1
|
Mishra M, Thakur G, Bassi P, Kaur G, Singh TG, Kaur N, Wong LS, Reddy S, Kuppusamy G, Kumarasamy V, Gupta G, Subramaniyan V. Formulation and evaluation of repurposed ketoconazole‐loaded transferosomal gel for enhanced trichogenic effects. CLINICAL AND TRANSLATIONAL DISCOVERY 2025; 5. [DOI: 10.1002/ctd2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/15/2025] [Indexed: 05/04/2025]
Abstract
AbstractThis study was focused to formulate and optimize transferosomes encapsulating ketoconazole (KTZ) for its repurposed use as a hair growth promoting agent. Ketoconazole exerts trichogenic effect in patients with androgenic alopecia androgen by acting on receptors present in keratinocytes and sebocytes of the scalp. This necessitates the penetration of ketoconazole into deep epidermal and dermal layers for exerting trichogenic effect. Transferosomes have been reported to improve drug penetration owing to their deformable vesicular structure. Thus, in the present work, transferosomal gel loaded with ketoconazole was developed with the intention to enhance drug permeation and improved hair proliferation activity. Solvent evaporation method has been adopted for the formulation of transferosomes and then optimized by quality by design approach. KTZ‐TF (ketoconazole‐transferosomes) were assessed for particle size, entrapment efficiency (%EE), surface charge, and morphology. The optimized KTZ‐TF formulation demonstrated particle size of 151.22 ± 1.3 nm, PDI index of 0.191 ± 0.034, and ζ potential of –33.05 ± 01.3 mV, respectively. The developed formulation was further added into gel and compared with commercially available product. It was concluded that KTZ‐TF gels showed control drug release (89.1 ± 2.12%) for 9 h. The in vivo skin irritation test demonstrated that the gel formulation caused minimal irritation and was well accepted by the scalp. In vivo qualitative hair growth activity demonstrated improved hair growth with the developed formulation in comparison to marketed KTZ. Histopathological studies also corroborated the findings through demonstrating increase in number of hair follicles. Hence, this study concluded that ketoconazole‐loaded transferosomes are efficacious in hair growth activity.
Collapse
Affiliation(s)
- Madhvi Mishra
- Department of Pharmaceutics Chitkara College of Pharmacy Chitkara University Rajpura Punjab India
| | - Gopal Thakur
- Department of Pharmaceutics CT Institute of Pharmaceutical Sciences CT Group of Institutions, Shahpur Jalandhar Punjab India
| | - Pallavi Bassi
- Department of Pharmaceutics Chitkara College of Pharmacy Chitkara University Rajpura Punjab India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala India
| | - Thakur Gurjeet Singh
- Department of Pharmacology Chitkara College of Pharmacy Chitkara University Punjab India
| | - Narinderpal Kaur
- Department of Pharmaceutical Chemistry Chitkara University School of Pharmacy Chitkara University Himachal Pradesh India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences INTI International University Nilai Malaysia
| | | | | | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology Faculty of Medicine Universiti Kebangsaan Malaysia Jalan Yaacob Latif, Cheras Kuala Lumpur Malaysia
| | - Gaurav Gupta
- Department of Pharmacology Chitkara College of Pharmacy Chitkara University Punjab India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology Department of Medical Sciences Sunway University Bandar Sunway Selangor Malaysia
| |
Collapse
|
2
|
Elkanayati RM, Darwesh AY, Taha I, Wang H, Uttreja P, Vemula SK, Chambliss WG, Repka MA. Quality by design approach for fabrication of extended-release buccal films for xerostomia employing hot-melt extrusion technology. Eur J Pharm Biopharm 2024; 200:114335. [PMID: 38768765 DOI: 10.1016/j.ejpb.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
The study endeavors the fabrication of extended-release adipic acid (APA) buccal films employing a quality by design (QbD) approach. The films intended for the treatment of xerostomia were developed utilizing hot-melt extrusion technology. The patient-centered quality target product profile was created, and the critical quality attributes were identified accordingly. Three early-stage formulation development trials, complemented by risk assessment aligned the formulation and process parameters with the product quality standards. Employing a D-optimal mixture design, the formulations were systematically optimized by evaluating three formulation variables: amount of the release-controlling polymer Eudragit® (E RSPO), bioadhesive agent Carbopol® (CBP 971P), and pore forming agent polyethylene glycol (PEG 1500) as independent variables, and % APA release in 1, 4 and 8 h as responses. Using design of experiment software (Design-Expert®), a total of 16 experimental runs were computed and extruded using a Thermofisher ScientificTM twin screw extruder. All films exhibited acceptable content uniformity and extended-release profiles with the potential for releasing APA for at least 8 h. Films containing 30% E RSPO, 10% CBP 971P, and 20% PEG 1500 released 88.6% APA in 8 h. Increasing the CBP concentration enhanced adhesiveness and swelling capacities while decreasing E RSPO concentration yielded films with higher mechanical strength. The release kinetics fitted well into Higuchi and Krosmeyer-Peppas models indicating a Fickian diffusion release mechanism.
Collapse
Affiliation(s)
- Rasha M Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Alaa Y Darwesh
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Iman Taha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Walter G Chambliss
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
3
|
Suksiriworapong J, Achayawat C, Juangrattanakamjorn P, Taresco V, Crucitti VC, Sakchaisri K, Bunsupa S. Modification of Poly(Glycerol Adipate) with Tocopherol and Cholesterol Modulating Nanoparticle Self-Assemblies and Cellular Responses of Triple-Negative Breast Cancer Cells to SN-38 Delivery. Pharmaceutics 2023; 15:2100. [PMID: 37631315 PMCID: PMC10459774 DOI: 10.3390/pharmaceutics15082100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to fabricate new variations of glycerol-based polyesters by grafting poly(glycerol adipate) (PGA) with hydrophobic bioactive moieties, tocopherol (TOC), and cholesterol (CHO). Their effects on nanoparticle (NP) formation, drug release, and cellular responses in cancer and normal cells were evaluated. CHO and TOC were successfully grafted onto PGA backbones with 30% and 50% mole grafting. Increasing the percentage of mole grafting in both molecules increased the glass transition temperature and water contact angle of the final polymers but decreased the critical micelle concentration of the formulated particles. PGA-TOC NPs reduced the proliferation of MDA-MB-231 cancer cells. However, they enhanced the proliferation of primary dermal fibroblasts within a specific concentration range. PGA-CHO NPs minimally affected the growth of cancer and normal cells. Both types of NPs did not affect apoptosis or the cell cycle of cancer cells. PGA-CHO and PGA-TOC NPs were able to entrap SN-38, a hydrophobic anticancer drug, with a particle size <200 nm. PGA-CHO NPs had a higher drug loading capacity and a greater drug release than PGA-TOC NPs. However, SN-38-loaded PGA-TOC NPs showed higher toxicity than SN-38 and SN-38-loaded PGA-CHO NPs due to the combined effects of antiproliferation and higher cellular uptake. Compared with SN-38, the drug-loaded NPs more profoundly induced sub-G1 in the cell cycle analysis and apoptosis of cancer cells in a similar pattern. Therefore, PGA-CHO and PGA-TOC polymers have potential applications as delivery systems for anticancer drugs.
Collapse
Affiliation(s)
| | - Chittin Achayawat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Krisada Sakchaisri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Almotairy A, Alyahya M, Althobaiti A, Almutairi M, Bandari S, Ashour EA, Repka MA. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm 2023; 635:122709. [PMID: 36801364 PMCID: PMC10023499 DOI: 10.1016/j.ijpharm.2023.122709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Cervical cancer is known globally as one of the most common health problems in women. Indeed, one of the most convenient approaches for its treatment is an appropriate bioadhesive vaginal film. This approach provides a local treatment modality, which inevitably decreases dosing frequency and improves patient compliance. Recently, disulfiram (DSF) has been investigated and demonstrated to possess anticervical cancer activity; therefore, it is employed in this work. The current study aimed to produce a novel, personalized three-dimensional (3D) printed DSF extended-release film using the hot-melt extrusion (HME) and 3D printing technologies. The optimization of the formulation composition and the HME and 3D printing processing temperatures was an important factor for overcoming the DSF heat-sensitivity issue. In addition, the 3D printing speed was specifically the most crucial parameter for alleviating heat-sensitivity concerns, which led to the production of films (F1 and F2) with an acceptable DSF content and good mechanical properties. The bioadhesion film study using sheep cervical tissue indicated a reasonable adhesive peak force (N) of 0.24 ± 0.08 for F1 and 0.40 ± 0.09 for F2, while the work of adhesion (N.mm) for F1 and F2 was 0.28 ± 0.14 and 0.54 ± 0.14, respectively. Moreover, the cumulative in vitro release data indicated that the printed films released DSF for up to 24 h. HME-coupled 3D printing successfully produced a patient-centric and personalized DSF extended-release vaginal film with a reduced dose and longer dosing interval.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
5
|
Surendranath M, Ramesan RM, Nair P, Parameswaran R. Electrospun Mucoadhesive Zein/PVP Fibroporous Membrane for Transepithelial Delivery of Propranolol Hydrochloride. Mol Pharm 2023; 20:508-523. [PMID: 36373686 DOI: 10.1021/acs.molpharmaceut.2c00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucoadhesive drug delivery systems have been extensively studied to effectively reduce the limitations of conventional drug delivery systems. Zein and polyvinyl pyrrolidone (PVP) are appraised for mucoadhesive properties. This study focuses on developing a mechanically stable zein/PVP electrospun membrane for propranolol hydrochloride (PL) transport. Fourier transform infrared, Raman spectra, and swelling studies gave evidence for PVP crosslinking, whereas circular dichroism spectroscopy revealed crosslinking of zein owing to the conformational change from α-helix to β-sheet. A 10 h thermal treatment of zein/PVP imparted 3.92 ± 0.13 MPa tensile strength to the matrix. Thermally crosslinked electrospun zein/PVP matrix showed 22.1 ± 0.1 g mm work of adhesion in porcine buccal mucosa tissue. Qualitative and quantitative evaluation of cytotoxicity in RPMI 2650 has been carried out. The in vitro drug release profile of PL from thermally crosslinked zein/PVP best fitted with the Korsmeyer-Peppas model. Immunostaining of β-catenin adherens junctional protein confirmed the absence of paracellular transport through the junctional opening. Still, drug permeation was observed through the porcine buccal mucosa, attributed to the transcellular transport of PL owing to its lipophilicity. The ex vivo permeation of PL through porcine buccal mucosa was also evaluated.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Prakash Nair
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012, Kerala, India
| |
Collapse
|
6
|
Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J Control Release 2022; 352:1071-1092. [PMID: 36351519 DOI: 10.1016/j.jconrel.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
The potential of the mucoadhesive film technology is hard to ignore, owing to perceived superior patient acceptability versus buccal tablets, and significant therapeutic opportunities compared to conventional oral drug delivery systems, especially for those who suffer from dysphagia. In spite of this, current translation from published literature into the commercial marketplace is virtually non-existent, with no authorised mucoadhesive buccal films available in the UK and very few available in the USA. This review seeks to provide an overview of the mucoadhesive buccal film technology and identify key areas upon which to focus scientific efforts to facilitate the wider adoption of this patient-centric dosage form. Several indications and opportunities for development were identified, while discussing the patient-related factors influencing the use of these dosage forms. In addition, an overview of the technologies behind the manufacturing of these films was provided, highlighting manufacturing methods like solvent casting, hot melt extrusion, inkjet printing and three-dimensional printing. Over thirty mucoadhesive polymers were identified as being used in film formulations, with details surrounding their mucoadhesive capabilities as well as their inclusion alongside other key formulation constituents provided. Lastly, the importance of physiologically relevant in vitro evaluation methodologies was emphasised, which seek to improve in vivo correlations, potentially leading to better translation of mucoadhesive buccal films from the literature into the commercial marketplace.
Collapse
|
7
|
Panda J, Rao MEB, Swain S, Patra CN, Jena BR. Formulation development, optimization and characterization of mucoadhesive minitablets of cefuroxime axetil: in vitro, ex vivo and in vivo pharmacokinetic evaluation. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current study expands on the use of design of experiment in developing cefuroxime axetil mucoadhesive minitablets for treating antibiotic-associated colitis. A comprehensive QbD-based product development strategy was implemented, with the target product profile defined based on the desired product quality of mucoadhesive minitablets. The identified critical quality attributes are based on the target product profile. The goal was to find the optimum levels by using the concentrations of chitosan (mg) (X1), HPMC K100M (X2) and sodium carboxymethyl cellulose (X3) as the influential variables. The response surface methodology determines the dependent variables using 33 Box–Behnken design to optimize the selected critical factors. The friability (%), drug content (%) and mucoadhesive strength (%) characteristics of cefuroxime axetil mucoadhesive minitablets were evaluated using ANOVA for the observed responses or dependent variables.
Results
The study demonstrated that run 8 with optimum composition chitosan, HPMC K100M and sodium carboxy methyl cellulose, which are the mucoadhesive polymers, showed a desirable and promising drug release profile up to 24 h, higher percentage of drug content, mucoadhesion and swelling index.
Conclusions
The optimized mucoadhesive minitablets of cefuroxime axetil demonstrated desired formulation characteristics, including improved bioavailability and high control over the drug’s release rate and increased flexibility in adjusting both the dose and the drug’s release rate. In a nutshell, the studies support the successful development of mucoadhesive minitablets of cefuroxime axetil, which could be used to treat antibiotic-associated colitis.
Collapse
|
8
|
Samanthula KS, Kumar CB M, Bairi AG, Satla SR. DEVELOPMENT, IN-VITRO AND EX-VIVO EVALUATION OF MUCO-ADHESIVE BUCCAL TABLETS OF HYDRALAZINE HYDROCHLORIDE. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
10
|
Majid H, Bartel A, Burckhardt BB. Predictivity of Standardized and Controlled Permeation Studies: Ex vivo - In vitro - In vivo Correlation for Sublingual Absorption of Propranolol. Eur J Pharm Biopharm 2021; 169:12-19. [PMID: 34508807 DOI: 10.1016/j.ejpb.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
In preclinical drug development, ex vivo and in vitro permeability studies are a decisive element for specifying subsequent development steps. In this context, reliability, physiological alignment and appropriate in vivo correlation are mandatory for predictivity regarding drug absorption. Especially in oromucosal drug delivery, these prerequisites are not adequately met, which hinders its progressive development and results in the continuous need for animal experiments. To address current limitations, an innovative, standardized, and controlled ex vivo permeation model was applied. It is based on Kerski diffusion cells embedded in automated sampling and coupled to mass spectrometric quantification under physiologically relevant conditions. This study aimed to evaluate the predictivity of the developed model using porcine mucosa (ex vivo) in relation to data of sublingual propranolol absorption (in vivo). In addition, the usefulness of biomimetic barriers (in vitro) as a replacement for porcine mucosa was investigated. Therefore, solubility and permeability studies considering microenvironmental conditions were conducted and achieved good predictivity (R2=0.997) for pH-dependent permeability. A multiple level C correlation (R2≥0.860) between obtained permeability and reported pharmacokinetic animal data (AUC, Cmax) was revealed. Furthermore, a point-to-point correlation was demonstrated for several sublingual formulations. The successful IVIVC confirms the standardized ex vivo model as a viable alternative to animal testing for estimating the in vivo absorption behavior of oromucosal pharmaceuticals.
Collapse
Affiliation(s)
- Haidara Majid
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Dusseldorf, Germany.
| |
Collapse
|
11
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
12
|
Zafar A, Afzal M, Quazi AM, Yasir M, Kazmi I, Al-Abaasi FA, Alruwaili NK, Alharbi KS, Alzarea SI, Sharma S, Kaur R. Chitosan-ethyl cellulose microspheres of domperidone for nasal delivery: Preparation, in-vitro characterization, in-vivo study for pharmacokinetic evaluation and bioavailability enhancement. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Jones DS, Rafferty GP, Andrews GP. Drug release from hydroxypropylcellulose gels cannot be statistically predicted from their viscometric and initial viscoelastic properties. Carbohydr Polym 2021; 256:117512. [PMID: 33483033 DOI: 10.1016/j.carbpol.2020.117512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
This study questioned whether rheological properties can predict drug (metronidazole) release from Hydroxypropylcellulose (HPC) platforms. Viscometric and viscoelastic properties of aqueous, alcohols/diols and mixed solvent HPC solutions and gels were determined using viscometry and oscillatory analysis. Drug release was conducted at pH 7.4 under sink conditions. Relationships between rheological parameters and drug release were modelled using multiple linear stepwise regression. Viscometry identified ethanol and water as good solvents for HPC. Diol solvents were predicted to exhibit greater interactions with HPC (COSMO modelling) but possessed lowest intrinsic viscosities. Pentanediol or ethylene glycol prepared gels exhibited greatest elasticity. No relationships were observed between dilute solution properties and initial gel viscoelasticity. Drug release from HPC gels occurred via gel erosion and diffusion. No relationships were observed between initial gel viscoelasticity and drug release and thus, for gel platforms that undergo erosion in aqueous media, drug release cannot be predicted from initial gel viscoelasticity.
Collapse
Affiliation(s)
- David S Jones
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, United Kingdom.
| | - Gerard P Rafferty
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, United Kingdom
| | - Gavin P Andrews
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, United Kingdom
| |
Collapse
|
14
|
Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm 2021; 598:120380. [PMID: 33609725 DOI: 10.1016/j.ijpharm.2021.120380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Blindness and impaired vision are considered as the most troublesome health conditions leading to significant socioeconomic strains. The current study focuses on development of nanoparticulate systems (i.e., niosomes) as drug vehicles to enhance the ocular availability of betaxolol hydrochloride for management of glaucoma. Betaxolol-loaded niosomes were further laden into pH-responsive in situ forming gels to further extend precorneal retention of the drug. The niosomes were evaluated in terms of vesicle size, morphology, size distribution, surface charge and encapsulation efficiency. The optimized niosomes, comprised of Span® 40 and cholesterol at a molar ratio of 4:1, displayed particle size of 332 ± 7 nm, zeta potential of -46 ± 1 mV, and encapsulation efficiency of 69 ± 5%. The optimal nanodispersion was then incorporated into a pH-triggered in situ forming gel comprised of Carbopol® 934P and hydroxyethyl cellulose. The formed gels were translucent, pseudoplastic, mucoadhesive, and displayed a sustained in vitro drug release pattern. Upon instillation of the betaxolol-loaded niosomal gel into rabbits' eyes, a prolonged intraocular pressure reduction and significant enhancement in the relative bioavailability of betaxolol (280 and 254.7%) in normal and glaucomatous rabbits, were attained compared to the marketed eye drops, respectively. Hence, the developed pH-triggered nanoparticulate gelling system might provide a promising carrier for ophthalmic drug delivery and for improved augmentation of glaucoma.
Collapse
Affiliation(s)
- Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Mahmoud Elsabahy
- Science Academy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt.
| | - Mahmoud El Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
15
|
Cetindag E, Pentangelo J, Arrieta Cespedes T, Davé RN. Effect of solvents and cellulosic polymers on quality attributes of films loaded with a poorly water-soluble drug. Carbohydr Polym 2020; 250:117012. [PMID: 33049873 PMCID: PMC7575819 DOI: 10.1016/j.carbpol.2020.117012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
The combined effect of solvent, cellulosic polymer, and a poorly water-soluble drug, fenofibrate (FNB) on solution-cast pharmaceutical film quality attributes, e.g., morphology, drug recrystallization, content uniformity, mechanical properties, dissolution rate and supersaturation level, was investigated. Film morphology, content uniformity, and mechanical properties were impacted by the extent of FNB recrystallization which was strongly affected by FNB solubility in the solvent as compared to the polymer type, hydroxypropyl methylcellulose or hydroxypropyl cellulose. FNB recrystallization affected drug dissolution rates and supersaturation under non-sink conditions. Specifically, the area under the curve linearly correlated with recrystallization. After one-year storage, FNB recrystallization reached very high levels even for the films with no initial recrystallization, suggesting low initial crystallinity does not guarantee stability. Thus, uncontrolled recrystallization and poor time-stability would be unavoidable for solution-cast films. Overall, both the polymer and the solvent strongly impact drug recrystallization, film structure, mechanical properties, dissolution rate, and supersaturation.
Collapse
Affiliation(s)
- Eylul Cetindag
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - John Pentangelo
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Thierry Arrieta Cespedes
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Rajesh N Davé
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| |
Collapse
|
16
|
Tirumalesh C, Suram D, Dudhipala N, Banala N. Enhanced Pharmacokinetic Activity of Zotepine via Nanostructured Lipid Carrier System in Wistar Rats for Oral Application. Pharm Nanotechnol 2020; 8:148-160. [PMID: 32096755 DOI: 10.2174/2211738508666200225113359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Zotepine (ZT) is a substituted dibenzothiepine tricyclic molecule and second generation antipsychotic drug. It is available as the parenteral and oral solid dosage form, but, orally administered ZT has a poor oral bioavailability (10%) that might be due to either poor water solubility, high lipophilicity (Log P 4) and also first-pass hepatic metabolism. OBJECTIVE The oral bioavailability of ZT was improved by loading into a nanostructured lipid carriers (NLCs) system. METHODS Hot homogenization with probe sonication method was used for the preparation of ZT-NLCs formulations and characterized for an optimal system based on physicochemical characteristics and in vitro release. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) studies were used to confirm the crystalline nature and shape of the optimized ZT-NLC formulation. The physical stability of the optimized ZT-NLC formulation was evaluated at the refrigerator and room temperature over two months. Furthermore, in vivo pharmacokinetic (PK) studies of optimized ZT-NLC and ZT coarse suspension (ZT-CS) as control formulation, were conducted in male Wistar rats. RESULTS The optimized formulation of ZT-NLC showed Z-avg, PDI, ZP of 145.8 ± 2.5 nm, 0.18 ± 0.05, -31.6 ± 1.8 mV, respectively. In vitro release studies indicated the sustained release of ZT. DSC and XRD studies revealed the conversion of ZT into an amorphous form. SEM studies showed the spherical shape of the ZT-NLC formulation. PK studies showed 1.8-folds improvement (p<0.05) in oral bioavailability when compared with ZTCS formulation. CONCLUSION Overall, the results established that NLCs could be used as a new alternative delivery vehicle for the oral delivery of ZT.
Collapse
Affiliation(s)
- Cernam Tirumalesh
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana-506009, India
| | - Dinesh Suram
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana-506009, India
| | - Narendar Dudhipala
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana-506009, India
| | - Nagaraj Banala
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana-506009, India
| |
Collapse
|
17
|
Dudhipala N, Ali Youssef AA, Banala N. Colloidal lipid nanodispersion enriched hydrogel of antifungal agent for management of fungal infections: Comparative in-vitro, ex-vivo and in-vivo evaluation for oral and topical application. Chem Phys Lipids 2020; 233:104981. [PMID: 33031802 DOI: 10.1016/j.chemphyslip.2020.104981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
Ketoconazole (KZ) is broad spectrum antifungal drug, used for the treatment of fungal infections. KZ's clinical topical use has been associated with some adverse effects in healthy adults particularly local reactions, such as stinging, severe irritation, and pruritus. However, bioavailability of KZ after oral administration is low from tablets due to its low aqueous solubility. The objective of this investigation was development and characterization of KZ-containing solid lipid nanoparticles (KZ-SLNs) and SLN-containing hydrogel (KZ-SLN-H) for oral and topical delivery of KZ. KZ-SLNs were prepared using homogenization-sonication method. Optimal KZ-SLN formulation was selected based on physicochemical and in-vitro release studies. Optimized KZ-SLN converted to KZ-SLN hydrogel (KZ-SLN-H) using gelling polymers and optimized with rheological and in-vitro studies. Further, optimized KZ-SLN and KZ-SLN-H formulations evaluated for crystallinity, morphology, stability, ex-vivo and in-vivo pharmacokinetic (PK) studies in rats, comparison with KZ suspension (KZ-S) and KZ-S hydrogel (KZ-SH). Optimized KZ-SLN formulation showed desirable characters. KZ-SLN and KZ-SLN-H formulations exhibited spherical shape, converted to amorphous, sustained release behaviour and enhanced permeability (p < 0.05). Moreover, both formulations were stable for three months at 4 °C and 25 °C. PK studies revealed 1.9 and 1.5-folds, 3.5 and 2.8-folds enhancement of bioavailability of optimized KZ-SLN and KZ-SLN-H formulations (p < 0.05) compared with KZ-S and KZ-SH formulations, respectively. Overall, SLN and SLN-H formulations could be considered as an efficient delivery vehicles for KZ through oral and topical administration for better control over topical and systemic fungal infections.
Collapse
Affiliation(s)
- Narendar Dudhipala
- Depratment of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal, 50 6005, Telangana State, India.
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nagaraj Banala
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State, India
| |
Collapse
|
18
|
Ajjarapu S, Rangappa S, Shankar VK, Shettar A, Kumar HS, Kulkarni VI, Repka MA, Murthy SN. A Rapid Tool to Optimize Process Variables for Continuous Manufacturing of Metronidazole Ointment Using Melt Extrusion Technique. AAPS PharmSciTech 2020; 21:273. [PMID: 33030634 DOI: 10.1208/s12249-020-01808-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
The use of hot-melt extrusion (HME) technique in the preparation of semi-solid products offers several advantages over conventional processes. However, the optimization of the technique for preparation of semi-solid pharmaceuticals is challenging due to involvement of ingredients with different physical properties. Hence, a simple tool to optimize the mixing of ingredients that results in a target ratio and drug content uniformity is utmost important. In this study, a handheld colorimeter has been explored to optimize the process variables of twin screw processor for preparation of hydrophilic PEG-based ointment. The process parameters which were optimized with use of handheld colorimeter have been used for preparation of polyethylene glycol-based metronidazole ointment. The metronidazole ointment prepared by twin screw processor was compared with commercially available metronidazole gel for in vitro release testing and ex vivo permeation. The flux, ex vivo bioavailability, and Tmax of polyethylene glycol-based metronidazole ointment was found to be similar to that of marketed metronidazole gel.
Collapse
|
19
|
Dudhipala N, AY AA. Amelioration of ketoconazole in lipid nanoparticles for enhanced antifungal activity and bioavailability through oral administration for management of fungal infections. Chem Phys Lipids 2020; 232:104953. [DOI: 10.1016/j.chemphyslip.2020.104953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
|
20
|
Youssef A, Dudhipala N, Majumdar S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics 2020; 12:E572. [PMID: 32575524 PMCID: PMC7356176 DOI: 10.3390/pharmaceutics12060572] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial endophthalmitis (BE) is a potentially sight-threatening inflammatory reaction of the intraocular fluids or tissues caused by bacteria. Ciprofloxacin (CIP) eye drops are prescribed as first-line therapy in BE. However, frequent administration is necessary due to precorneal loss and poor ocular bioavailability. The objective of the current research was to prepare CIP containing nanostructured lipid carriers (CIP-NLCs) loaded an in situ gel system (CIP-NLC-IG) for topical ocular administration for enhanced and sustained antibacterial activity in BE treatment. CIP-NLCs were prepared by the hot homogenization method and optimized based on physicochemical characteristics and physical stability. The optimized CIP-NLC formulation was converted into CIP-NLC-IG with the addition of gellan gum as a gelling agent. Furthermore, optimized CIP-NLC and CIP-NLC-IG were evaluated for in vitro release and ex vivo transcorneal permeation studies, using commercial CIP ophthalmic solution (CIP-C) as the control. The optimized CIP-NLC formulation showed particle size, polydispersity index, zeta potential, assay and entrapment efficiency of 193.1 ± 5.1 nm, 0.43 ± 0.01, -32.5 ± 1.5 mV, 99.5 ± 5.5 and 96.3 ± 2.5%, respectively. CIP-NLC-IG with 0.2% w/v gellan gum showed optimal viscoelastic characteristics. The in vitro release studies demonstrated sustained release of CIP from CIP-NLC and CIP-NLC-IG formulations over a 24 h period. Transcorneal flux and permeability increased 4 and 3.5-fold, and 2.2 and 1.9-fold from CIP-NLC and CIP-NLC-IG formulations, respectively, when compared to CIP-C. The results demonstrate that CIP-NLC-IG could be considered as an alternate delivery system to prolong the residence time on the ocular surface after topical administration. Thus, the current CIP ophthalmic formulations may exhibit improved ocular bioavailability and prolonged antibacterial activity, which may improve therapeutic outcomes in the treatment of BE.
Collapse
Affiliation(s)
- Ahmed Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
21
|
Madani F, Hsein H, Busignies V, Tchoreloff P. An overview on dosage forms and formulation strategies for vaccines and antibodies oral delivery. Pharm Dev Technol 2019; 25:133-148. [DOI: 10.1080/10837450.2019.1689402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Li Y, Lu M, Wu C. PVP VA64 as a novel release-modifier for sustained-release mini-matrices prepared via hot melt extrusion. Drug Deliv Transl Res 2019; 8:1670-1678. [PMID: 29127610 DOI: 10.1007/s13346-017-0437-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to explore poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) as a novel release-modifier to tailor the drug release from ethylcellulose (EC)-based mini-matrices prepared via hot melt extrusion (HME). Quetiapine fumarate (QF) was selected as model drug. QF/EC/PVP VA64 mini-matrices were extruded with 30% drug loading. The physical state of QF in extruded mini-matrices was characterized using differential scanning calorimetry, X-ray powder diffraction, and confocal Raman microscopy. The release-controlled ability of PVP VA64 was investigated and compared with that of xanthan gum, crospovidone, and low-substituted hydroxypropylcellulose. The influences of PVP VA64 content and processing temperature on QF release behavior and mechanism were also studied. The results indicated QF dispersed as the crystalline state in all mini-matrices. The release of QF from EC was very slow as only 4% QF was released in 24 h. PVP VA64 exhibited the best ability to enhance the drug release as compared with other three release-modifiers. The drug release increased to 50-100% in 24 h with the addition of 20-40% PVP VA64. Increasing processing temperature slightly slowed down the drug release by decreasing free volume and pore size. The release kinetics showed good fit with the Ritger-Peppas model. The values of release exponent (n) increased as PVP VA64 is added (0.14 for pure EC, 0.41 for 20% PVP VA64, and 0.61 for 40% PVP VA64), revealing that the addition of PVP VA64 enhanced the erosion mechanism. This work presented a new polymer blend system of EC with PVP VA64 for sustained-release prepared via HME.
Collapse
Affiliation(s)
- Yongcheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Bhagurkar AM, Darji M, Lakhani P, Thipsay P, Bandari S, Repka MA. Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. J Pharm Pharmacol 2018; 71:293-305. [PMID: 30485903 DOI: 10.1111/jphp.13046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/30/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To investigate the effects of formulation composition on the physico-chemical and drug release properties of mucoadhesive buccal films prepared by melt extrusion technology, using a response surface methodology. METHODS Salbutamol sulphate, an antiasthmatic drug was used for this study. Klucel hydroxypropylcellulose (HPC) EF (film-forming polymer), Benecel hydroxypropylmethylcellulose (HPMC) K-15M (drug release retardant) and polyethylene glycol (PEG) 4500 (plasticiser) were the three independent factors utilised for the study. The responses were fitted to a full quadratic model and P-values for each of the factors were used to determine their significance on the film characteristics. KEY FINDINGS Films were successfully extruded using the corotating twin-screw extruder. The torque during extrusion was found to be significantly affected by all the three factors and no interaction between factors was observed. A significant interaction was observed between HPC and PEG 4500 for stiffness of films. For disintegration time and swelling index, a significant interaction was found between HPC and HPMC. The in vitro % drug release was directly correlated with HPMC content and not with other factors and varied from 69-89% at 4 h. CONCLUSIONS The influence of extrusion process and formulation parameters on salbutamol sulphate films was elucidated, indicating the use of melt extrusion as a feasible method for film preparation.
Collapse
Affiliation(s)
- Ajinkya M Bhagurkar
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi School of Pharmacy, University, MS, USA
| | - Mittal Darji
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi School of Pharmacy, University, MS, USA
| | - Prit Lakhani
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi School of Pharmacy, University, MS, USA
| | - Priyanka Thipsay
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi School of Pharmacy, University, MS, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi School of Pharmacy, University, MS, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi School of Pharmacy, University, MS, USA
| |
Collapse
|
24
|
Laffleur F, Krouská J, Tkacz J, Pekař M, Aghai F, Netsomboon K. Buccal adhesive films with moisturizer- the next level for dry mouth syndrome? Int J Pharm 2018; 550:309-315. [PMID: 30125650 DOI: 10.1016/j.ijpharm.2018.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
This study was undertaken to prepare films by solvent evaporation method comprising well-known polymers in order to investigate their potential for buccal suitability. Mucoadhesive films were manufactured using different polymers such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose as well as carboxymethyl cellulose. Buccal films were evaluated in regards of mucoadhesiveness, swelling and physico-chemical properties. Furthermore rheological measurement and adhesion study were carried out on the buccal porcine mucosa. Moreover, allantoin as humectant was incorporated and trans-mucosal water loss was determined. The results showed that physico-chemical, buccal adhesive and swelling properties varied depending on the composition of the polymers. The findings indicated films containing allantoin to be suitable for buccal application. In completion, adhesive films are appropriate and promising formulations in the treatment of various disease in the intraoral cavity.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research at MIT, Langer Lab, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Jitka Krouská
- Brno University of Technology, Faculty of Chemistry, Centre for Materials Research, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jakub Tkacz
- Brno University of Technology, Faculty of Chemistry, Centre for Materials Research, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Miloslav Pekař
- Brno University of Technology, Faculty of Chemistry, Centre for Materials Research, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Farid Aghai
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Kesinee Netsomboon
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rungsit campus, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
25
|
Shazly GA, Alshehri S, Ibrahim MA, Tawfeek HM, Razik JA, Hassan YA, Shakeel F. Development of Domperidone Solid Lipid Nanoparticles: In Vitro and In Vivo Characterization. AAPS PharmSciTech 2018; 19:1712-1719. [PMID: 29532427 DOI: 10.1208/s12249-018-0987-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022] Open
Abstract
Domperidone (DOP) is extensively applied orally in the management of nausea and vomiting. Upon oral administration, its bioavailability is very poor due to its poor solubility in alkaline media. Therefore, the aim of this work was to investigate DOP-loaded solid lipid nanoparticles (DOP-SLNs) in order to sustain its release pattern and to enhance oral bioavailability. DOP-SLNs were prepared using four different lipids. Prepared DOP-SLNs were characterized for "polydispersity index (PDI), particle size, zeta potential, % entrapment efficiency (% EE), and drug release behavior." Differential scanning calorimetry (DSC) study was carried out to illustrate the physical form of DOP and excipients. The morphology of DOP-SLNs was confirmed by scanning electron microscopy (SEM). Pharmacokinetic study on optimized DOP-SLN in comparison to tablet was performed in rats. The "particle size, PDI, zeta potential, and % EE" of optimized formulation (F5) were recorded as 201.4 nm, 0.071, - 6.2 mV, and 66.3%, respectively. DSC thermograms suggested amorphous state of DOP in various SLNs. Surface morphology of SLNs using SEM suggested spherical shape of the nanoparticles within nanometer size range. In vitro release studies confirmed that all SLN formulations possessed a sustained release over a period of 12 h (51.3% from optimized formulation) in comparison with immediate release from conventional tablets (100% after 90 min). Pharmacokinetic study showed significant enhancement in oral absorption of DOP from optimized SLN in comparison with DOP tablet. The enhancement in relative bioavailability of DOP from optimized SLN was 2.62-fold in comparison with DOP tablet.
Collapse
Affiliation(s)
- Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Mutah, Karak, 61710, Jordan
| | - Jelan A Razik
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yasser A Hassan
- Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Dakhlia, Egypt
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
26
|
Jug M, Hafner A, Lovrić J, Kregar ML, Pepić I, Vanić Ž, Cetina-Čižmek B, Filipović-Grčić J. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. J Pharm Biomed Anal 2018; 147:350-366. [DOI: 10.1016/j.jpba.2017.06.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/12/2023]
|
27
|
Melt extrusion with poorly soluble drugs - An integrated review. Int J Pharm 2017; 535:68-85. [PMID: 29102700 DOI: 10.1016/j.ijpharm.2017.10.056] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022]
Abstract
Over the last few decades, hot melt extrusion (HME) has emerged as a successful technology for a broad spectrum of applications in the pharmaceutical industry. As indicated by multiple publications and patents, HME is mainly used for the enhancement of solubility and bioavailability of poorly soluble drugs. This review is focused on the recent reports on the solubility enhancement via HME and provides an update for the manufacturing/scaling up aspects of melt extrusion. In addition, drug characterization methods and dissolution studies are discussed. The application of process analytical technology (PAT) tools and use of HME as a continuous manufacturing process may shorten the drug development process; as a result, the latter is becoming the most widely utilized technique in the pharmaceutical industry. The advantages, disadvantages, and practical applications of various PAT tools such as near and mid-infrared, ultraviolet/visible, fluorescence, and Raman spectroscopies are summarized, and the characteristics of other techniques are briefly discussed. Overall, this review also provides an outline for the currently marketed products and analyzes the strengths, weaknesses, opportunities and threats of HME application in the pharmaceutical industry.
Collapse
|
28
|
Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol 2017; 36:22-28. [PMID: 28800417 DOI: 10.1016/j.coph.2017.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
Buccal delivery of macromolecules (biologics) sets a great challenge for researchers. Although several niche small molecule products have been approved as simple sprays, tablets and oral films, it is not simply a case of adapting existing technologies to biologics. Buccal delivery of insulin has reached clinical trials with two approaches: oromucosal sprays of the peptide with permeation enhancers, and embedded gold nanoparticles in a dissolvable film. However, neither of these approaches have led to FDA approvals likely due to poor efficacy, submaximal peptide loading in the dosage form, and to wide intra-subject variability in pharmacokinetics and pharmacodynamics. It is likely however that printed film designs with lower molecular weight stable biotech payloads including lipophilic glucagon-like 1 (GLP-1) agonists and macrocycles with long half-lives will generate greater efficacy than was achieved to date for insulin.
Collapse
Affiliation(s)
- Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Pharmaceutical Biomaterial Research Group, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Scarpa M, Stegemann S, Hsiao WK, Pichler H, Gaisford S, Bresciani M, Paudel A, Orlu M. Orodispersible films: Towards drug delivery in special populations. Int J Pharm 2017; 523:327-335. [PMID: 28302515 DOI: 10.1016/j.ijpharm.2017.03.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 12/20/2022]
Abstract
Orodispersible films (ODF) hold promise as a novel delivery method, with the potential to deliver tailored therapies to different patient populations. This article reviews the current strides of ODF technology and some of its unmet quality and manufacturing aspects. A topic highlights opportunities and limitations of inkjet printed ODF as a population-specific drug delivery. Overall, this article aims to stimulate further research to fill the current knowledge gap between manufacturing and administration requirements of ODF targeting specific patient subpopulations such as geriatrics.
Collapse
Affiliation(s)
| | | | - Wen-Kai Hsiao
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Heinz Pichler
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Simon Gaisford
- School of Pharmacy, University College London (UCL), London, United Kingdom
| | | | - Amrit Paudel
- Graz University of Technology, Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
| | - Mine Orlu
- School of Pharmacy, University College London (UCL), London, United Kingdom
| |
Collapse
|
30
|
Jones DKF, Andrews GP, Jones DS. Strontium-containing, carbohydrate-based polymer networks as tooth-adherent systems for the treatment of dentine hypersensitivity. Carbohydr Polym 2017; 157:400-408. [PMID: 27987944 DOI: 10.1016/j.carbpol.2016.09.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022]
Abstract
This study describes the design/physicochemical properties of strontium-containing, mucoadhesive carbohydrate polymeric platforms, designed as treatments for dentine hypersensitivity. Interactive networks were composed of strontium chloride (10% w/w), one of two base polymers (sodium carboxymethylcellulose, NaCMC or hydroxyethylcellulose, HEC), polycarbophil (PC) and, when required, polyvinylpyrrolidone (PVP). The physicochemical properties were characterised using oscillatory and flow rheometry, texture profile analysis, mucoadhesion analysis and, additionally, the strontium release properties were examined. All platforms exhibited pseudoplastic flow. Increasing polymer concentrations increased network viscoelasticity, consistency, hardness, compressibility, gel strength, adhesiveness, mucoadhesion and, retarded strontium release. Principally zero-order strontium release was observed from all platforms. Incorporation of strontium reduced the network elasticity, consistency, hardness, compressibility, gel strength and mucoadhesion; HEC-based platforms being affected to a greater extent than NaCMC platforms. NaCMC-based platforms containing 10% strontium chloride, PVP (3% w/w) and PC (3% w/w) potentially displayed the correct balance of physicochemical properties for the treatment of dentine sensitivity.
Collapse
Affiliation(s)
- Dary K F Jones
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, UK
| | - David S Jones
- School of Pharmacy, Queen's University of Belfast, Belfast, Antrim, Northern Ireland, UK.
| |
Collapse
|
31
|
Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1452-1462. [DOI: 10.1080/21691401.2016.1247850] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Manmohan Singh Jangdey
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| | - Anshita Gupta
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| |
Collapse
|
32
|
Smyth HDC. Recent advances in solid dispersions and the formulation of poorly absorbed drugs. Drug Dev Ind Pharm 2016; 42:351-2. [DOI: 10.3109/03639045.2016.1147716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hugh D. C. Smyth
- Division of Pharmaceutics, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|