion study showed around 82% of CTZ is transported across the membrane with the flux of 110.07 μg cm-2 h-1. In vivo results of the nanogel revealed improvement in CTZ release with 52% CTZ retention in different strata of the skin. The developed nanogel showed a significant improvement in the eradication of fungal infection within 10 days of application over Candida albicans-induced Wistar rat model. In a nutshell, the CTZ nanocrystal-loaded nanogel could achieve the goal of retaining CTZ in skin layers providing a prolonged effect and was able to treat cutaneous candidiasis in a short span with improved compliance for the candidiasis patients.
Collapse
|
32
|
Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol 2019; 4:565-577. [PMID: 30833727 DOI: 10.1038/s41564-019-0357-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance continues to be a public threat on a global scale. The ongoing need to develop new antimicrobial drugs that are effective against multi-drug-resistant pathogens has spurred the research community to invest in various drug discovery strategies, one of which is drug repurposing-the process of finding new uses for existing drugs. While still nascent in the antimicrobial field, the approach is gaining traction in both the public and private sector. While the approach has particular promise in fast-tracking compounds into clinical studies, it nevertheless has substantial obstacles to success. This Review covers the art of repurposing existing drugs for antimicrobial purposes. We discuss enabling screening platforms for antimicrobial discovery and present encouraging findings of novel antimicrobial therapeutic strategies. Also covered are general advantages of repurposing over de novo drug development and challenges of the strategy, including scientific, intellectual property and regulatory issues.
Collapse
Affiliation(s)
- Maya A Farha
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
33
|
Arkhipov IA, Khalikov SS, Sadov KM, Dushkin AV, Meteleva ES, Varlamova AI, Odoevskaya IM, Danilevskaya NV. Influence of mechanochemical technology on anthelmintic efficacy of the supramolecular complex of fenbendazole with polyvinylpyrrolidone. J Adv Vet Anim Res 2019; 6:133-141. [PMID: 31453182 PMCID: PMC6702931 DOI: 10.5455/javar.2019.f323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/10/2023] Open
Abstract
Objective: The purpose of our research was to evaluate the effect of mechanochemical technology on the efficacy of supramolecular complex of fenbendazole (SMCF) with polyvinylpyrrolidone (PVP) polymer against some helminthosis of animals. Materials and methods: The SMCF samples with PVP were synthesized using a solid-state mechanochemical technology in activators of impact-abrading type and their physicochemical properties were analyzed. The efficacy of SMCF was studied on the laboratory model of Hymenolepis nana and Trichinella spiralis infection of mice and helminthosis of sheep. Results: In the trials conducted on laboratory models, the supramolecular complex showed 93.94% and 98.56 % efficacy at the dose of 1 mg/kg of body weight (b/w), while the substance of fenbendazole showed 7.97% and 8.33% efficacy at the same dose. A high efficacy (>94%) of the SMCF was revealed at the dose of 2.0 mg/kg of b/w at oral administration against nematodes in naturally infected sheep by the results of the fecal examination, while the substance of fenbendazole was active at the dose of 5.0 mg/kg at single oral administration. Moreover, the SMCF demonstrated 97.37% efficacy at the dose of 2 mg/kg against Moniezia spp. infection of sheep. Physicochemical studies confirmed the increase in solubility of the complex, reducing of particle sizes, amorphization of fenbendazole substance, and incorporating it with micelles of PVP. Conclusion: According to the results, supramolecular complex of fenbendazole with PVP was more active than the basic substance of fenbendazole and its anthelmintic properties were expanded.
Collapse
Affiliation(s)
- Ivan A Arkhipov
- Department of Experimental Therapy, All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants, Branch of Federal Scientific Center, All-Russian Scientific Research Institute of Experimental Veterinary Medicine K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow, Russia
| | - Salavat S Khalikov
- Department of Physiologically Active Organofluorine Compounds, A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Sadov
- Department of Experimental Therapy, All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants, Branch of Federal Scientific Center, All-Russian Scientific Research Institute of Experimental Veterinary Medicine K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Dushkin
- Department of Mechanochemistry of Organic Compounds, Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elizaveta S Meteleva
- Department of Mechanochemistry of Organic Compounds, Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya I Varlamova
- Department of Experimental Therapy, All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants, Branch of Federal Scientific Center, All-Russian Scientific Research Institute of Experimental Veterinary Medicine K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow, Russia
| | - Irina M Odoevskaya
- Department of Experimental Therapy, All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants, Branch of Federal Scientific Center, All-Russian Scientific Research Institute of Experimental Veterinary Medicine K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Danilevskaya
- Department of Pharmacology and Toxicology, Moscow State Academy of Veterinary Medicine and Biotechnology, MVA named after K.I. Skryabin, Moscow, Russia
| |
Collapse
|
34
|
Mazzon M, Ortega-Prieto AM, Imrie D, Luft C, Hess L, Czieso S, Grove J, Skelton JK, Farleigh L, Bugert JJ, Wright E, Temperton N, Angell R, Oxenford S, Jacobs M, Ketteler R, Dorner M, Marsh M. Identification of Broad-Spectrum Antiviral Compounds by Targeting Viral Entry. Viruses 2019; 11:E176. [PMID: 30791609 PMCID: PMC6410080 DOI: 10.3390/v11020176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are a major threat to human health and economic well-being. In recent years Ebola, Zika, influenza, and chikungunya virus epidemics have raised awareness that infections can spread rapidly before vaccines or specific antagonists can be made available. Broad-spectrum antivirals are drugs with the potential to inhibit infection by viruses from different groups or families, which may be deployed during outbreaks when specific diagnostics, vaccines or directly acting antivirals are not available. While pathogen-directed approaches are generally effective against a few closely related viruses, targeting cellular pathways used by multiple viral agents can have broad-spectrum efficacy. Virus entry, particularly clathrin-mediated endocytosis, constitutes an attractive target as it is used by many viruses. Using a phenotypic screening strategy where the inhibitory activity of small molecules was sequentially tested against different viruses, we identified 12 compounds with broad-spectrum activity, and found a subset blocking viral internalisation and/or fusion. Importantly, we show that compounds identified with this approach can reduce viral replication in a mouse model of Zika infection. This work provides proof of concept that it is possible to identify broad-spectrum inhibitors by iterative phenotypic screenings, and that inhibition of host-pathways critical for viral life cycles can be an effective antiviral strategy.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Ana Maria Ortega-Prieto
- Section of Virology, Department of Medicine, School of Medicine, Imperial College London, London W2 1PG, UK.
| | - Douglas Imrie
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Lena Hess
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Stephanie Czieso
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Joe Grove
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London NW3 2QG, UK.
| | - Jessica Katy Skelton
- Section of Virology, Department of Medicine, School of Medicine, Imperial College London, London W2 1PG, UK.
| | - Laura Farleigh
- Medical Microbiology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Joachim J Bugert
- Medical Microbiology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany.
| | | | - Nigel Temperton
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK.
| | - Richard Angell
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| | - Sally Oxenford
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| | - Michael Jacobs
- Faculty of Medical Sciences, UCL Medical School, London NW3 2QG, UK.
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Marcus Dorner
- Section of Virology, Department of Medicine, School of Medicine, Imperial College London, London W2 1PG, UK.
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
35
|
State of the Art of Pharmaceutical Solid Forms: from Crystal Property Issues to Nanocrystals Formulation. ChemMedChem 2018; 14:8-23. [DOI: 10.1002/cmdc.201800612] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/09/2018] [Indexed: 12/11/2022]
|
36
|
Yin J, Wang P, Yin Y, Hou Y, Song X. Optimization on biodistribution and antitumor activity of tripterine using polymeric nanoparticles through RES saturation. Drug Deliv 2018; 24:1891-1897. [PMID: 29191042 PMCID: PMC8241100 DOI: 10.1080/10717544.2017.1410260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of tripterine (TPR) is challenged by its insoluble property and unsuitable pharmacokinetics. This work aimed to develop polymeric nanoparticles (NPs) combined with the reticuloendothelial system (RES) saturation to improve the in vivo distribution and antitumor activity of TPR. TPR-loaded nanoparticles (TPR-NPs) were prepared by the low-energy emulsification/evaporation method and characterized with particle size, entrapment efficiency, and morphology. The resulting TPR-NPs were 75 nm around in particle size and displayed a sustained drug release in pH 7.4 medium. Pharmacokinetic studies revealed that TPR-NPs had the advantage in bettering the pharmacokinetic properties of TPR over the solution formulation. However, the ameliorative effect on pharmacokinetics was more significant in the case of RES saturation (i.e. preinjection of blank NPs). Preinjection of blank NPs followed by injection of TPR-NPs resulted in higher distribution of TPR into the tumor due to reduced sequestration of TPR-NPs by RES. In tumor-bearing mice (prostatic cancer model), TPR-NPs treatment with RES saturation exhibited a superior antitumor efficacy to free TPR and TPR-NPs alone. It can be concluded that formulating TPR into polymeric NPs in combination with RES saturation is an effective means to address the systemic delivery of TPR.
Collapse
Affiliation(s)
- Juntao Yin
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , PR China
| | - Peiqing Wang
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , PR China
| | - Yuyun Yin
- b Henan Provincial Institute of Food and Drug Control , Zhengzhou , PR China
| | - Yantao Hou
- c Henan Vocational College of Applied Technology , Dongjing Avenue , Kaifeng , PR China
| | - Xiaoyong Song
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , PR China
| |
Collapse
|
37
|
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018; 10:E74. [PMID: 29937483 PMCID: PMC6161168 DOI: 10.3390/pharmaceutics10030074] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Yue Zhao
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Zhiguo Ma
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| |
Collapse
|
38
|
Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu D, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 2018; 131:3-21. [PMID: 29738786 DOI: 10.1016/j.addr.2018.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
The use of drug nanocrystals in the drug formulation is increasing due to the large number of poorly water-soluble drug compounds synthetized and due to the advantages brought by the nanonization process. The downsizing processes are done using a top-down approach (milling and homogenization currently employed at the industrial level), while the crystallization process is performed by bottom-up techniques (e.g., antisolvent precipitation, use of supercritical fluids or spray and freeze drying). In addition, the production of nanocrystals in confined environment can be achieved within microfluidics channels. This review analyzes the processes for the preparation of nanocrystals and co-crystals, divided by top-down and bottom-up approaches, together with their combinations. The combination of both strategies merges the favorable features of each process and avoids the disadvantages of single processes. Overall, the applicability of drug nanocrystals is highlighted by the widespread research on the production processes at the engineering, pharmaceutical, and nanotechnology level.
Collapse
|
39
|
Xie Y, Yao Y. Octenylsuccinate hydroxypropyl phytoglycogen enhances the solubility and in-vitro antitumor efficacy of niclosamide. Int J Pharm 2018; 535:157-163. [DOI: 10.1016/j.ijpharm.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
|
40
|
Pardhi V, Chavan RB, Thipparaboina R, Thatikonda S, Naidu VGM, Shastri NR. Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. Int J Pharm 2017; 528:202-214. [DOI: 10.1016/j.ijpharm.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/17/2022]
|
41
|
Zhirnik AS, Semochkina YP, Moskaleva EY, Krylov NI, Tubasheva IA, Kuznetsov SL, Vorontsov EA. [Antineoplastic mechanisms of niclosamide-loaded nanoparticles in human colorectal cancer cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:132-138. [PMID: 28414284 DOI: 10.18097/pbmc20176302132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using poly(lactic-co-glycolic) acid we developed a polymeric form of niclosamide (PFN) and investigated molecular mechanisms underlying its antitumor activity against human colorectal cancer cell lines (SW837, Caco-2, COLO 320 HSR). PFN was shown to be more cytotoxic against cancer cells and less cytotoxic against normal cells (human embryonic lung fibroblasts) as compared to niclosamide. Both niclosamide and its polymeric form caused mitochondrial damage (evaluated as a decrease in rhodamine 123 accumulation) and increased the levels of reactive oxygen species, particularly mitochondrial superoxide, resulting in the oxidative damage to biomolecules. Furthermore, niclosamide and PFN induced G0/G1 cell cycle arrest.
Collapse
Affiliation(s)
- A S Zhirnik
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| | - Y P Semochkina
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| | - E Yu Moskaleva
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| | - N I Krylov
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| | - I A Tubasheva
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| | - S L Kuznetsov
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| | - E A Vorontsov
- National Research Centre "Kurchatov Institute", NBICS Centre, Moscow, Russia
| |
Collapse
|
42
|
Zhang T, Ma J, Li C, Lin K, Lou F, Jiang H, Gao Y, Yang Y, Ming C, Ruan B. Core-shell lipid polymer nanoparticles for combined chemo and gene therapy of childhood head and neck cancers. Oncol Rep 2017; 37:1653-1661. [DOI: 10.3892/or.2017.5365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/10/2016] [Indexed: 11/06/2022] Open
|
43
|
Sharma OP, Patel V, Mehta T. Design of experiment approach in development of febuxostat nanocrystal: Application of Soluplus® as stabilizer. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Wang Y, Rong J, Zhang J, Liu Y, Meng X, Guo H, Liu H, Chen L. Morphology, in vivo distribution and antitumor activity of bexarotene nanocrystals in lung cancer. Drug Dev Ind Pharm 2016; 43:132-141. [PMID: 27588517 DOI: 10.1080/03639045.2016.1225752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study was to develop and evaluate the morphology, biodistribution and antitumor activity of bexarotene nanocrystals delivery system. The morphology was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope and bexarotene nanocrystals exhibited the advantages of making the efficacy more steady and durable compared with control group in lung with less cardiac accumulation as shown by biodistribution studies in vivo. In addition, MTT assay, flow cytometry analysis, observation of morphological changes and apoptotic body demonstrated that bexarotene nanocrystals could significantly enhance the in vitro cytotoxicity and induced G1 cycle arrest and apoptosis against A549 cells. Also, bexarotene nanocrystals had significant antitumor activity in mice bearing A549 cell line. This finding was correlated with both in vitro and in vivo. Thereby, the overall results suggest that the bexarotene nanocrystals represent a potential source of medicine, which made bexarotene nanocrystals a promising candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yongjie Wang
- b Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Jinghong Rong
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Jiaozhen Zhang
- c Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE) , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Yu Liu
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Xuelian Meng
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China
| | - Hejian Guo
- b Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , 250012 , P.R. China
| | - Hongsheng Liu
- d Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province , Shenyang , 110036 , P.R. China
| | - Lijiang Chen
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Liaoning University , Shenyang , 110036 , P.R. China.,d Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province , Shenyang , 110036 , P.R. China
| |
Collapse
|
45
|
Wais U, Jackson AW, He T, Zhang H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. NANOSCALE 2016; 8:1746-1769. [PMID: 26731460 DOI: 10.1039/c5nr07161e] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.
Collapse
Affiliation(s)
- Ulrike Wais
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK. and Institute of Chemical and Engineering Science, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Alexander W Jackson
- Institute of Chemical and Engineering Science, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China.
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|
46
|
Zhang X, Zhang Y, Zhang T, Zhang J, Wu B. Significantly enhanced bioavailability of niclosamide through submicron lipid emulsions with or without PEG-lipid: a comparative study. J Microencapsul 2015; 32:496-502. [PMID: 26079596 DOI: 10.3109/02652048.2015.1057251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Niclosamide (NL) has demonstrated its great potential in fighting against leukaemia recently. However, either oral or systemic delivery of NL is challenged by its insoluble nature. Here, we developed two different NL-loaded submicron lipid emulsions (NL-SLEs) and compared their suitability in bioavailability enhancement. Conventional and PEGylated NL-SLEs (NL-CSLEs and NL-PSLEs) were prepared by melt dispersion/high pressure homogenisation technique. They were about 307.8 and 162.2 nm in particle size, respectively, and both of them possessed satisfactory stability and drug load (>9.0%). After oral administration, significantly enhanced bioavailability was achieved through NL-CSLEs and NL-PSLEs (441.11 and 463.55% relative to the reference). Apart from global size, NL-CSLEs and NL-PSLEs exhibited similar attributes in release, lipolysis, mucin binding, etc. Taken together, SLEs with or without PEG-lipid have shown to be promising for oral delivery of NL. PEG-lipid could significantly reduce the particle size of SLEs. But, macromolecular PEG-lipid was required to effectively stealth the lipid carriers.
Collapse
|
47
|
Miura K. [Histopathologic studies on epithelial proliferation in the peripheral region of the lung with special consideration of tumorlets]. Cell Signal 1968; 41:89-96. [PMID: 28389414 PMCID: PMC5628105 DOI: 10.1016/j.cellsig.2017.04.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Niclosamide is an oral antihelminthic drug used to treat parasitic infections in millions of people worldwide. However recent studies have indicated that niclosamide may have broad clinical applications for the treatment of diseases other than those caused by parasites. These diseases and symptoms may include cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, and systemic sclerosis. Among the underlying mechanisms associated with the drug actions of niclosamide are uncoupling of oxidative phosphorylation, and modulation of Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways. Here we provide a brief overview of the biological activities of niclosamide, its potential clinical applications, and its challenges for use as a new therapy for systemic diseases. Niclosamide is an oral antihelminthic drug used to treat parasitic infections. Niclosamide is a multifunctional drug inhibiting multiple signaling pathways and biological processes. Niclosamide has biological activities potentially against systemic diseases.
Collapse
|