1
|
Midiri A, Mancuso G, Lentini G, Famà A, Galbo R, Zummo S, Giardina M, De Gaetano GV, Teti G, Beninati C, Biondo C. Characterization of an immunogenic cellulase secreted by Cryptococcus pathogens. Med Mycol 2021; 58:1138-1148. [PMID: 32246714 DOI: 10.1093/mmy/myaa012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/25/2023] Open
Abstract
Members of the C. neoformans/C. gattiii species complex are an important cause of serious humans infections, including meningoencephalitis. We describe here a 45 kDa extracellular cellulase purified from culture supernatants of C. neoformans var. neoformans. The N-terminal sequence obtained from the purified protein was used to isolate a clone containing the full-length coding sequence from a C. neoformans var. neoformans (strain B-3501A) cDNA library. Bioinformatics analysis indicated that this gene is present, with variable homology, in all sequenced genomes of the C. neoformans/C. gattii species complex. The cDNA clone was used to produce a recombinant 45 kDa protein in E. coli that displayed the ability to convert carboxymethyl cellulose and was therefore designated as NG-Case (standing for Neoformans Gattii Cellulase). To explore its potential use as a vaccine candidate, the recombinant protein was used to immunize mice and was found capable of inducing T helper type 1 responses and delayed-type hypersensitivity reactions, but not immune protection against a highly virulent C. neoformans var grubii strain. These data may be useful to better understand the mechanisms underlying the ability C. neoformans/C. gattii to colonize plant habitats and to interact with the human host during infection.
Collapse
Affiliation(s)
- Angelina Midiri
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Miriam Giardina
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Genetically Modified Microbes for Second-Generation Bioethanol Production. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Abstract
The genes man26a and man2A from Cellulomonas fimi encode mannanase 26A (Man26A) and beta-mannosidase 2A (Man2A), respectively. Mature Man26A is a secreted, modular protein of 951 amino acids, comprising a catalytic module in family 26 of glycosyl hydrolases, an S-layer homology module, and two modules of unknown function. Exposure of Man26A produced by Escherichia coli to C. fimi protease generates active fragments of the enzyme that correspond to polypeptides with mannanase activity produced by C. fimi during growth on mannans, indicating that it may be the only mannanase produced by the organism. A significant fraction of the Man26A produced by C. fimi remains cell associated. Man2A is an intracellular enzyme comprising a catalytic module in a subfamily of family 2 of the glycosyl hydrolases that at present contains only mammalian beta-mannosidases.
Collapse
Affiliation(s)
- D Stoll
- Department of Microbiology and Immunology and The Protein Engineering Network of Centres of Excellence, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
4
|
Ganga MA, Piñaga F, Vallés S, Ramón D, Querol A. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int J Food Microbiol 1999; 47:171-8. [PMID: 10359487 DOI: 10.1016/s0168-1605(98)00202-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A recombinant wine yeast strain has been constructed expressing the gene coding for beta-(1,4)-endoxylanase from Aspergillus nidulans under the control of the yeast actin gene promoter. The resulting recombinant strain is able to secrete active xylanase enzyme into the culture medium. Wines obtained by microvinification with the control and the recombinant wine yeast strain did not differ in their physicochemical characteristics although an increase in fruity aroma was organoleptically detected in the wine produced by the recombinant yeast. Also, an increase in the concentration of some esters, higher alcohols and terpenes was observed in the case of the recombinant strain.
Collapse
Affiliation(s)
- M A Ganga
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Burjassot (Valencia), Spain
| | | | | | | | | |
Collapse
|
5
|
Fülöp L, Trân LS, Prágai Z, Felföldi F, Ponyi T. Cloning and expression of a beta-1,4-endoglucanase gene from Cellulomonas sp. CelB7 in Escherichia coli; purification and characterization of the recombinant enzyme. FEMS Microbiol Lett 1996; 145:355-60. [PMID: 8978089 DOI: 10.1111/j.1574-6968.1996.tb08600.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A gene library of a newly isolated Cellulomonas sp. strain was constructed in Escherichia coli and clones were screened for endoglucanase activity using dye-labelled carboxymethylcellulose. Seventeen clones were isolated that carried DNA inserts coding for endoglucanase enzymes. Of the 17 clones, one carrying the gene cegA, was further characterized. The recombinant endoglucanase was purified by FPLC. The endoglucanase was active against carboxymethylcellulose, lichenin and also degraded crystalline cellulose and birchwood xylan. The molecular mass of the enzyme (36 kDa), and its pH (7.4) and temperature (35 degrees C) optima were determined.
Collapse
Affiliation(s)
- L Fülöp
- Department of Chemistry and Biochemistry, University of Agricultural Sciences, Gödöllö, Hungary.
| | | | | | | | | |
Collapse
|
6
|
Sandercock L, Meinke A, Gilkes N, Kilburn D, Warren R. Degradation of cellulases in cultures ofCellulomonas fimi. FEMS Microbiol Lett 1996. [DOI: 10.1111/j.1574-6968.1996.tb08453.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Singh A, Hayashi K. Construction of chimeric beta-glucosidases with improved enzymatic properties. J Biol Chem 1995; 270:21928-33. [PMID: 7665615 DOI: 10.1074/jbc.270.37.21928] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The amino acid sequences of beta-glucosidases from Cellvibrio gilvus and Agrobacterium tumefaciens show about 40% similarity. The pH/temperature optima and stabilities and substrate specificities of the two enzymes are quite different. C. gilvus beta-glucosidase exhibits an optimum pH of 6.2-6.4 and temperature of 35 degrees C, whereas the corresponding values for A. tumefaciens are 7.2-7.4 and 60 degrees C, respectively. The substrate specificity of A. tumefaciens enzyme toward different aryl glycosides is broader than C. gilvus enzyme. To analyze these properties further, three chimeric beta-glucosidases were constructed by substituting segments from the C-terminal homologous region of C. gilvus beta-glucosidase gene with that of A. tumefaciens. The chimeric enzymes were characterized with respect to pH/temperature activity and stability and substrate specificity. Chimeric enzymes exhibited chromatographic behavior similar to that of C. gilvus enzyme. However, enzymatic properties of chimeras were admixtures of those of the two parents. The chimeric enzymes were optimally active at 45-50 degrees C and pH 6.6-7.0. Km values of chimeric enzymes for the various saccharides were admixtures of both parental enzymes. These results suggest that the two domains of C. gilvus and A. tumefaciens enzymes probably can fold independently. The homologous C-terminal region in beta-glucosidase appears to play an important role in determining enzyme characteristics. Changes in the properties on substitution of segments in this region might be related to the enzyme specificity, and beta-glucosidases with improved properties can be prepared by manipulating this region.
Collapse
Affiliation(s)
- A Singh
- Biomaterials Conversion Laboratory, National Food Research Institute, Ibaraki, Japan
| | | |
Collapse
|
8
|
Singh A, Hayashi K. Microbial cellulases: protein architecture, molecular properties, and biosynthesis. ADVANCES IN APPLIED MICROBIOLOGY 1995; 40:1-44. [PMID: 7604736 DOI: 10.1016/s0065-2164(08)70362-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Singh
- Biomaterials Conversion Laboratory, National Food Research Institute, Ibaraki, Japan
| | | |
Collapse
|
9
|
van Rensburg P, van Zyl WH, Pretorius IS. Expression of the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae. Curr Genet 1994; 27:17-22. [PMID: 7750141 DOI: 10.1007/bf00326573] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recombinant Saccharomyces cerevisiae strains capable of simultaneous secretion of bacterial glucanase and pectinase enzymes have been developed. The Butyrivibrio fibrrisolvens endo-beta-1,4-glucanase gene (end1), the Erwinia chrysanthemi pectate lyase gene (pelE) and E. carotovora polygalacturonase gene (peh1) were each inserted between a yeast expression-secretion cassette and yeast gene terminator, and cloned into yeast-centromeric shuttle vectors. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of glucanase and pectinases was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S). These YCplac111-based constructs, designated END1, PEL5, AND PEH1, respectively, were transformed into S. cerevisiae. The END1, PEL5 and PEH1 constructs were co-expressed in laboratory strains of S. cerevisiae as well as in wine and distillers' yeasts. DNA-RNA hybridization analysis showed the presence of END1, PEL5 and PEH1 transcripts. Carboxymethylcellulose and polypectate agarose assays revealed the production of biologically active endo-beta-1,4-glucanase, pectate lyase and polygalacturonase by the S. cerevisiae transformants. Interestingly, although the same expression-secretion cassette was used in all three constructs, time-course assays indicated that the pectinases were secreted before the glucanase. It is tempting to speculate that the bulkiness of the END1-encoded protein and the five alternating repeats of Pro-Asp-Pro-Thr(Gln)-Pro-Val-Asp within the glucanase moiety could be involved in the delayed secretion of the glucanase.
Collapse
Affiliation(s)
- P van Rensburg
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
10
|
Meinke A, Gilkes NR, Kilburn DG, Miller RC, Warren RA. Cellulose-binding polypeptides from Cellulomonas fimi: endoglucanase D (CenD), a family A beta-1,4-glucanase. J Bacteriol 1993; 175:1910-8. [PMID: 8458833 PMCID: PMC204259 DOI: 10.1128/jb.175.7.1910-1918.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Five cellulose-binding polypeptides were detected in Cellulomonas fimi culture supernatants. Two of them are CenA and CenB, endo-beta-1,4-glucanases which have been characterized previously; the other three were previously uncharacterized polypeptides with apparent molecular masses of 120, 95, and 75 kDa. The 75-kDa cellulose-binding protein was designated endoglucanase D (CenD). The cenD gene was cloned and sequenced. It encodes a polypeptide of 747 amino acids. Mature CenD is 708 amino acids long and has a predicted molecular mass of 74,982 Da. Analysis of the predicted amino acid sequence of CenD shows that the enzyme comprises four domains which are separated by short linker polypeptides: an N-terminal catalytic domain of 405 amino acids, two repeated sequences of 95 amino acids each, and a C-terminal domain of 105 amino acids which is > 50% identical to the sequences of cellulose-binding domains in Cex, CenA, and CenB from C. fimi. Amino acid sequence comparison placed the catalytic domain of CenD in family A, subtype 1, of beta-1,4-glycanases. The repeated sequences are more than 40% identical to the sequences of three repeats in CenB and are related to the repeats of fibronectin type III. CenD hydrolyzed the beta-1,4-glucosidic bond with retention of anomeric configuration. The activities of CenD towards various cellulosic substrates were quite different from those of CenA and CenB.
Collapse
Affiliation(s)
- A Meinke
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
11
|
Pitson SM, Seviour RJ, McDougall BM. Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol 1993; 15:178-92. [PMID: 7763458 DOI: 10.1016/0141-0229(93)90136-p] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The occurrence, regulation, and action of fungal enzymes capable of degrading noncellulosic beta-glucans, especially 1,3-beta- and 1,6-beta-glucans, are reviewed. Special consideration is given to their roles in both metabolic and morphogenetic events in the fungal cell, including cell wall extension, hyphal branching, sporulation, budding, and autolysis. Also examined are the protocols currently available for their purification, with some of the properties of purified beta-glucanases discussed in terms of their potential applications in industrial, agricultural, and medical fields.
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, La Trobe University College of Northern Victoria, Bendigo, Australia
| | | | | |
Collapse
|
12
|
Painbeni E, Valles S, Polaina J, Flors A. Purification and characterization of a Bacillus polymyxa beta-glucosidase expressed in Escherichia coli. J Bacteriol 1992; 174:3087-91. [PMID: 1569036 PMCID: PMC205966 DOI: 10.1128/jb.174.9.3087-3091.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The beta-glucosidase encoded by the bglA gene from Bacillus polymyxa was overproduced in Escherichia coli by using a plasmid in which bglA is under control of the lacI promoter. Induction with isopropyl-beta-D-thiogalactopyranoside allowed an increase in the specific activity of the enzyme of about 100 times the basal level of gene expression. The enzyme was purified by a two-step procedure involving salting out with ammonium sulfate and ion-exchange chromatography with DEAE-cellulose. Fractions of beta-glucosidase activity recovered by this procedure, after electrophoresis in an acrylamide gel and staining with silver nitrate, yielded a single band of protein. This band was shown by a zymogram to correspond to beta-glucosidase activity. The purified protein showed an apparent molecular mass of 50 kDa and an isoelectric point of 4.6, values in agreement with those expected from the nucleotide sequence of the gene. Km values of the enzyme, with either cellobiose or p-nitrophenyl-beta-D-glucoside as the substrate, were determined. It was shown that the enzyme is competitively inhibited by glucose. The effects of different metallic ions and other agents were studied. Hg2+ was strongly inhibitory, while none of the other cations tested had any significant effect. Ethanol did not show the stimulating effect observed with other beta-glucosidases. The mechanism of enzyme action was investigated. High-pressure liquid chromatography analysis with cellobiose as the substrate confirmed previous data revealing the formation of two products, glucose and another, unidentified, compound. Results presented here indicate that this compound is cellotriose formed by transglycosylation.
Collapse
Affiliation(s)
- E Painbeni
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | |
Collapse
|
13
|
Théberge M, Lacaze P, Shareck F, Morosoli R, Kluepfel D. Purification and characterization of an endoglucanase from Streptomyces lividans 66 and DNA sequence of the gene. Appl Environ Microbiol 1992; 58:815-20. [PMID: 1575483 PMCID: PMC195339 DOI: 10.1128/aem.58.3.815-820.1992] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endoglucanase isolated from culture filtrates of Streptomyces lividans IAF74 was shown to have an Mr of 46,000 and a pI of 3.3. The specific enzyme activity of 539 IU/mg, determined by the reducing assay method on carboxymethyl cellulose, is among the highest reported in the literature. The cellulase showed typical endo-type activity when reacting on oligocellodextrins. Optimal enzyme activity was obtained at 50 degrees C and pH 5.5. The kinetic constants for this endoglucanase, determined with carboxymethyl cellulose as the substrate, were a Vmax of 24.9 IU/mg of enzyme and a Km of 4.2 mg/ml. Activity was found against neither methylumbelliferyl- nor p-nitrophenyl-cellobiopyranoside nor with xylan. The DNA sequence contains one possible reading frame validated by the N terminus of the mature purified protein. However, neither ATG nor GTG starting codons were identified near the ribosome-binding site. A putative TTG codon was found as a good candidate for the start codon. Comparison of the primary amino acid sequence of the endoglucanase of S. lividans revealed that the N terminus contains a bacterial cellulose-binding domain. The catalytic domain at the C terminus showed similarity to endoglucanases from a Bacillus sp. Thus, the endoglucanase CelA belongs to family A of cellulases as described before (N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, Microbiol. Rev. 55:303-315, 1991.
Collapse
Affiliation(s)
- M Théberge
- Centre de recherche en microbiologie appliquée, Institut Armand-Frappier, Université du Québec, Laval-des-Rapides, Canada
| | | | | | | | | |
Collapse
|
14
|
Purification, characterization and cloning of an endo-1,4-B-glucanase fromRuminococcus sp. Biotechnol Lett 1991. [DOI: 10.1007/bf01022097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Pulido-Vega B, Farrés A, Ponce-Noyola T. Protoplast formation and regeneration in Cellulomonas flavigena. J Biotechnol 1991. [DOI: 10.1016/0168-1656(91)90229-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Lao G, Ghangas GS, Jung ED, Wilson DB. DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca. J Bacteriol 1991; 173:3397-407. [PMID: 1904434 PMCID: PMC207951 DOI: 10.1128/jb.173.11.3397-3407.1991] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains.
Collapse
Affiliation(s)
- G Lao
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
17
|
Mackie RI, White BA. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J Dairy Sci 1990; 73:2971-95. [PMID: 2178174 DOI: 10.3168/jds.s0022-0302(90)78986-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Feedstuffs consumed by ruminants are all initially exposed to fermentative activity in the rumen prior to gastric and intestinal digestion. The extent and type of transformation of feedstuffs thus determines the productive performance of the host. Research on rumen microbial ecology and metabolism is essentially a study of the interactions between the host, microorganisms present, substrates available, and end products of digestion. Furthermore, the interactions of the normal microbial flora with the host can be manipulated to improve the efficiency of nutrient utilization in ruminant animals. Three important areas of ruminal fermentation will be reviewed, N metabolism, fiber degradation, and biotransformation of toxic compounds. The extent of protein degradation and the rate of uptake of resultant peptides and ammonia are extremely important factors in determining the efficiency of N utilization by rumen bacteria and, therefore, the relative amounts of microbial or bypass protein available to the host. Strategies aimed at identifying and characterizing rate-limiting enzymes of cellulolytic bacteria are essential in elucidating mechanisms involved in ruminal fiber degradation. Results obtained with ruminococci will be described. The detoxification of phytotoxins by passage through the gastrointestinal tract of ruminants is a process deserving special attention and several examples will be presented. Opportunities for manipulation of rumen fermentation are good. However, successful manipulation and full exploitation depend on a through understanding of the mechanisms involved.
Collapse
Affiliation(s)
- R I Mackie
- Department of Animal Sciences, University of Illinois, Urbana-Champaign 61801
| | | |
Collapse
|
18
|
Teather RM, Erfle JD. DNA sequence of a Fibrobacter succinogenes mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase) gene. J Bacteriol 1990; 172:3837-41. [PMID: 2193918 PMCID: PMC213364 DOI: 10.1128/jb.172.7.3837-3841.1990] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA sequence of a mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase [EC 3.2.1.73]) gene from Fibrobacter succinogenes cloned in Escherichia coli was determined. The general features of this gene are very similar to the consensus features for other gram-negative bacterial genes. The gene product was processed for export in E. coli. There is a high level of sequence homology between the structure of this glucanase and the structure of a mixed-linkage beta-glucanase from Bacillus subtilis. The nonhomologous region of the amino acid sequence includes a serine-rich region containing five repeats of the sequence Pro-Xxx-Ser-Ser-Ser-Ser-(Ala or Val) which may be functionally related to the serine-rich region observed in Pseudomonas fluorescens cellulase and the serine- and/or threonine-rich regions observed in Cellulomonas fimi endoglucanase and exoglucanase, in Clostridium thermocellum endoglucanases A and B, and in Trichoderma reesei cellobiohydrolase I, cellobiohydrolase II, and endoglucanase I.
Collapse
Affiliation(s)
- R M Teather
- Animal Research Centre, Research Branch, Agriculture Canada, Ottawa, Ontario
| | | |
Collapse
|
19
|
Gough CL, Dow JM, Keen J, Henrissat B, Daniels MJ. Nucleotide sequence of the engXCA gene encoding the major endoglucanase of Xanthomonas campestris pv. campestris. Gene 1990; 89:53-9. [PMID: 2373365 DOI: 10.1016/0378-1119(90)90205-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleotide sequence of the gene (engXCA) encoding the major extracellular endoglucanase (ENGXCA) of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (X. c. campestris) was determined and compared with the N-terminal amino acid (aa) sequence of the purified enzyme. An open reading frame of 1479 bp encoding 493 aa was identified, of which the N-terminal 25 aa represent a potential signal peptide. Determination of the exact position of a Tn5 insertion within engXCA, which did not reduce the encoded enzyme activity, indicated that the C-terminal region of the protein is not crucial for ENGXCA activity. Comparison of the complete deduced aa sequence with those deduced from other endoglucanase- and exoglucanase-encoding genes revealed a region with a high degree of homology, located towards the C terminus of the protein. These data indicate that the X. c. campestris ENGXCA may have a domain structure similar to that of many other bacterial and fungal cellulolytic enzymes. Hydrophobic cluster analysis was performed on the deduced aa sequence. Comparison of this analysis with those of 30 other cellulase sequences belonging to six different families indicated that the X. c. campestris enzyme can be classified in family A. The two aa residues which had previously been identified as 'potentially catalytic' within this family of cellulases, are conserved in the X. c. campestris ENGXCA.
Collapse
|
20
|
|
21
|
McGavin MJ, Forsberg CW, Crosby B, Bell AW, Dignard D, Thomas DY. Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J Bacteriol 1989; 171:5587-95. [PMID: 2676979 PMCID: PMC210401 DOI: 10.1128/jb.171.10.5587-5595.1989] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cel-3 gene cloned from Fibrobacter succinogenes into Escherichia coli coded for the enzyme EG3, which exhibited both endoglucanase and cellobiosidase activities. The gene had an open reading frame of 1,974 base pairs, coding for a protein of 73.4 kilodaltons (kDa). However, the enzyme purified from the osmotic shock fluid of E. coli was 43 kDa. The amino terminus of the 43-kDa protein matched amino acid residue 266 of the protein coded for by the open reading frame, indicating proteolysis in E. coli. In addition to the 43-kDa protein, Western immunoblotting revealed a 94-kDa membranous form of the enzyme in E. coli and a single protein of 118 kDa in F. succinogenes. Thus, the purified protein appears to be a proteolytic degradation product of a native protein which was 94 kDa in E. coli and 118 kDa in F. succinogenes. The discrepancy between the molecular weight expected on the basis of the DNA sequence and the in vivo form may be due to anomalous migration during electrophoresis, to glycosylation of the native enzyme, or to fatty acyl substitution at the N terminus. One of two putative signal peptide cleavage sites bore a strong resemblance to known lipoprotein leader sequences. The purified 43-kDa peptide exhibited a high Km (53 mg/ml) for carboxymethyl cellulose but a low Km (3 to 4 mg/ml) for lichenan and barley beta-glucan. The enzyme hydrolyzed amorphous cellulose, and cellobiose and cellotriose were the major products of hydrolysis. Cellotriose, but not cellobiose, was cleaved by the enzyme. EG3 exhibited significant amino acid sequence homology with endoglucanase CelC from Clostridium thermocellum, and as with both CelA and CelC of C. thermocellum, it had a putative active site which could be aligned with the active site of hen egg white lysozyme at the highly conserved amino acid residues Asn-44 and Asp-52.
Collapse
Affiliation(s)
- M J McGavin
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Bergfors T, Rouvinen J, Lehtovaara P, Caldentey X, Tomme P, Claeyssens M, Pettersson G, Teeri T, Knowles J, Jones TA. Crystallization of the core protein of cellobiohydrolase II from Trichoderma reesei. J Mol Biol 1989; 209:167-9. [PMID: 2810367 DOI: 10.1016/0022-2836(89)90179-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Single crystals of the core protein of the cellulase cellobiohydrolase II have been grown in polyethylene glycol 6000 with the hanging drop method. Successful crystallization occurred only when 82 amino acids were removed from the N terminus by papain cleavage. Crystals belong to the space group P2(1) and have cell constants a = 49.1 A, b = 75.8 A, c = 92.9 A, beta = 103.2. The diffraction pattern extends to better than 2.0 A.
Collapse
Affiliation(s)
- T Bergfors
- Department of Molecular Biology, Biomedical Centre, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu YJ, Wilson DB. Cloning of Thermomonospora fusca genes coding for beta 1-4 endoglucanases E1, E2 and E5. Gene 1988; 71:331-7. [PMID: 2976013 DOI: 10.1016/0378-1119(88)90050-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermomonospora fusca chromosomal DNA was partially digested with EcoRI and fragments in the size range from 4 to 15 kb were isolated, ligated into lambda gtWES.lambda B arms, packaged, and the recombinant phages plated on Escherichia coli. The plaques were screened for carboxymethyl cellulase (CMCase) activity by a gel overlay procedure, and 25 plaques were positive among the 15,000 plaques that were screened. Positive phages were amplified and used to prepare infected E. coli extracts which were assayed for CMCase activity before and after treatment with antisera prepared against five purified T. fusca beta 1-4 endoglucanases (E1-E5). One phage produced an enzyme that was inhibited by E1 antiserum, nine of the phages produced enzymes that were inhibited by E2 antiserum, 14 produced enzymes that were inhibited by E5 antiserum and the enzyme produced by the other phages was not inhibited by any of the five antisera. The DNA insert present in the phage coding for E1 was cut into a number of different fragments which were subcloned into E. coli first using lambda gtWES.lambda B and then plasmid pBR322. The smallest active subclone, pTE12, contained a 3.1-kb insert. The insert present in one of the phages coding for E2 was also subcloned and the smallest active subclone pTE23 contained a 2-kb insert. E. coli HB101 containing plasmid pTE12 or pTE23 produced enzymes that were identical to E1 and E2, respectively, in all the properties tested.
Collapse
Affiliation(s)
- Y J Hu
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
24
|
Ghangas GS, Wilson DB. Cloning of the
Thermomonospora fusca
Endoglucanase E2 Gene in
Streptomyces lividans:
Affinity Purification and Functional Domains of the Cloned Gene Product. Appl Environ Microbiol 1988; 54:2521-6. [PMID: 16347759 PMCID: PMC204303 DOI: 10.1128/aem.54.10.2521-2526.1988] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermomonospora fusca
YX grown in the presence of cellulose produces a number of β-1-4-endoglucanases, some of which bind to microcrystalline cellulose. By using a multicopy plasmid, pIJ702, a gene coding for one of these enzymes (E2) was cloned into
Streptomyces lividans
and then mobilized into both
Escherichia coli
and
Streptomyces albus.
The gene was localized to a 1.6-kilobase
Pvu
II-
Cla
I segment of the originally cloned 3.0-kilobase
Sst
I fragment of
Thermomonospora
DNA. The culture supernatants of
Streptomyces
transformants contain a major endoglucanase that cross-reacts with antibody against
Thermomonospora
cellulase E2 and has the same molecular weight (43,000) as
T. fusca
E2. This protein binds quickly and tightly to Avicel, from which it can be eluted with guanidine hydrochloride but not with water. It also binds to filter paper but at a slower rate than to Avicel. Several large proteolytic degradation products of this enzyme generated in vivo lose the ability to bind to Avicel and have higher activity on carboxymethyl cellulose than the native enzyme. Other smaller products bind to Avicel but lack activity. A weak cellobiose-binding site not observed in the native enzyme was present in one of the degradation products. In
E. coli
, the cloned gene produced a cellulase that also binds tightly to Avicel but appeared to be slightly larger than
T. fusca
E2. The activity of intact E2 from all organisms can be inactivated by Hg
2+
ions. Dithiothreitol protected against Hg
2+
inactivation and reactivated both unbound and Avicel-bound Hg
2+
-inhibited E2, but at different rates.
Collapse
Affiliation(s)
- G S Ghangas
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
25
|
Hall J, Hazlewood GP, Barker PJ, Gilbert HJ. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 1988; 69:29-38. [PMID: 3066698 DOI: 10.1016/0378-1119(88)90375-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The complete nucleotide sequence of the Clostridium thermocellum celE gene, coding for an endo-beta-1,4-glucanase (endoglucanase E; EGE) with xylan-hydrolysing activity has been determined. The structural gene consists of an open reading frame (ORF) of 2442 bp commencing with a GTG start codon and followed by a TAA stop codon. The nucleotide sequence obtained has been confirmed by comparing the predicted amino acid sequence with that derived by N-terminal amino acid sequencing of the purified protein. The EGE sequence contains a region homologous to the reiterated domain found at the C terminus of other endoglucanases from the same organism. BAL 31 deletions of the structural gene have revealed the extent to which this conserved sequence is necessary for endoglucanase and xylanase activity. A region of DNA, upstream from the structural gene has also been sequenced and a ribosome-binding site and putative promoter sequences have been identified. A second ORF which ends 349 bp 5' to the GTG start codon of the celE gene has also been identified. The encoded product contains a C terminus homologous to other C. thermocellum endoglucanases.
Collapse
Affiliation(s)
- J Hall
- Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, U.K
| | | | | | | |
Collapse
|
26
|
Wakarchuk WW, Greenberg NM, Kilburn DG, Miller RC, Warren RA. Structure and transcription analysis of the gene encoding a cellobiase from Agrobacterium sp. strain ATCC 21400. J Bacteriol 1988; 170:301-7. [PMID: 2826395 PMCID: PMC210642 DOI: 10.1128/jb.170.1.301-307.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The DNA sequence was determined for the cloned Agrobacterium sp. strain ATCC 21400 beta-glucosidase gene, abg. High-resolution nuclease S1 protection studies were used to map the abg mRNA 5' and 3' termini. A putative abg promoter was identified whose sequence shows similarities to the consensus promoter of Escherichia coli and with the nif promoter regions of Klebsiella. The abg coding sequence was 1,374 nucleotides long. The molecular weight of the enzyme, based on the predicted amino acid sequence, was 51,000. The observed Mr was 50,000 to 52,000. A region of deduced protein sequence was homologous to a region from two other beta-glucosidase sequences. This region of homology contained a putative active site by analogy with the active site of hen egg white lysozyme.
Collapse
Affiliation(s)
- W W Wakarchuk
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|