1
|
Abdelhafez A, Khabir Z, Prestidge CA, Garcia-Bennett A, Joyce P. The impact of formulation design on the oral bioavailability of omega-3 polyunsaturated fatty acids. Food Res Int 2025; 208:116171. [PMID: 40263835 DOI: 10.1016/j.foodres.2025.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) are essential dietary supplements with widespread health benefits. However, achieving therapeutic n-3 PUFA levels in systemic circulation represents a significant dosing challenge, complicated by a complex interaction between different physiological and chemical factors. Recently, significant efforts have been directed towards creating "bio-accessible" n-3 PUFA formulations that overcome this dosing challenge by enabling increased oral absorption across the small intestine. However, the impact of varying physiochemical formulation properties on n-3 PUFA bioavailability remains poorly understood and requires further investigation. This review explores the impact of formulation design, including self-emulsifying systems, micro- and nano-emulsions, chewable gels, and microencapsulation, on n-3 PUFA pharmacokinetics, considering both clinical and preclinical investigations. Key challenges in developing highly bioavailable n-3 PUFA formulations and quantifying their absorption, biodistribution and metabolism are discussed. Finally, recent progress in developing next-generation n-3 PUFA formulations, including solid lipid nanoparticles and nanostructured lipid carriers, and their targeting through innovative lipid structuring approaches will be addressed. The oral bioavailability of n-3 PUFA is ultimately influenced by multiple design factors related to each formulation strategy, underscoring the need for a systematic formulation approach that involves comprehensive testing of candidate formulation under simulated gastrointestinal conditions.
Collapse
Affiliation(s)
- Amer Abdelhafez
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; ARC Industry Transformation Training Centre (ITTC) for Facilitated Advancement of Australia 's Bioactives (FAAB)
| | - Zahra Khabir
- ARC Industry Transformation Training Centre (ITTC) for Facilitated Advancement of Australia 's Bioactives (FAAB); School of Natural Sciences, Macquarie University, Sydney 2109, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; ARC Industry Transformation Training Centre (ITTC) for Facilitated Advancement of Australia 's Bioactives (FAAB)
| | - Alfonso Garcia-Bennett
- ARC Industry Transformation Training Centre (ITTC) for Facilitated Advancement of Australia 's Bioactives (FAAB); School of Natural Sciences, Macquarie University, Sydney 2109, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia; ARC Industry Transformation Training Centre (ITTC) for Facilitated Advancement of Australia 's Bioactives (FAAB).
| |
Collapse
|
2
|
Thakur S, Singh H, Sharma S, Kaur M, Singh A, Kaur A, Jain SK. Pre-clinical and cellular safety assessment of oral administered DHA rich microalgae oil from Schizochytrium sp. (Strain ATCC-20889): acute, sub-chronic and genotoxicity. Drug Chem Toxicol 2024; 47:876-888. [PMID: 38311820 DOI: 10.1080/01480545.2024.2308835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
The lack of toxicity data for DHA-rich oil from Schizochytrium sp. (Strain ATCC-20889) leads to its exclusion from the Qualified Presumption of Safety list. Therefore, present study addresses toxicity evaluation of DHA-rich microalgae oil using ex-vivo (cytotoxicity assay) and in-vivo methods (acute (OECD 423 guidelines), sub-chronic (OECD 452 guidelines), and genotoxicity assay). The ex-vivo results showed >90% cell viability of Caco-2 cells after 48 h of treatment (200 µg/mL of DHA). Additionally, the in-vivo acute toxicity study found that microalgae oil was nontoxic and classified under category 5 molecule according to OECD 423 guidelines with a highest degree of safety at 2000 mg/kg b.w. The in-vivo sub-chronic study revealed no significant mortality and changes in feed intake, body weight, haematological, biochemical, neurological, and urine parameters after repeated 180-days administration of DHA-rich microalgae oil at 250 mg/kg, 500 mg/kg, and 1000 mg/kg. Moreover, histopathology evaluation, comet assay, chromosomal aberration, and micronuclei assay also confirmed the nontoxic behavior of DHA-rich oil. Thus, the results from the ex-vivo and in-vivo studies indicate that DHA-rich oil from Schizochytrium sp. (Strain ATCC-20889) is safe for use as a novel food, and can be included in infants, adults, pregnant women, and children formula.
Collapse
Affiliation(s)
- Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Kumar S, Taumar D, Gaikwad S, More A, Nema V, Mukherjee A. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv Transl Res 2024; 14:1888-1908. [PMID: 38161197 DOI: 10.1007/s13346-023-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.
Collapse
Affiliation(s)
- Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Dhananjay Taumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Vijay Nema
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
4
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Thakur S, Sharma R, Jain SK. Prenatal Supplementation of Docosahexaenoic Acid for the Management of Preterm Births: Clinical Information for Practice. Curr Pediatr Rev 2024; 20:489-499. [PMID: 37317913 DOI: 10.2174/1573396320666230615090527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Unhealthy pregnancy and the resultant abnormalities in newborns exhibit a significant drawback. Each year, an estimated 15 million babies are born prematurely, accounting for the majority of deaths among children under the age of 5. India accounts for about a quarter of all preterm birth (PTB) incidences, with few therapeutic options available. However, research shows that consuming more marine foods (rich in omega-3 fatty acids (Ω-3), particularly Docosahexaenoic acid (DHA), helps to maintain a healthy pregnancy and can manage or prevent the onset of PTB and its accompanying difficulties. Present circumstances raise concerns about the use of DHA as a medication due to a lack of evidence on the dosage requirements, safety profile, molecular route, and commercially accessible strength for their therapeutic response. Several clinical experiments have been done over the last decade; however, the mixed outcomes have resulted in discrepancies. Most scientific organizations suggest a daily DHA consumption of 250-300 mg. However, this may differ from person to person. As a result, before prescribing a dosage, one should check the DHA concentrations in the individual's blood and then propose a dose that will benefit both the mother and the unborn. Thus, the review focuses on the favourable benefits of Ω-3, particularly DHA during pregnancy and postpartum, therapeutic dose recommendations, safety considerations, particularly during pregnancy, and the mechanistic pathway that might prevent or reduce the frequency of PTB accidents.
Collapse
Affiliation(s)
- Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ritika Sharma
- Sri Sai College of Pharmacy, Badhani, Pathankot, 145001, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
6
|
Dassoff E, Shireen A, Wright A. Lipid emulsion structure, digestion behavior, physiology, and health: a scoping review and future directions. Crit Rev Food Sci Nutr 2023; 65:320-352. [PMID: 37947287 DOI: 10.1080/10408398.2023.2273448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Research investigating the effects of the food matrix on health is needed to untangle many unresolved questions in nutritional science. Emulsion structure plays a fundamental role in this inquiry; however, the effects of oil-in-water emulsion structure on broad metabolic, physiological, and health-related outcomes have not been comprehensively reviewed. This systematic scoping review targets this gap and examines methodological considerations for the field of relating food structure and health. MEDLINE, Web of Science, and CAB Direct were searched from inception to December 2022, returning 3106 articles, 52 of which were eligible for inclusion. Many investigated emulsion lipid droplet size and/or gastric colloidal stability and their relation to postprandial weight-loss-related outcomes. The present review also identifies numerous novel relationships between emulsion structures and health-related outcomes. "Omics" endpoints present an exciting avenue for more comprehensive analysis in this area, yet interpretation remains difficult. Identifying valid surrogate biomarkers for long-term outcomes and disease risk will be a turning point for food structure research, leading to breakthroughs in the pace and utility of research that generates advancements in health. The review's findings and recommendations aim to support new hypotheses, future trial design, and evidence-based emulsion design for improved health and well-being.
Collapse
Affiliation(s)
- Erik Dassoff
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Arshia Shireen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amanda Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Capra ME, Stanyevic B, Giudice A, Monopoli D, Decarolis NM, Esposito S, Biasucci G. Long-Chain Polyunsaturated Fatty Acids Effects on Cardiovascular Risk in Childhood: A Narrative Review. Nutrients 2023; 15:nu15071661. [PMID: 37049503 PMCID: PMC10096679 DOI: 10.3390/nu15071661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) are semi-essential fatty acids widely studied in adult subjects for their healthy-heart effects, especially on secondary prevention in patients who already experienced a cardiac event. LCPUFAs consumption is safe, without adverse effects, and they are usually well-tolerated; they can be taken either in foods or as nutritional supplements. LCPUFAs' positive effect on global health has been worldwide recognized also for pediatric patients. In childhood and adolescence, research has mainly focused on LCPUFAs' effects on neurodevelopment, brain and visual functions and on maternal-fetal medicine, yet their cardiovascular effects in childhood are still understudied. Atherosclerosis is a multifactorial process that starts even before birth and progresses throughout life; thus, cardiovascular prevention is advisable and effective from the very first years of life. Nutritional and lifestyle interventions are the main factors that can interfere with atherosclerosis in childhood, and the consumption of specific nutrients, such as LCPUFAs, can enhance positive nutritional effects. The aim of our narrative review is to analyze the effect of LCPUFAs on cardiovascular risk factors and on cardiovascular risk prevention in developmental age, focusing on specific conditions such as weight excess and dyslipidemia.
Collapse
Affiliation(s)
- Maria Elena Capra
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
| | - Brigida Stanyevic
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Antonella Giudice
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Delia Monopoli
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Nicola Mattia Decarolis
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
- Società Italiana di Nutrizione Pediatrica, 20126 Milan, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Adnan M, Afzal O, S A Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int J Pharm 2023; 631:122506. [PMID: 36535455 DOI: 10.1016/j.ijpharm.2022.122506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The main aim of this study was to optimize the transethosomes of apigenin formulated by the thin film hydration method using surfactant Span 80. Response surface Box-Behnken design with three levels of three factors was used to design and optimize the formulations. The prepared transethosomal formulations were characterized for entrapment efficiency, vesicle size, and flux to obtain the optimized formulation batch. The optimized batch was further incorporated into the gel and characterized for the in-vitro, ex-vivo, and cytotoxic studies. The result showed the optimized transethosomes were smooth, nanosized, unilamellar, and spherical with an entrapment efficiency of 78.75 ± 3.14 %, a vesicle size of 108.75 ± 2.31 nm, and a flux of 4.10 ± 0.63 µg/cm2/h. In-vitro cumulative drug release of transethosomal gel of apigenin (TEL gel) and the conventional gel was 92.25 ± 3.5 % and 53.40 ± 3.10 %, respectively, after 24 h study. Ex-vivo permeation of TEL gel and conventional gel showed 86.20 ± 3.60 % and 51.20 ± 3.20 % permeation of apigenin at 24 h, respectively. A cytotoxic study confirmed that TEL gel significantly reduces cell viability compared to conventional gel. The results suggested that topical application of apigenin transethosomal gel may be a better treatment strategy for skin cancer because of the prolonged sustained release of the drug and the better permeability of apigenin through the skin.
Collapse
Affiliation(s)
- Mohammad Adnan
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Tanweer Haider
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India.
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| |
Collapse
|
9
|
Lv W, Xu D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022; 11:2685. [PMID: 36076867 PMCID: PMC9455885 DOI: 10.3390/foods11172685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA), mainly found in microalgae and fish oil, is crucial for the growth and development of visual, neurological, and brain. In addition, DHA has been found to improve metabolic disorders associated with obesity and has anti-inflammatory, anti-obesity, and anti-adipogenesis effects. However, DHA applications in food are often limited due to its low water solubility, instability, and poor bioavailability. Therefore, delivery systems have been developed to enhance the remainder of DHA activity and increase DHA homeostasis and bioavailability. This review focused on the different DHA delivery systems and the in vitro and in vivo digestive characteristics. The research progress on cardiovascular diseases, diabetes, visual, neurological/brain, anti-obesity, anti-inflammatory, food applications, future trends, and the development potential of DHA delivery systems were also reviewed. DHA delivery systems could overcome the instability of DHA in gastrointestinal digestion, improve the bioavailability of DHA, and better play the role of its functionality.
Collapse
Affiliation(s)
- Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Tonjan R, Singh D. Functional Excipients and Novel Drug Delivery Scenario in Self-nanoemulsifying Drug Delivery System: A Critical Note. Pharm Nanotechnol 2022; 10:PNT-EPUB-125930. [PMID: 36043758 DOI: 10.2174/2211738510666220829085745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Lipid-based formulations have emerged as prospective dosage forms for extracting the therapeutic effects of existing lipophilic compounds and novel chemical entities more efficiently. Compared to other excipients, lipids have the added benefit of enhancing the bioavailability of lipophilic and highly metabolizable drugs due to their unique physicochemical features and similarities to in vivo components. Furthermore, lipids can minimize the needed dose and even the toxicity of drugs with poor aqueous solubility when employed as the primary excipient. Hence, the aim of the present review is to highlight the functional behavior of lipid excipients used in SNEDD formulation along with the stability aspects of the formulation in vivo. Moreover, this review also covered the importance of SNEDDS in drug delivery, the therapeutic and manufacturing benefits of lipids as excipients, and the technological advances made so far to convert liquid to solid SNEDDS like melt granulation, adsorption on solid support, spray cooling, melt extrusion/ spheronization has also highlighted. The mechanistic understanding of SNEDD absorption in vivo is highly complex, which was discussed very critically in this review. An emphasis on their application and success on an industrial scale was presented, as supported by case studies and patent surveys.
Collapse
Affiliation(s)
- Russel Tonjan
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| |
Collapse
|
11
|
Self-Emulsifying Drug Delivery Systems: An Alternative Approach to Improve Brain Bioavailability of Poorly Water-Soluble Drugs through Intranasal Administration. Pharmaceutics 2022; 14:pharmaceutics14071487. [PMID: 35890385 PMCID: PMC9319231 DOI: 10.3390/pharmaceutics14071487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Efforts in discovering new and effective neurotherapeutics are made daily, although most fail to reach clinical trials. The main reason is their poor bioavailability, related to poor aqueous solubility, limited permeability through biological membranes, and the hepatic first-pass metabolism. Nevertheless, crossing the blood–brain barrier is the major drawback associated with brain drug delivery. To overcome it, intranasal administration has become more attractive, in some cases even surpassing the oral route. The unique anatomical features of the nasal cavity allow partial direct drug delivery to the brain, circumventing the blood–brain barrier. Systemic absorption through the nasal cavity also avoids the hepatic first-pass metabolism, increasing the systemic bioavailability of highly metabolized entities. Nevertheless, most neurotherapeutics present physicochemical characteristics that require them to be formulated in lipidic nanosystems as self-emulsifying drug delivery systems (SEDDS). These are isotropic mixtures of oils, surfactants, and co-surfactants that, after aqueous dilution, generate micro or nanoemulsions loading high concentrations of lipophilic drugs. SEDDS should overcome drug precipitation in absorption sites, increase their permeation through absorptive membranes, and enhance the stability of labile drugs against enzymatic activity. Thus, combining the advantages of SEDDS and those of the intranasal route for brain delivery, an increase in drugs’ brain targeting and bioavailability could be expected. This review deeply characterizes SEDDS as a lipidic nanosystem, gathering important information regarding the mechanisms associated with the intranasal delivery of drugs loaded in SEDDS. In the end, in vivo results after SEDDS intranasal or oral administration are discussed, globally revealing their efficacy in comparison with common solutions or suspensions.
Collapse
|
12
|
Dhritlahre RK, Ruchika, Padwad Y, Saneja A. Self-emulsifying formulations to augment therapeutic efficacy of nutraceuticals: From concepts to clinic. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Tharmatt A, Thakur S, Singh A, Kaur M, Shahtaghi NR, Malhotra D, Jain SK. Olive oil and oleic acid-based self nano-emulsifying formulation of omega-3-fatty acids with improved strength, stability, and therapeutics. J Microencapsul 2021; 38:298-313. [PMID: 33863269 DOI: 10.1080/02652048.2021.1914760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To develop, characterise, and optimise SNEDDS formulation to enhance organoleptics, bioavailability, physical & oxidative-stability, and extend shelf-life of pure Ω-3-fatty acids oil for use in the food fortification industry as nutraceuticals. METHODS SNEDDS formulations were prepared using a simple stirring technique and optimised based on in-vitro characterisation. RESULTS The optimised SNEDDS formulation (F3) had a mean diameter of 52.9 ± 0.4 nm, PDI of 0.229 ± 0.02, zeta potential of -17.3 ± 0.1 mV, cloud temperature of 92 ± 0.2 °C, self-emulsification time of 50 ± 0.2 sec, and stable under accelerated stability conditions. Intestinal permeability study on rat ileum depicted absorption of 88.5 ± 0.2% DHA at 5 h for F3 formulation in comparison to 61.5 ± 0.2% for commercial counterpart. F3 formulation exhibited better therapeutics for melamine-induced cognitive dysfunction. CONCLUSIONS The developed Ω-3-loaded SNEDDS heralds the future for an efficacious, safer, and higher strength formulation intended as a better substitute for currently available formulations.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Divay Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
14
|
Singh A, Thakur S, Singh H, Singh H, Kaur S, Kaur S, Dudi R, Mondhe DM, Jain SK. Novel Vitamin E TPGS based docetaxel nanovesicle formulation for its safe and effective parenteral delivery: Toxicological, pharmacokinetic and pharmacodynamic evaluation. J Liposome Res 2020; 31:365-380. [PMID: 33050745 DOI: 10.1080/08982104.2020.1835955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Docetaxel (DTX) is a highly lipophilic, BCS class IV drug with poor aqueous solubility (12.7 µg/mL). Presently, only injectable formulation is available in the market which uses a large amount of surfactant (Tween 80) and dehydrated alcohol as a solubilizer. High concentrations of Tween 80 in injectable formulations are associated with severe consequences i.e. nephrotoxicity, fluid retention, and hypersensitivity reactions. The present study aims to eliminate Tween 80, thus novel biocompatible surfactant Vitamin E TPGS based nanovesicle formulation of DTX (20 mg/mL) was developed and evaluated for different quality control parameters. Optimized nanovesicular formulation (NV-TPGS-3) showed nanometric size (102.9 ± 2.9 nm), spherical vesicular shape, high drug encapsulation efficiency (95.2 ± 0.5%), sustained-release profile and high dilution integrity with normal saline. In vitro cytotoxicity assay, showed threefold elevation in the IC50 value of the optimized formulation in comparison to the commercial formulation. Further, no mortality and toxicity were observed during 28 days repeated dose sub-acute toxicity studies in Swiss albino mice up to the dose of 138 mg/kg, whereas, commercial formulation showed toxicity at 40 mg/kg. In addition, in vivo anticancer activity on Ehrlich Ascites Carcinoma induced mice showed a significant tumour growth inhibition of 76.3 ± 5.3% with the NV-TPGS-3 treatment when compared to Ehrlich Ascites Carcinoma control. Results demonstrated that the developed Vitamin E TPGS based nanovesicular formulation of DTX could be a better alternative to increase its clinical uses with improved therapeutic efficacy, reduced toxicity and dosing frequency, and sustained drug release behaviour.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Harmanpreet Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Harjeet Singh
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Dudi
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilip Manikrao Mondhe
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
15
|
Singh H, Thakur S, Sahajpal NS, Singh H, Singh A, Sohal HS, Jain SK. Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance. Curr Drug Deliv 2020; 17:483-504. [DOI: 10.2174/1567201817666200512103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harminder Singh Sohal
- Department of Orthopaedics, Government Medical College, Amritsar 143001, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| |
Collapse
|
16
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Ghosh D, Singh SK, Khursheed R, Pandey NK, Kumar B, Kumar R, Kumari Y, Kaur G, Clarisse A, Awasthi A, Gulati M, Jain SK, Porwal O, Bayrakdar E, Sheet M, Gowthamarajan K, Gupta S, Corrie L, Gunjal P, Gupta RK, Singh TG, Sinha S. Impact of solidification on micromeritic properties and dissolution rate of self-nanoemulsifying delivery system loaded with docosahexaenoic acid. Drug Dev Ind Pharm 2020; 46:597-605. [DOI: 10.1080/03639045.2020.1742143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Omji Porwal
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Bayrakdar
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Muath Sheet
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - K. Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ooty, India
| | - Saurabh Gupta
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradnya Gunjal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajneesh Kumar Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shibanand Sinha
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
18
|
Nurunnabi M, Ibsen KN, Tanner EEL, Mitragotri S. Oral ionic liquid for the treatment of diet-induced obesity. Proc Natl Acad Sci U S A 2019; 116:25042-25047. [PMID: 31767747 PMCID: PMC6911186 DOI: 10.1073/pnas.1914426116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
More than 70% of American adults are overweight or obese, a precondition leading to chronic diseases, including diabetes and hypertension. Among other factors, diets with high fat and carbohydrate content have been implicated in obesity. In this study, we hypothesize that the choline and geranate (CAGE) ionic liquid can reduce body weight by decreasing fat absorption through the intestine. In vitro studies performed using docosahexaenoic acid (DHA), a model fat molecule, show that CAGE forms particles 2 to 4 μm in diameter in the presence of fat molecules. Ex vivo permeation studies in rat intestine showed that formation of such large particles reduces intestinal fat absorption. In vivo, CAGE reduces DHA absorption by 60% to 70% compared with controls. DHA administered with CAGE was retained in the intestine even after 6 h. Rats fed with a high-fat diet (HFD) and 10 μL of daily oral CAGE exhibited 12% less body weight gain compared with rats fed with an HFD without CAGE for 30 d. Rats that were given CAGE also ate less food than the control groups. Serum biochemistry and histology results indicated that CAGE was well tolerated by the rats. Collectively, our data support the hypothesis that CAGE interacts with fat molecules to prevent their absorption through intestinal tissue and potentially providing a feeling of satiety. We conclude that CAGE offers an effective means to control body weight and a promising tool to tackle the obesity epidemic.
Collapse
Affiliation(s)
- Md Nurunnabi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
| | - Kelly N Ibsen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Eden E L Tanner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
19
|
Development and characterization of Solid-SNEDDS formulation of DHA using hydrophilic carrier with improved shelf life, oxidative stability and therapeutic activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Sharma M, Garg R, Sardana S. Enhanced Release Kinetics and Stability of Resveratrol Loaded Self Nanoemulsifying Delivery Systems Developed using Experimental Design. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2468187308666180613104123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Resveratrol is a member of the stilbene family emerged as a
leading candidate for improving healthspan through potentially slowing the aging process
and preventing chronic diseases. A number of institutions and scientists specialized in
this field across the world are working to develop a promising Self Emulsifying formulation
to enhance bioavailability of hydrophobic resveratrol using oil.
Objective:
The objective of the current study is to develop self-nano emulsifying drug
delivery systems using long-chain triglycerides of resveratrol to enhance solubility, stability,
release kinetics and to overcome low bioavailability.
Methods:
Solubility studies performed in different lipids, surfactants and cosurfactants.
Phase diagrams constructed to select the areas of nanoemulsion. SNEDDS formulation
was optimized using 33 central composite design considering lipid (X1), surfactant (X2)
and co-surfactant (X3) as critical variables, optimized formulation was located using overlay
plot.
Results:
The nanometer size and high values of zeta potential depicted non-coalescent nature
of SNEDDS. The resulted SNEDDS formulation had improved in vitro release followed
by Hixson Crowell model with higher regression R2value 0. 929. Thermodynamic
stability studies ascertained stable formulation. Mean droplet size in selected nanocarrier
was found to be 83.29 nm. The nanocarriers subjected to 2-8°C (45% RH), 25-30°C (60%
RH) and 45-50°C (75% RH) in glass vials exhibited no significant changes in 3 months.
Conclusion:
The novel approach was developed by selecting optimum blends of lipids,
surfactants and cosurfactant using central composite design. This study not only offers a
good example of augmenting bioavailability of resveratrol but will also provide a promising
oral formulation for clinical application.
Collapse
Affiliation(s)
- Monika Sharma
- Pharmacy Institute, NIET, Knowledge Park II Greater Noida, Uttar Pradesh, India
| | - Rajeev Garg
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University Gurugram, Haryana, India
| |
Collapse
|
21
|
Singh H, Singh J, Singh SK, Singh N, Paul S, Sohal HS, Gupta U, Jain SK. Vitamin E TPGS based palatable, oxidatively and physically stable emulsion of microalgae DHA oil for infants, children and food fortification. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1634587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University , Amritsar , Punjab , India
| | - Jasvinder Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , Jammu & Kashmir , India
| | - Shashank K. Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , Jammu & Kashmir , India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University , Amritsar , Punjab , India
| | - Surinder Paul
- Department of Pathology, Government Medical College , Amritsar , Punjab , India
| | | | - Umesh Gupta
- Department of Pharmacy, Central University of Rajasthan , Ajmer , Rajasthan , India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University , Amritsar , Punjab , India
| |
Collapse
|
22
|
Petyaev IM, Dovgalevsky PY, Chalyk NE, Klochkov VA, Kyle NH. Reduction of elevated lipids and low-density lipoprotein oxidation in serum of individuals with subclinical hypoxia and oxidative stress supplemented with lycosome formulation of docosahexaenoic acid. Food Sci Nutr 2019; 7:1147-1156. [PMID: 31024687 PMCID: PMC6475726 DOI: 10.1002/fsn3.784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
Thirty two individuals aged 40-65 years old with a moderate hyperlipidemia (serum triglycerides > 150 mg/dl and LDL from 130 to 160 mg/dl) were supplemented once daily for 30 days with a 250 mg conventional formulation of docosahexaenoic acid (DHA) without lycopene (CF-DHA) or 250 mg of lycosome-formulated DHA containing 7 mg of lycopene (LF-DHA). It was shown that ingestion of CF-DHA led to a transient increase in serum DHA level after 2 weeks of the trial, whereas LF-DHA did not cause significant changes in serum DHA. However, there was a noticeable increase in serum eicosapentaenoic acid levels exceeding the pretreatment value by 42.8% and 39.1% after the 2nd and 4th weeks of LF-DHA ingestion. Patients supplemented with LF-DHA showed a significant (19.5 mg/dl, p < 0.05) decline in LDL, which was accompanied by a corresponding decrease in total serum cholesterol and a much stronger reduction in serum triglyceride levels (reduction of medians by 27.5 mg/dl). No changes in HDL were observed. LF-DHA caused a significant decline in the serum level of malonic dialdehyde (MDA), whereas the components of LF-DHA, lycopene and DHA, ingested as two separate formulations had a less significant effect on serum MDA. Moreover, LF-DHA increased both the plasma oxygen transport and tissue oxygen saturation by the end of the observational period, while lycopene or DHA taken alone, or both of them co-ingested separately had none or a much less effect on the oxygen turnover parameters.
Collapse
|
23
|
Rao MRP, Bhutada K, Kaushal P. Taste Evaluation by Electronic Tongue and Bioavailability Enhancement of Efavirenz. AAPS PharmSciTech 2019; 20:56. [PMID: 30617434 DOI: 10.1208/s12249-018-1277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) are isotropic and thermodynamically stable mixtures of oil, surfactant, co-surfactant, and drug which emulsify spontaneously on contact with aqueous phase under mild agitation. Efavirenz used for treatment of acquired immune deficiency syndrome, is poorly water soluble and bitter tasting drug resulting in "burning mouth syndrome (BMS)." The objective of this study was to improve solubility and oral bioavailability by formulating liquid-SNEDDS and to mask bitter taste and minimize BMS. Capmul PG8 NF, Cremophor RH40, and Transcutol HP were selected as oil, surfactant, and co-surfactant. Ternary phase diagrams were constructed to evaluate the nanoemulsification region. A 32 factorial design was employed to optimize L-SNEDDS with droplet size and drug release as responses. Optimized batch was subjected to evaluation of taste by human panel method and electronic tongue, cloud point determination, phase separation, in vivo and stability studies. The optimized batch exhibited droplet size of 21.53 nm, polydispersibility index 0.155, and in vitro drug release of 92.26% in 60 min. The in vivo studies revealed 4.5 times enhancement in oral bioavailability. Taste evaluation indicated reduced the intensity and shortened duration of BMS. The formulation was stable at 40°C ± 75% RH after 3 months. Comparison between standard bitter drug and efavirenz in SNEDDS formulation using e-tongue by principal component analysis revealed significant differences in discrimination index, computed by multivariate data analysis. This study demonstrated that L-SNEDDS may be an alternative approach to improve solubility and oral bioavailability and for masking the bitterness of efavirenz.
Collapse
|
24
|
Singh D, Tiwary AK, Bedi N. Self-microemulsifying Drug Delivery System for Problematic Molecules: An Update. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:92-113. [PMID: 31215381 DOI: 10.2174/1872210513666190619102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The poor bioavailability of a problematic molecule is predominantly due to its high lipophilicity, low solubility in gastric fluids and/or high fist pass metabolism. Self microemulsifying drug delivery system (SMEDDS), a lipidic type IV nano-formulation has been of interest in the field of pharmaceutical research due to its potential for tailoring the physicochemical properties of pharmaceutical molecules. METHODS This review provides insights on various recent innovations and reports from the past seven years (2012-2019) of self-emulsifying formulations for the delivery of various types of poorly soluble drugs, phytoconstituents and high molecular peptides and gives exhaustive details of the outcome of the endeavors in this field. RESULTS Various types of innovative formulations have been molded from SMEDDS like selfemulsifying powders, granules, tablets, pellets, eutectic and cationic formulations. Till date, many research reports and patents have been filed on self-emulsifying dosage forms and many formulations have gained US-FDA approvals which are summarized in the review article. CONCLUSION This review content highlighted the increasing scope of SMEDDS in augmenting the physiochemical properties of an API, the variegated formulation types and the attributes of API that can be improved by SMEDD based formulations.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ashok K Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
25
|
Cholewski M, Tomczykowa M, Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018; 10:E1662. [PMID: 30400360 PMCID: PMC6267444 DOI: 10.3390/nu10111662] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Omega-3 fatty acids, one of the key building blocks of cell membranes, have been of particular interest to scientists for many years. However, only a small group of the most important omega-3 polyunsaturated fatty acids are considered. This full-length review presents a broad and relatively complete cross-section of knowledge about omega-3 monounsaturated fatty acids, polyunsaturates, and an outline of their modifications. This is important because all these subgroups undoubtedly play an important role in the function of organisms. Some monounsaturated omega-3s are pheromone precursors in insects. Polyunsaturates with a very long chain are commonly found in the central nervous system and mammalian testes, in sponge organisms, and are also immunomodulating agents. Numerous modifications of omega-3 acids are plant hormones. Their chemical structure, chemical binding (in triacylglycerols, phospholipids, and ethyl esters) and bioavailability have been widely discussed indicating a correlation between the last two. Particular attention is paid to the effective methods of supplementation, and a detailed list of sources of omega-3 acids is presented, with meticulous reference to the generally available food. Both the oral and parenteral routes of administration are taken into account, and the omega-3 transport through the blood-brain barrier is mentioned. Having different eating habits in mind, the interactions between food fatty acids intake are discussed. Omega-3 acids are very susceptible to oxidation, and storage conditions often lead to a dramatic increase in this exposure. Therefore, the effect of oxidation on their bioavailability is briefly outlined.
Collapse
Affiliation(s)
- Mateusz Cholewski
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|
26
|
Dou YX, Zhou JT, Wang TT, Huang YF, Chen VP, Xie YL, Lin ZX, Gao JS, Su ZR, Zeng HF. Self-nanoemulsifying drug delivery system of bruceine D: a new approach for anti-ulcerative colitis. Int J Nanomedicine 2018; 13:5887-5907. [PMID: 30319255 PMCID: PMC6167998 DOI: 10.2147/ijn.s174146] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bruceine D (BD) is a major bioactive component isolated from the traditional Chinese medicinal plant Brucea javanica which has been widely utilized to treat dysentery (also known as ulcerative colitis [UC]). Methods To improve the water solubility and absolute bioavailability of BD, we developed a self-nanoemulsifying drug delivery system (SNEDDS) composing of MCT (oil), Solutol HS-15 (surfactant), propylene glycol (co-surfactant) and BD. The physicochemical properties and pharmacokinetics of BD-SNEDDS were characterized, and its anti-UC activity and potential mechanism were evaluated in TNBS-induced UC rat model. Results The prepared nanoemulsion has multiple beneficial aspects including small mean droplet size, low polydispersity index (PDI), high zeta potential (ZP) and excellent stability. Transmission electron microscopy showed that nanoemulsion droplets contained uniform shape and size of globules. Pharmacokinetic studies demonstrated that BD-SNEDDS exhibited enhanced pharmacokinetic parameters as compared with BD-suspension. Moreover, BD-SNEDDS significantly restored the colon length and body weight, reduced disease activity index (DAI) and colon pathology, decreased histological scores, diminished oxidative stress, and suppressed TLR4, MyD88, TRAF6, NF-κB p65 protein expressions in TNBS-induced UC rat model. Conclusion These results demonstrated that BD-SNEDDS exhibited highly improved oral bioavailability and advanced anti-UC efficacy. In conclusion, our current results provided a foundation for further research of BD-SNEDDS as a potential complementary therapeutic agent for UC treatment.
Collapse
Affiliation(s)
- Yao-Xing Dou
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China,
| | - Jiang-Tao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Tong-Tong Wang
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China,
| | - Yan-Feng Huang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Vicky Ping Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - You-Liang Xie
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jian-Sheng Gao
- Guangzhou Baiyunshan Mingxing Pharmaceutical Co. Ltd., Guangzhou, People's Republic of China
| | - Zi-Ren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hui-Fang Zeng
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China,
| |
Collapse
|
27
|
Singh H, Kumar C, Singh N, Paul S, Jain SK. Nanoencapsulation of docosahexaenoic acid (DHA) using a combination of food grade polymeric wall materials and its application for improvement in bioavailability and oxidative stability. Food Funct 2018; 9:2213-2227. [DOI: 10.1039/c7fo01391d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developed nanoencapsulated DHA powder of microalgae oil with improved oxidative stability and bioavailability in brain using combination of wall materials.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of pharmaceutical sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Chateshwar Kumar
- Department of pharmaceutical sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Narpinder Singh
- Department of Food Science and technology
- Guru Nanak Dev University
- Amritsar
- India
| | - Surinder Paul
- Department of Pathology
- Government Medical College
- Amritsar
- India
| | - Subheet Kumar Jain
- Department of pharmaceutical sciences
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
28
|
|
29
|
Lu YY, Dai WB, Wang X, Wang XW, Liu JY, Li P, Lou YQ, Lu C, Zhang Q, Zhang GL. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats. Drug Dev Ind Pharm 2017; 44:329-337. [DOI: 10.1080/03639045.2017.1391837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying-Yuan Lu
- Department of Pharmacology, School of Basic Medical Science, Beijing (Peking) University, Beijing, PR China
| | - Wen-Bing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing (Peking) University, Beijing, PR China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Science, Beijing (Peking) University, Beijing, PR China
| | - Xiao-Wei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Beijing (Peking) University, Beijing, PR China
| | - Jun-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Beijing (Peking) University, Beijing, PR China
| | - Pu Li
- Department of Pharmacology, School of Basic Medical Science, Beijing (Peking) University, Beijing, PR China
| | - Ya-Qing Lou
- Department of Pharmacology, School of Basic Medical Science, Beijing (Peking) University, Beijing, PR China
| | - Chuang Lu
- Department of Drug Metabolism & Pharmacokinetics (DMPK), Biogen, Cambridge, MA, USA
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing (Peking) University, Beijing, PR China
| | - Guo-Liang Zhang
- Department of Pharmacology, School of Basic Medical Science, Beijing (Peking) University, Beijing, PR China
| |
Collapse
|
30
|
Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1452-1462. [DOI: 10.1080/21691401.2016.1247850] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Manmohan Singh Jangdey
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| | - Anshita Gupta
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C. G.), India
| |
Collapse
|