1
|
Stefani O, Schöllhorn I, Münch M. Towards an evidence-based integrative lighting score: a proposed multi-level approach. Ann Med 2024; 56:2381220. [PMID: 39049780 PMCID: PMC11275531 DOI: 10.1080/07853890.2024.2381220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Human circadian clocks are synchronized daily with the external light-dark cycle and entrained to the 24-hour day. There is increasing evidence that a lack of synchronization and circadian entrainment can lead to adverse health effects. Beyond vision, light plays a critical role in modulating many so-called non-visual functions, including sleep-wake cycles, alertness, mood and endocrine functions. To assess (and potentially optimize) the impact of light on non-visual functions, it is necessary to know the exact 'dose' (i.e. spectral irradiance and exposure duration at eye level) of 24-hour light exposures, but also to include metadata about the lighting environment, individual needs and resources. Problem statement: To address this problem, a new assessment tool is needed that uses existing metrics to provide metadata and information about light quality and quantity from all sources. In this commentary, we discuss the need to develop an evidence-based integrative lighting score that is tailored to specific audiences and lighting environments. We will summarize the most compelling evidence from the literature and outline a future plan for developing such a lighting score using internationally accepted metrics, stakeholder and user feedback. Conclusion: We propose a weighting system that combines light qualities with physiological and behavioral effects, and the use of mathematical modelling for an output score. Such a scoring system will facilitate a holistic assessment of a lighting environment, integrating all available light sources.
Collapse
Affiliation(s)
- Oliver Stefani
- Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular Cognitive Neuroscience, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Pun TB, Rahimi M, Wassing R, Phillips CL, Marshall NS, Comas M, D'Rozario AL, Hoyos CM, Grunstein RR, Gordon CJ. The effect of restricted and free-living conditions on light exposure and sleep in older adults. Chronobiol Int 2024; 41:1411-1421. [PMID: 39526364 DOI: 10.1080/07420528.2024.2419849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
During the COVID-19 pandemic, studies reported that restricted living conditions were associated with worse subjective sleep quality. This effect might have been caused by reduced light exposure during lockdowns. We investigated light exposure levels, subjective and objective sleep and physical activity levels in older adults during restricted and free-living conditions after the pandemic. Ninety-one participants (62.7 ± 8.4 years) recruited from the community using social media with 44 participants (63.4 ± 8.9 years) completed follow-up during free-living conditions. Participants wore an actigraphy device and completed sleep diaries for 7 days during each condition. Light values were extracted in hourly bins across the 24-h period and objective and subjective sleep were compared between the conditions. There was an increase in mean 24-h light exposure during restricted-living (1103.7 ± 1024.8 lux) compared to free-living (803.0 ± 803.6 lux; p < 0.001). This was partially related to participants spending 18 min more in bright light conditions (>1,000 lux) during wakefulness in restricted living (2.6 ± 1.9 h) compared to free-living (2.3 ± 2.0 h; p = 0.036). Despite differences in light exposure, there were no significant differences in objective and subjective sleep parameters between the two conditions. More research is required to better understand behaviours related to light exposure and how this may impact on sleep.
Collapse
Affiliation(s)
- Teha B Pun
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Matthew Rahimi
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Rick Wassing
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Nathaniel S Marshall
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Camilla M Hoyos
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Ron R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Christopher J Gordon
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
3
|
Bjerrum LB, Nordhus IH, Sørensen L, Wulff K, Bjorvatn B, Flo-Groeneboom E, Visted E. Acute effects of light during daytime on central aspects of attention and affect: A systematic review. Biol Psychol 2024; 192:108845. [PMID: 38981576 DOI: 10.1016/j.biopsycho.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Light regulates both image- and various non-image forming responses in humans, including acute effects on attention and affect. To advance the understanding of light's immediate effects, this systematic review describes the acute effects of monochromatic/narrow bandwidth and polychromatic white light during daytime on distinct aspects of attention (alertness, sustained attention, working memory, attentional control and flexibility), and measures of affect (self-report measures, performance-based tests, psychophysiological measures) in healthy, adult human subjects. Original, peer-reviewed (quasi-) experimental studies published between 2000 and May 2024 were included according to predefined inclusion and exclusion criteria. Study quality was assessed, and results were synthesized across aspects of attention and affect and grouped according to light interventions; monochromatic/narrowband-width or polychromatic white light (regular white, bright white, and white with high correlated color temperature (CCT)). Results from included studies (n = 62) showed that alertness and working memory were most affected by light. Electroencephalographic markers of alertness improved the most with exposure to narrow bandwidth long-wavelength light, regular white, and white light with high CCT. Self-reported alertness and measures of working memory improved the most with bright white light. Results from studies testing the acute effects on sustained attention and attentional control and flexibility were inconclusive. Performance-based and psychophysiological measures of affect were only influenced by narrow bandwidth long-wavelength light. Polychromatic white light exerted mixed effects on self-reported affect. Studies were strongly heterogeneous in terms of light stimuli characteristics and reporting of light stimuli and control of variables influencing light's acute effects.
Collapse
Affiliation(s)
| | | | - Lin Sørensen
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Katharina Wulff
- Department of Molecular Biology, Umeå University, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Sweden
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Norway
| | | | - Endre Visted
- Department of Clinical Psychology, University of Bergen, Norway
| |
Collapse
|
4
|
Cox RC, Wright KP, Axelsson J, Balter LJT. Diurnal variation in anxiety and activity is influenced by chronotype and probable anxiety-related disorder status. Psychiatry Res 2024; 338:116006. [PMID: 38850890 DOI: 10.1016/j.psychres.2024.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Anxiety symptoms vary moment-to-moment within a day. One factor that may influence these variations is chronotype. Evening chronotypes prefer to engage in activities (e.g., sleep, physical and social activity) later in the day, and evening chronotype is implicated in psychopathology, including anxiety-related disorders. However, it is unknown whether chronotype influences diurnal variation in anxiety symptoms and whether these effects are amplified in individuals with a probable anxiety-related disorder. We examined the diurnal variation in anxiety symptoms and daily activities in morning and evening chronotypes with and without probable generalized anxiety disorder (GAD) or obsessive-compulsive disorder (OCD) in a community sample of adults (N = 410). Evening chronotypes reported higher anxiety symptoms, particularly in the evening hours, and lower engagement in daily activities, predominantly in the morning hours. Evening chronotypes with probable GAD or OCD reported worse anxiety symptoms in the evening. Our findings indicate that anxiety symptoms and engagement in daily activities fluctuate considerably across the day, and these patterns differ depending on chronotype. Evening chronotypes have more anxiety symptoms in the evening, despite preferring this time of day. Personalized treatment approaches that consider chronotype and target certain times of day may be efficient in alleviating peaks in anxiety symptoms.
Collapse
Affiliation(s)
- Rebecca C Cox
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden; Department of Psychology, Stress Research Institute, Stockholm University, Stockholm 114 19, Sweden
| | - Leonie J T Balter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden; Department of Psychology, Stress Research Institute, Stockholm University, Stockholm 114 19, Sweden.
| |
Collapse
|
5
|
Liu Q, Meng Q, Ding Y, Jiang J, Kang C, Yuan L, Guo W, Zhao Z, Yuan Y, Wei X, Hao W. The unfixed light pattern contributes to depressive-like behaviors in male mice. CHEMOSPHERE 2023; 339:139680. [PMID: 37524266 DOI: 10.1016/j.chemosphere.2023.139680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Light pollution is now associated with an increased incidence of mental disorders in humans, and the unfixed light pattern (ULP) is a common light pollution that occurs in such as rotating shift work. However, how much contribution the ULP has to depression and its potential mechanism are yet unknown. Our study aimed to investigate the effect of the ULP on depressive-like behaviors in mice and to explore the links to the circadian-orexinergic system. Male C57BL/6 J mice were exposed to the ULP by subjecting them to an alternating light pattern every 6 days for 54 days. The tail suspension test (TST) and forced swimming test (FST) were conducted to assess depressive-like behaviors. The rhythm of locomotor activity and the circadian expression of cFOS in the suprachiasmatic nucleus (SCN), clock genes in the liver, and corticosterone (CORT) in serum were detected to observe changes in the circadian system. The circadian expression of orexin-A (OX-A) in the lateral hypothalamus area (LHA) and dorsal raphe nucleus (DRN) and serotonin (5-HT) in the DRN were measured to determine alterations in the orexinergic system. The results showed that mice exposed to the ULP exhibited increased immobility time in the TST and FST. The ULP significantly disrupted the circadian rhythm of locomotor activity, clock genes in the liver, and CORT in the serum. Importantly, when exposed to the ULP, cFOS expression in the SCN showed decreased amplitude. Its projection area, the LHA, had a lower mesor of OX-A expression. OX-A projection to the DRN and 5-HT expression in the DRN were reduced in mesor. Our research suggests that the ULP contributes to depressive-like behaviors in mice, which might be related to the reduced amplitude of circadian oscillation in the SCN and hypoactivity of the orexinergic system. These findings may provide novel insights into rotating shift work-related depression.
Collapse
Affiliation(s)
- Qianyi Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Yuecheng Ding
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhe Zhao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yue Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
6
|
Chaurasiya RK, Sutar S, Gupta A, Chaudhary R, Saini R, Agarwal P, Khurana A, Chauhan L. Variation of Ambient Illumination Across Different Locations: An Impact on Antimyopia Strategy. Middle East Afr J Ophthalmol 2023; 30:250-256. [PMID: 39959594 PMCID: PMC11823535 DOI: 10.4103/meajo.meajo_135_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 02/18/2025] Open
Abstract
PURPOSE To evaluate whether the level of ambient illumination in winter at different locations, time of a day, sun protection, and source position remains optimum (≥1000 lux) for controlling myopia progression. METHODS Illuminance level was recorded for 6 outdoor and 5 indoor locations using factory calibrated digital lux meter and under different measurement conditions. Outdoor locations included "open playground," "between two buildings," "between three buildings," "under a porch facing east," "under a big tree," and "under a porch facing west." Similarly, indoor locations included "rooms with multiple large windows," "rooms with a combination of light sources," "room with single artificial light," "room with multiple artificial lights," and "canopy covering the buildings." RESULTS The overall median illumination level across 6 outdoor locations and 5 indoor locations were 1900 lux (803-4300 lux) and 227 lux (82-556 lux) respectively. Indoor locations showed an overall low median illuminance level (<1000 lux) irrespective of the locations and source positions. However, the illuminance level >1000 lux was recorded for "Room with multiple large windows" for specific points of time (10:00-11:00 and 13:00-14:00) in both sunny and foggy weather. The highest illumination level was recorded only in the "open playground" irrespective of various conditions such as time of the day, weather of the day, relative source position, and sun protection. CONCLUSION The ambient illumination level was optimum (≥1000 lux) for antimyopia strategy in winter for maximum outdoor locations. However, children should be motivated to spend their outdoor time during the afternoon (13:00-14:00 h) so that light intensities reaching the eye should be optimum in winter.
Collapse
Affiliation(s)
- Ritesh K. Chaurasiya
- Department of Optometry and Vision Sciences, C L Gupta Eye Institute, Ramganga Vihar Phase – II (Extn), Moradabad, Uttar Pradesh, India
| | - Samir Sutar
- Department of Optometry and Vision Sciences, C L Gupta Eye Institute, Ramganga Vihar Phase – II (Extn), Moradabad, Uttar Pradesh, India
| | - Akansha Gupta
- Department of Optometry and Vision Sciences, C L Gupta Eye Institute, Ramganga Vihar Phase – II (Extn), Moradabad, Uttar Pradesh, India
| | - Rishabh Chaudhary
- Department of Optometry and Vision Sciences, C L Gupta Eye Institute, Ramganga Vihar Phase – II (Extn), Moradabad, Uttar Pradesh, India
| | - Rishiraj Saini
- Department of Optometry and Vision Sciences, C L Gupta Eye Institute, Ramganga Vihar Phase – II (Extn), Moradabad, Uttar Pradesh, India
| | - Pradeep Agarwal
- Department of Paediatric Ophthalmology and Strabismus, C L Gupta Eye Institute, Ramganga Vihar Phase – II (Extn), Moradabad, Uttar Pradesh, India
| | - Ashi Khurana
- Department of Cornea and Anterior Segment, C L Gupta Eye Institute, Ramganga Vihar, Phase – II (Extn.), Moradabad, Uttar Pradesh, India
| | - Lokesh Chauhan
- Department of Clinical Research, C L Gupta Eye Institute, Ramganga Vihar, Phase – II (Extn.), Moradabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Schöllhorn I, Deuring G, Stefani O, Strumberger MA, Rosburg T, Lemoine P, Pross A, Wingert B, Mager R, Cajochen C. Effects of nature-adapted lighting solutions ("Virtual Sky") on subjective and objective correlates of sleepiness, well-being, visual and cognitive performance at the workplace. PLoS One 2023; 18:e0288690. [PMID: 37535612 PMCID: PMC10399894 DOI: 10.1371/journal.pone.0288690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Exposure to natural daylight benefits human well-being, alertness, circadian rhythms and sleep. Many workplaces have limited or no access to daylight. Thus, we implemented a light-panel ("Virtual Sky"), which reproduced nature-adapted light scenarios. In a laboratory office environment, three lighting scenarios were presented during the day: two lighting conditions with nature-adapted spectral light distributions, one with static and one with dynamic clouds, and a standard office lighting condition. We compared the impact of the three lighting scenarios on subjective and objective measures of alertness, cognitive performance, wellbeing, visual comfort, contrast sensitivity, and cortisol levels in 18 healthy young male volunteers in a within-participant cross-over study design. We found no evidence that an 8-h lighting scenario with static or dynamic clouds during the waking day (9am-5pm) was associated with any significant effect on objective and/or subjective alertness, cognitive performance and morning cortisol concentrations compared to standard workplace lighting. However, the dynamic light scenario was accompanied with lower levels of perceived tensionafter completing cognitive tasks and less effort to concentrate compared to the static lighting scenarios. Our findings suggest that apart from smaller effects on tension and concentration effort, nature-adapted lighting conditions did not improve daytime alertness and cognitive performance in healthy well-rested young participants, as compared to standard office lighting.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Gunnar Deuring
- Forensic Department, Basel University, University Psychiatric Clinics, Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Michael A Strumberger
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Timm Rosburg
- Department of Clinical Research, Division of Clinical Epidemiology, EbIM Research & Education, University of Basel Hospital, Basel, Switzerland
| | - Patrick Lemoine
- Forensic Department, Basel University, University Psychiatric Clinics, Basel, Switzerland
| | - Achim Pross
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Benjamin Wingert
- Fraunhofer-Institute for Industrial Engineering, Stuttgart, Germany
| | - Ralph Mager
- Forensic Department, Basel University, University Psychiatric Clinics, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Costello A, Linning-Duffy K, Vandenbrook C, Lonstein JS, Yan L. Daytime Light Deficiency Leads to Sex- and Brain Region-Specific Neuroinflammatory Responses in a Diurnal Rodent. Cell Mol Neurobiol 2023; 43:1369-1384. [PMID: 35864429 PMCID: PMC10635710 DOI: 10.1007/s10571-022-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Seasonal changes in peripheral inflammation are well documented in both humans and animal models, but seasonal changes in neuroinflammation, especially the impact of seasonal lighting environment on neuroinflammation remain unclear. To address this question, the present study examined the effects of environmental lighting conditions on neuroinflammation in a diurnal rodent model, Nile grass rats (Arvicanthis niloticus). Male and female grass rats were housed in either bright (brLD) or dim (dimLD) light during the day to simulate a summer or winter light condition, respectively. After 4 weeks, microglia markers Iba-1 and CD11b, as well as pro-inflammatory cytokines TNF-α and IL-6, were examined in the anterior cingulate cortex (ACC), basolateral amygdala (BLA), and dorsal hippocampus (dHipp). The results revealed that winter-like dim light during the day leads to indicators of increased neuroinflammation in a brain site- and sex-specific manner. Specifically, relatively few changes in the neuroinflammatory markers were observed in the ACC, while numerous changes were found in the BLA and dHipp. In the BLA, winter-like dimLD resulted in hyper-ramified microglia morphology and increased expression of the pro-inflammatory cytokine IL-6, but only in males. In the dHipp, dimLD led to a higher number and hyper-ramified morphology of microglia as well as increased expression of CD11b and TNF-α, but only in females. Neuroinflammatory state is thus influenced by environmental light, differently in males and females, and could play a role in sex differences in the prevalence and symptoms of psychiatric or neurological disorders that are influenced by season or other environmental light conditions. Diurnal Nile grass rats were housed under bright or dim light during the day for 4 weeks, simulating seasonal fluctuations in daytime lighting environment. Dim light housing resulted in hyper-ramified morphology of microglia (scale bar, 15 μm) and altered expression of pro-inflammatory cytokines (TNF-α) in a sex- and brain region-specific manner.
Collapse
Affiliation(s)
- Allison Costello
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
| | - Katrina Linning-Duffy
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
| | - Carleigh Vandenbrook
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
| | - Joseph S Lonstein
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Lily Yan
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Pun TB, Phillips CL, Marshall NS, Comas M, Hoyos CM, D’Rozario AL, Bartlett DJ, Davis W, Hu W, Naismith SL, Cain S, Postnova S, Grunstein RR, Gordon CJ. The Effect of Light Therapy on Electroencephalographic Sleep in Sleep and Circadian Rhythm Disorders: A Scoping Review. Clocks Sleep 2022; 4:358-373. [PMID: 35997384 PMCID: PMC9397048 DOI: 10.3390/clockssleep4030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Light therapy is used to treat sleep and circadian rhythm disorders, yet there are limited studies on whether light therapy impacts electroencephalographic (EEG) activity during sleep. Therefore, we aimed to provide an overview of research studies that examined the effects of light therapy on sleep macro- and micro-architecture in populations with sleep and circadian rhythm disorders. We searched for randomized controlled trials that used light therapy and included EEG sleep measures using MEDLINE, PubMed, CINAHL, PsycINFO and Cochrane Central Register of Controlled Trials databases. Five articles met the inclusion criteria of patients with either insomnia or delayed sleep−wake phase disorder (DSWPD). These trials reported sleep macro-architecture outcomes using EEG or polysomnography. Three insomnia trials showed no effect of the timing or intensity of light therapy on total sleep time, wake after sleep onset, sleep efficiency and sleep stage duration compared to controls. Only one insomnia trial reported significantly higher sleep efficiency after evening light therapy (>4000 lx between 21:00−23:00 h) compared with afternoon light therapy (>4000 lx between 15:00−17:00 h). In the only DSWPD trial, six multiple sleep latency tests were conducted across the day (09:00 and 19:00 h) and bright light (2500 lx) significantly lengthened sleep latency in the morning (09:00 and 11:00 h) compared to control light (300 lx). None of the five trials reported any sleep micro-architecture measures. Overall, there was limited research about the effect of light therapy on EEG sleep measures, and studies were confined to patients with insomnia and DSWPD only. More research is needed to better understand whether lighting interventions in clinical populations affect sleep macro- and micro-architecture and objective sleep timing and quality.
Collapse
Affiliation(s)
- Teha B. Pun
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Craig L. Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nathaniel S. Marshall
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Camilla M. Hoyos
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Angela L. D’Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Delwyn J. Bartlett
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Wendy Davis
- School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2008, Australia
| | - Wenye Hu
- School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2008, Australia
| | - Sharon L. Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
| | - Svetlana Postnova
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ron R. Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Sleep and Severe Mental Illness Clinic, CPC-RPA Clinic, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Christopher J. Gordon
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| |
Collapse
|
10
|
Spitschan M, Smolders K, Vandendriessche B, Bent B, Bakker JP, Rodriguez-Chavez IR, Vetter C. Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers. Digit Health 2022; 8:20552076221144858. [PMID: 36601285 PMCID: PMC9806438 DOI: 10.1177/20552076221144858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/25/2022] [Indexed: 12/27/2022] Open
Abstract
Background Light exposure is an important driver and modulator of human physiology, behavior and overall health, including the biological clock, sleep-wake cycles, mood and alertness. Light can also be used as a directed intervention, e.g., in the form of light therapy in seasonal affective disorder (SAD), jetlag prevention and treatment, or to treat circadian disorders. Recently, a system of quantities and units related to the physiological effects of light was standardized by the International Commission on Illumination (CIE S 026/E:2018). At the same time, biometric monitoring technologies (BioMeTs) to capture personalized light exposure were developed. However, because there are currently no standard approaches to evaluate the digital dosimeters, the need to provide a firm framework for the characterization, calibration, and reporting for these digital sensors is urgent. Objective This article provides such a framework by applying the principles of verification, analytic validation and clinical validation (V3) as a state-of-the-art approach for tools and standards in digital medicine to light dosimetry. Results This article describes opportunities for the use of digital dosimeters for basic research, for monitoring light exposure, and for measuring adherence in both clinical and non-clinical populations to light-based interventions in clinical trials.
Collapse
Affiliation(s)
- Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck
Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM Department of Sport and Health
Sciences (TUM SG), Technical University of
Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of
Munich, Garching, Germany
| | - Karin Smolders
- Human-Technology Interaction Group, Eindhoven University of
Technology, Eindhoven, The Netherlands
| | - Benjamin Vandendriessche
- Byteflies, Antwerp, Belgium
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve
University, Cleveland, OH, USA
| | | | | | | | - Céline Vetter
- Department of Integrative Physiology, University of Colorado
Boulder, Boulder, CO, USA
| |
Collapse
|
11
|
Stefani O, Cajochen C. Should We Re-think Regulations and Standards for Lighting at Workplaces? A Practice Review on Existing Lighting Recommendations. Front Psychiatry 2021; 12:652161. [PMID: 34054611 PMCID: PMC8155670 DOI: 10.3389/fpsyt.2021.652161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Nowadays lighting projects often include temporal variations of the light, both spectrally and in terms of intensity to consider non-visual effects of light on people. However, as of today there are no specific regulations. Compliance with common lighting standards that address visual aspects of light, often means that only little non-visually effective light reaches the eye. In this practice review we confront existing regulations and standards on visual lighting aspects with new recommendations on non-visual aspects and highlight conflicts among them. We conclude with lighting recommendations that address both aspects.
Collapse
Affiliation(s)
- Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Lonstein JS, Linning-Duffy K, Tang Y, Moody A, Yan L. Impact of daytime light intensity on the central orexin (hypocretin) system of a diurnal rodent (Arvicanthis niloticus). Eur J Neurosci 2021; 54:4167-4181. [PMID: 33899987 DOI: 10.1111/ejn.15248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/29/2022]
Abstract
The neuropeptide orexin/hypocretin is implicated in sleep and arousal, energy expenditure, reward, affective state and cognition. Our previous work using diurnal Nile grass rats (Arvicanthis niloticus) found that orexin mediates the effects of environmental light, particularly daytime light intensity, on affective and cognitive behaviours. The present study further investigated how daytime light intensity affects the central orexin system in male and female grass rats. Subjects were housed for 4 weeks in 12:12 hr dim light:dark (50 lux, dimLD) or in 12:12 hr bright light:dark cycle (1000 lux, brightLD). Day/night fluctuations in some orexin measures were also assessed. Despite similar hypothalamic prepro-orexin mRNA expression across all conditions, there were significantly more orexin-immunoreactive neurons, larger somata, greater optical density or higher orexin A content at night (ZT14) than during the day (ZT2), and/or in animals housed in brightLD compared to dimLD. Grass rats in brightLD also had higher cisternal CSF levels of orexin A. Furthermore, orexin receptor OX1R and OX2R proteins in the medial prefrontal cortex were higher in brightLD than dimLD males, but lower in brightLD than dimLD females. In the CA1 and dorsal raphe nucleus, females had higher OX1R than males without any significant effects of light condition, and OX2R levels were unaffected by sex or light. These results reveal that daytime light intensity alters the central orexin system of both male and female diurnal grass rats, sometimes sex-specifically, and provides insight into the mechanisms underlying how daytime light intensity impacts orexin-regulated functions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Katrina Linning-Duffy
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Yuping Tang
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anna Moody
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Böhmer MN, Valstar MJ, Aarts MPJ, Bindels PJE, Oppewal A, van Someren EJW, Festen DAM. Shedding light on light exposure in elderly with intellectual disabilities. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:361-372. [PMID: 33594722 PMCID: PMC7986740 DOI: 10.1111/jir.12822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Light exposure affects mood and sleep regulation. Sleep problems and mood complaints are common in elderly with intellectual disabilities (ID) living in care facilities. Insufficient light exposure is hypothesised to contribute to the high prevalence of these problems. The current study is the first to describe the personal light exposure pattern during the waking day in elderly with ID. METHODS The study sample consists of 82 elderly with ID (aged 62.3 ± 9.4 years) living in 16 residential homes of three care organisations in the Netherlands. Personal light exposure was measured continuously for 7-10 days using a HOBO data logger light sensor, measuring illuminance at chest height. Participants wore a wrist-worn accelerometer (Actiwatch or Geneactiv) to indicate the bedtimes to determine the waking day. RESULTS The variation in illuminance is small during the waking day. Elderly with ID spend most of their waking day (mean duration = 14:32:43 h) in dim light (1-500 lux) environment and spend a median of 32 min in light > 1000 lux. Within participants, the threshold associated with better sleep (>50 min of light > 1000 lux) was reached for 34% of the days, and the threshold associated with less depressive symptoms (>30 min of light > 1000 lux) was reached in 46% of the days. Exposure > 1000 lux was lower during weekends than during weekdays. CONCLUSION Elderly with ID spend most of their waking day in low light levels and did not meet the proposed values associated with better sleep and mood. Given the importance of adequate light exposure for regulation of sleep and mood, and the prevalence of sleep and mood problems in elderly with ID, the current study suggests that the lit environment for this already frail population should be given more attention.
Collapse
Affiliation(s)
- M. N. Böhmer
- Department of General Practice, Intellectual Disability MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
- Middin, Care Organization for People with Intellectual DisabilitiesRijswijkThe Netherlands
| | - M. J. Valstar
- Department of General Practice, Intellectual Disability MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
- Medical Department, Care and Service Centre for People with Intellectual DisabilitiesASVZSliedrechtThe Netherlands
| | - M. P. J. Aarts
- Building Lighting GroupEindhoven University of TechnologyEindhovenThe Netherlands
| | - P. J. E. Bindels
- Department of General PracticeErasmus MC, University Medical CenterRotterdamThe Netherlands
| | - A. Oppewal
- Department of General Practice, Intellectual Disability MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
| | - E. J. W. van Someren
- Department of Sleep and CognitionNetherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
- Dept. of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive ResearchVrije University, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
- Dept. of PsychiatryAmsterdam Public Health Research Institute, Amsterdam UMC, Vrije University, and GGZ inGeestAmsterdamThe Netherlands
| | - D. A. M. Festen
- Department of General Practice, Intellectual Disability MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands
- Ipse de Bruggen, Care Organization for People with Intellectual DisabilitiesZoetermeerThe Netherlands
| |
Collapse
|
14
|
Meng Q, Jiang J, Hou X, Jia L, Duan X, Zhou W, Zhang Q, Cheng Z, Wang S, Xiao Q, Wei X, Hao W. Antidepressant Effect of Blue Light on Depressive Phenotype in Light-Deprived Male Rats. J Neuropathol Exp Neurol 2020; 79:1344-1353. [PMID: 33249495 DOI: 10.1093/jnen/nlaa143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blue light has been previously reported to play a salient role in the treatment of seasonal affective disorder. The present study aimed to investigate whether blue light had antidepressant effect on light-deprivation-induced depression model, and the underlying visual neural mechanism. Blue light mitigated depression-like behaviors induced by light deprivation as measured by elevated sucrose preference and reduced immobility time. Blue light enhanced melanopsin expression and light responses in the retina. We also found the upregulation of serotonin and brain derived neurotrophic factor expression in the c-fos-positive areas of rats treated with blue light compared with those maintained in darkness. The species gap between nocturnal albino (Sprague-Dawley rat) and diurnal pigmented animals (human) might have influenced extrapolating data to humans. Blue light has antidepressant effect on light-deprived Sprague-Dawley rats, which might be related to activating the serotonergic system and neurotrophic activity via the retinoraphe and retinoamygdala pathways. Blue light is the effective component of light therapy for treatment of depression.
Collapse
Affiliation(s)
- Qinghe Meng
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Jianjun Jiang
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xiaohong Hou
- From the Department of Toxicology, School of Public Health, Peking University
| | - Lixia Jia
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xiaoxiao Duan
- From the Department of Toxicology, School of Public Health, Peking University
| | - Wenjuan Zhou
- From the Department of Toxicology, School of Public Health, Peking University
| | - Qi Zhang
- From the Department of Toxicology, School of Public Health, Peking University
| | - Zhiyuan Cheng
- From the Department of Toxicology, School of Public Health, Peking University
| | - Siqi Wang
- From the Department of Toxicology, School of Public Health, Peking University
| | - Qianqian Xiao
- From the Department of Toxicology, School of Public Health, Peking University
| | - Xuetao Wei
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Weidong Hao
- From the Department of Toxicology, School of Public Health, Peking University.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| |
Collapse
|
15
|
Bundschuh M, Zubrod JP, Petschick LL, Schulz R. Multiple Stressors in Aquatic Ecosystems: Sublethal Effects of Temperature, Dissolved Organic Matter, Light and a Neonicotinoid Insecticide on Gammarids. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:345-350. [PMID: 32642796 PMCID: PMC7497685 DOI: 10.1007/s00128-020-02926-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Whether and to which extent the effects of chemicals in the environment interact with other factors remains a scientific challenge. Here we assess the combined effects of temperature (16 vs. 20°C), light conditions (darkness vs. 400 lx), dissolved organic matter (DOM; 0 vs. 6 mg/L) and the model insecticide thiacloprid (0 vs. 3 µg/L) in a full-factorial experiment on molting and leaf consumption of Gammarus fossarum. Thiacloprid was the only factor significantly affecting gammarids' molting. While DOM had low effects on leaf consumption, temperature, light and thiacloprid significantly affected this response variable. The various interactions among these factors were not significant suggesting additivity. Only the interaction of the factors temperature and thiacloprid suggested a tendency for antagonism. As most stressors interacted additively, their joint effects may be predictable with available models. However, synergistic interactions are difficult to capture while being central for securing ecosystem integrity.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007, Uppsala, Sweden.
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany
| | - Lara L Petschick
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany
| |
Collapse
|
16
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
17
|
Martinez-Nicolas A, Martinez-Madrid MJ, Almaida-Pagan PF, Bonmati-Carrion MA, Madrid JA, Rol MA. Assessing Chronotypes by Ambulatory Circadian Monitoring. Front Physiol 2019; 10:1396. [PMID: 31824327 PMCID: PMC6879660 DOI: 10.3389/fphys.2019.01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
In order to develop objective indexes for chronotype identification by means of direct measurement of circadian rhythms, 159 undergraduate students were recruited as volunteers and instructed to wear ambulatory circadian monitoring (ACM) sensors that continuously gathered information on the individual's environmental light and temperature exposure, wrist temperature, body position, activity, and the integrated TAP (temperature, activity, and position) variable for 7 consecutive days under regular free-living conditions. Among all the proposed indexes, the night phase marker (NPM) of the TAP variable was the best suited to discriminate among chronotypes, due to its relationship with the Munich ChronoType Questionnaire (β = 0.531; p < 0.001). The NPM of TAP allowed subjects to be classified as early- (E-type, 20%), neither- (N-type, 60%), and late-types (L-type, 20%), each of which had its own characteristics. In terms of light exposure, while all subjects had short exposure times to bright light (>100 lux), with a daily average of 93.84 ± 5.72 min, the earlier chronotypes were exposed to brighter days and darker nights compared to the later chronotypes. Furthermore, the earlier chronotypes were associated with higher stability and day-night contrast, along with an earlier phase, which could be the cause or consequence of the light exposure habits. Overall, these data support the use of ACM for chronotype identification and for evaluation under free living conditions, using objective markers.
Collapse
Affiliation(s)
- Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jose Martinez-Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Francisco Almaida-Pagan
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria-Angeles Bonmati-Carrion
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Webler FS, Spitschan M, Foster RG, Andersen M, Peirson SN. What is the 'spectral diet' of humans? Curr Opin Behav Sci 2019; 30:80-86. [PMID: 31431907 PMCID: PMC6701986 DOI: 10.1016/j.cobeha.2019.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our visual perception of the world — seeing form and colour or navigating the environment — depends on the interaction of light and matter in the environment. Light also has a more fundamental role in regulating rhythms in physiology and behaviour, as well as in the acute secretion of hormones such as melatonin and changes in alertness, where light exposure at short-time, medium-time and long-time scales has different effects on these visual and non-visual functions. Yet patterns of light exposure in the real world are inherently messy: we move in and out of buildings and are therefore exposed to mixtures of artificial and natural light, and the physical makeup of our environment can also drastically alter the spectral composition and spatial distribution of the emitted light. In spatial vision, the examination of natural image statistics has proven to be an important driver in research. Here, we expand this concept to the spectral domain and develop the concept of the ‘spectral diet’ of humans.
Collapse
Affiliation(s)
- Forrest S Webler
- Laboratory of Integrated Performance In Design (LIPID), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, United Kingdom.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Switzerland
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Marilyne Andersen
- Laboratory of Integrated Performance In Design (LIPID), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
19
|
Yan L, Lonstein JS, Nunez AA. Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent. Horm Behav 2019; 111:78-86. [PMID: 30244030 PMCID: PMC6456444 DOI: 10.1016/j.yhbeh.2018.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Light profoundly affects the behavior and physiology of almost all animals, including humans. One such effect in humans is that the level of illumination during the day positively contributes to affective well-being and cognitive function. However, the neural mechanisms underlying the effects of daytime light intensity on affect and cognition are poorly understood. One barrier for progress in this area is that almost all laboratory animal models studied are nocturnal. There are substantial differences in how light affects nocturnal and diurnal species, e.g., light induces sleep in nocturnal mammals but wakefulness in diurnal ones, like humans. Therefore, the mechanisms through which light modulates affect and cognition must differ between the chronotypes. To further understand the neural pathways mediating how ambient light modulates affect and cognition, our recent work has developed a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), in which daytime light intensity is chronically manipulated in grass rats housed under the same 12:12 hour light/dark cycle. This simulates lighting conditions during summer-like bright sunny days vs. winter-like dim cloudy days. Our work has revealed that chronic dim daylight intensity results in higher depression- and anxiety-like behaviors, as well as impaired spatial learning and memory. Furthermore, we have found that hypothalamic orexin is a mediator of these effects. A better understanding of how changes in daytime light intensity impinge upon the neural substrates involved in affect and cognition will lead to novel preventive and therapeutic strategies for seasonal affective disorder, as well as for non-seasonal emotional or cognitive impairments associated with light deficiency.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Antonio A Nunez
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Lonstein JS, Linning-Duffy K, Yan L. Low Daytime Light Intensity Disrupts Male Copulatory Behavior, and Upregulates Medial Preoptic Area Steroid Hormone and Dopamine Receptor Expression, in a Diurnal Rodent Model of Seasonal Affective Disorder. Front Behav Neurosci 2019; 13:72. [PMID: 31031606 PMCID: PMC6473160 DOI: 10.3389/fnbeh.2019.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
Seasonal affective disorder (SAD) involves a number of psychological and behavioral impairments that emerge during the low daytime light intensity associated with winter, but which remit during the high daytime light intensity associated with summer. One symptom frequently reported by SAD patients is reduced sexual interest and activity, but the endocrine and neural bases of this particular impairment during low daylight intensity is unknown. Using a diurnal laboratory rodent, the Nile grass rat (Arvicanthis niloticus), we determined how chronic housing under a 12:12 h day/night cycle involving dim low-intensity daylight (50 lux) or bright high-intensity daylight (1,000 lux) affects males’ copulatory behavior, reproductive organ weight, and circulating testosterone. We also examined the expression of mRNAs for the aromatase enzyme, estrogen receptor 1 (ESR1), and androgen receptor (AR) in the medial preoptic area (mPOA; brain site involved in the sensory and hormonal control of copulation), and mRNAs for the dopamine (DA) D1 and D2 receptors in both the mPOA and nucleus accumbens (NAC; brain site involved in stimulus salience and motivation to respond to reward). Compared to male grass rats housed in high-intensity daylight, males in low-intensity daylight displayed fewer mounts and intromissions when interacting with females, but the groups did not differ in their testes or seminal vesicle weights, or in their circulating levels of testosterone. Males in low-intensity daylight unexpectedly had higher ESR1, AR and D1 receptor mRNA in the mPOA, but did not differ from high-intensity daylight males in D1 or D2 mRNA expression in the NAC. Reminiscent of humans with SAD, dim winter-like daylight intensity impairs aspects of sexual behavior in a male diurnal rodent. This effect is not due to reduced circulating testosterone and is associated with upregulation of mPOA steroid and DA receptors that may help maintain some sexual motivation and behavior under winter-like lighting conditions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Katrina Linning-Duffy
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lily Yan
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Doryab A, Dey AK, Kao G, Low C. Modeling Biobehavioral Rhythms with Passive Sensing in the Wild. ACTA ACUST UNITED AC 2019. [DOI: 10.1145/3314395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biobehavioral rhythms are associated with numerous health and life outcomes. We study the feasibility of detecting rhythms in data that is passively collected from Fitbit devices and using the obtained model parameters to predict readmission risk after pancreatic surgery. We analyze data from 49 patients who were tracked before surgery, in hospital, and after discharge. Our analysis produces a model of individual patients' rhythms for each stage of treatment that is predictive of readmission. All of the rhythm-based models outperform the traditional approaches to readmission risk stratification that uses administrative data.
Collapse
Affiliation(s)
| | | | - Grace Kao
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Carissa Low
- University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Meng Q, Lian Y, Jiang J, Wang W, Hou X, Pan Y, Chu H, Shang L, Wei X, Hao W. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats. Photochem Photobiol Sci 2018; 17:386-394. [PMID: 29404551 DOI: 10.1039/c7pp00271h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. METHODS Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. RESULTS The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. CONCLUSIONS BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang M, Ma N, Zhu Y, Su YC, Chen Q, Hsiao FC, Ji Y, Yang CM, Zhou G. The Acute Effects of Intermittent Light Exposure in the Evening on Alertness and Subsequent Sleep Architecture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:524. [PMID: 29543731 PMCID: PMC5877069 DOI: 10.3390/ijerph15030524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
Abstract
Exposure to bright light is typically intermittent in our daily life. However, the acute effects of intermittent light on alertness and sleep have seldom been explored. To investigate this issue, we employed within-subject design and compared the effects of three light conditions: intermittent bright light (30-min pulse of blue-enriched bright light (~1000 lux, ~6000 K) alternating with 30-min dim normal light (~5 lux, ~3600 K) three times); continuous bright light; and continuous dim light on subjective and objective alertness and subsequent sleep structure. Each light exposure was conducted during the three hours before bedtime. Fifteen healthy volunteers (20 ± 3.4 years; seven males) were scheduled to stay in the sleep laboratory for four separated nights (one for adaptation and the others for the light exposures) with a period of at least one week between nights. The results showed that when compared with dim light, both intermittent light and continuous bright light significantly increased subjective alertness and decreased sleep efficiency (SE) and total sleep time (TST). Intermittent light significantly increased objective alertness than dim light did during the second half of the light-exposure period. Our results suggested that intermittent light was as effective as continuous bright light in their acute effects in enhancing subjective and objective alertness and in negatively impacting subsequent sleep.
Collapse
Affiliation(s)
- Minqi Yang
- School of Psychology, South China Normal University, Guangzhou 510631, China.
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Ning Ma
- School of Psychology, South China Normal University, Guangzhou 510631, China.
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| | - Yingying Zhu
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Ying-Chu Su
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Qingwei Chen
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Fan-Chi Hsiao
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Yanran Ji
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Chien-Ming Yang
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
- The Research Center for Mind, Brain and Learning, National Chengchi University, Taipei 11605, Taiwan.
| | - Guofu Zhou
- School of Psychology, South China Normal University, Guangzhou 510631, China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.
- Shenzhen Guohua Optoelectronics Tech. Co., Ltd., Shenzhen 518110, China.
| |
Collapse
|
24
|
Pachito DV, Eckeli AL, Desouky AS, Corbett MA, Partonen T, Rajaratnam SMW, Riera R. Workplace lighting for improving alertness and mood in daytime workers. Cochrane Database Syst Rev 2018; 3:CD012243. [PMID: 29498416 PMCID: PMC6494162 DOI: 10.1002/14651858.cd012243.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Exposure to light plays a crucial role in biological processes, influencing mood and alertness. Daytime workers may be exposed to insufficient or inappropriate light during daytime, leading to mood disturbances and decreases in levels of alertness. OBJECTIVES To assess the effectiveness and safety of lighting interventions to improve alertness and mood in daytime workers. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, seven other databases; ClinicalTrials.gov and the World Health Organization trials portal up to January 2018. SELECTION CRITERIA We included randomised controlled trials (RCTs), and non-randomised controlled before-after trials (CBAs) that employed a cross-over or parallel-group design, focusing on any type of lighting interventions applied for daytime workers. DATA COLLECTION AND ANALYSIS Two review authors independently screened references in two stages, extracted outcome data and assessed risk of bias. We used standardised mean differences (SMDs) and 95% confidence intervals (CI) to pool data from different questionnaires and scales assessing the same outcome across different studies. We combined clinically homogeneous studies in a meta-analysis. We used the GRADE system to rate quality of evidence. MAIN RESULTS The search yielded 2844 references. After screening titles and abstracts, we considered 34 full text articles for inclusion. We scrutinised reports against the eligibility criteria, resulting in the inclusion of five studies (three RCTs and two CBAs) with 282 participants altogether. These studies evaluated four types of comparisons: cool-white light, technically known as high correlated colour temperature (CCT) light versus standard illumination; different proportions of indirect and direct light; individually applied blue-enriched light versus no treatment; and individually applied morning bright light versus afternoon bright light for subsyndromal seasonal affective disorder.We found no studies comparing one level of illuminance versus another.We found two CBA studies (163 participants) comparing high CCT light with standard illumination. By pooling their results via meta-analysis we found that high CCT light may improve alertness (SMD -0.69, 95% CI -1.28 to -0.10; Columbia Jet Lag Scale and the Karolinska Sleepiness Scale) when compared to standard illumination. In one of the two CBA studies with 94 participants there was no difference in positive mood (mean difference (MD) 2.08, 95% CI -0.1 to 4.26) or negative mood (MD -0.45, 95% CI -1.84 to 0.94) assessed using the Positive and Negative Affect Schedule (PANAS) scale. High CCT light may have fewer adverse events than standard lighting (one CBA; 94 participants). Both studies were sponsored by the industry. We graded the quality of evidence as very low.We found no studies comparing light of a particular illuminance and light spectrum or CCT versus another combination of illuminance and light spectrum or CCT.We found no studies comparing daylight versus artificial light.We found one RCT (64 participants) comparing the effects of different proportions of direct and indirect light: 100% direct lighting, 70% direct lighting plus 30% indirect lighting, 30% direct lighting plus 70% indirect lighting and 100% indirect lighting. There was no substantial difference in mood, as assessed by the Beck Depression Inventory, or in adverse events, such as ocular, reading or concentration problems, in the short or medium term. We graded the quality of evidence as low.We found two RCTs comparing individually administered light versus no treatment. According to one RCT with 25 participants, blue-enriched light individually applied for 30 minutes a day may enhance alertness (MD -3.30, 95% CI -6.28 to -0.32; Epworth Sleepiness Scale) and may improve mood (MD -4.8, 95% CI -9.46 to -0.14; Beck Depression Inventory). We graded the quality of evidence as very low. One RCT with 30 participants compared individually applied morning bright light versus afternoon bright light for subsyndromal seasonal affective disorder. There was no substantial difference in alertness levels (MD 7.00, 95% CI -10.18 to 24.18), seasonal affective disorder symptoms (RR 1.60, 95% CI 0.81, 3.20; number of participants presenting with a decrease of at least 50% in SIGH-SAD scores) or frequency of adverse events (RR 0.53, 95% CI 0.26 to 1.07). Among all participants, 57% had a reduction of at least 50% in their SIGH-SAD score. We graded the quality of evidence as low.Publication bias could not be assessed for any of these comparisons. AUTHORS' CONCLUSIONS There is very low-quality evidence based on two CBA studies that high CCT light may improve alertness, but not mood, in daytime workers. There is very low-quality evidence based on one CBA study that high CCT light may also cause less irritability, eye discomfort and headache than standard illumination. There is low-quality evidence based on one RCT that different proportions of direct and indirect light in the workplace do not affect alertness or mood. There is very low-quality evidence based on one RCT that individually applied blue-enriched light improves both alertness and mood. There is low-quality evidence based on one RCT that individually administered bright light during the afternoon is as effective as morning exposure for improving alertness and mood in subsyndromal seasonal affective disorder.
Collapse
Affiliation(s)
- Daniela V Pachito
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeCochrane BrazilRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | - Alan L Eckeli
- São Paulo UniversityNeuroscience and Behavioural SciencesCampus UniversitarioRibeirão PretoSão PauloBrazil14.048‐900
| | | | - Mark A Corbett
- Corbett & Associates PtyLtdPO Box 477WalkervilleSouth AustraliaAustralia5081
| | - Timo Partonen
- National Institute for Health and WelfareDepartment of HealthMannerheimintie 166HelsinkiFinlandFI‐00300
| | - Shantha MW Rajaratnam
- Monash UniversitySchool of Psychological Sciences18 Innovation Walk (Building 17)Monash University Clayton CampusClaytonVictoriaAustralia3800
| | - Rachel Riera
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeCochrane BrazilRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | | |
Collapse
|
25
|
Seasonal Variation in Bright Daylight Exposure, Mood and Behavior among a Group of Office Workers in Sweden. J Circadian Rhythms 2018; 16:2. [PMID: 30210562 PMCID: PMC5853818 DOI: 10.5334/jcr.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of the study was to investigate seasonal variation in mood and behavior among a group of office workers in Sweden (56°N). Thirty subjects participated in this longitudinal study. The subjects kept a weekly log that included questionnaires for ratings of psychological wellbeing and daily sleep-activity diaries where they also noted time spent outdoors. The lighting conditions in the offices were subjectively evaluated during one day, five times over the year. There was a seasonal variation in positive affect and in sleep-activity behavior. Across the year, there was a large variation in the total time spent outdoors in daylight. The subjects reported seasonal variation concerning the pleasantness, variation and strength of the light in the offices and regarding the visibility in the rooms. Finally, the subjects spent most of their time indoors, relying on artificial lighting, which demonstrates the importance of the lighting quality in indoor environments.
Collapse
|
26
|
Souman JL, Tinga AM, te Pas SF, van Ee R, Vlaskamp BN. Acute alerting effects of light: A systematic literature review. Behav Brain Res 2018; 337:228-239. [DOI: 10.1016/j.bbr.2017.09.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
27
|
Abstract
Diurnal preference, or chronotype, determined partly by genetics and modified by age, activity, and the environment, defines the time of day at which one feels at his/her best, when one feels sleepy, and when one would prefer to start his/her day. Chronotype affects the phase relationship of an individual's circadian clock with the environment such that morning types have earlier-phased circadian rhythms than evening types. The phases of circadian rhythms are synchronized to the environment on a daily basis, undergoing minor adjustments of phase each day. Light is the most potent time cue for phase-shifting circadian rhythms, but the timing and amount of solar irradiation vary dynamically with season, especially with increasing distance from the equator. There is evidence that chronotype is modified by seasonal change, most likely due to the changes in the light environment, but interindividual differences in photoperiod responsiveness mean that some people are more affected than others. Differences in circadian light sensitivity due to endogenous biological reasons and/or previous light history are responsible for the natural variation in photoperiod responsiveness. Modern lifestyles that include access to artificial light at night, temperature-controlled environments, and spending much less time outdoors offer a buffer to the environmental changes of the seasons and may contribute to humans becoming less responsive to seasons.
Collapse
Affiliation(s)
- Nyambura Shawa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
| | - Dale E Rae
- Health through Physical Activity, Lifestyle and Sport Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa,
| |
Collapse
|
28
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
29
|
Brouwer A, Nguyen HT, Snoek FJ, van Raalte DH, Beekman ATF, Moll AC, Bremmer MA. Light therapy: is it safe for the eyes? Acta Psychiatr Scand 2017; 136:534-548. [PMID: 28891192 DOI: 10.1111/acps.12785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Light therapy has become an increasingly popular treatment for depression and a range of other neuropsychiatric conditions. Yet, concerns have been raised about the ocular safety of light therapy. METHOD We conducted the first systematic review into the ocular safety of light therapy. A PubMed search on January 4, 2017, identified 6708 articles, of which 161 were full-text reviewed. In total, 43 articles reporting on ocular complaints and ocular examinations were included in the analyses. RESULTS Ocular complaints, including ocular discomfort and vision problems, were reported in about 0% to 45% of the participants of studies involving light therapy. Based on individual studies, no evident relationship between the occurrence of complaints and light therapy dose was found. There was no evidence for ocular damage due to light therapy, with the exception of one case report that documented the development of a maculopathy in a person treated with the photosensitizing antidepressant clomipramine. CONCLUSION Results suggest that light therapy is safe for the eyes in physically healthy, unmedicated persons. The ocular safety of light therapy in persons with preexisting ocular abnormalities or increased photosensitivity warrants further study. However, theoretical considerations do not substantiate stringent ocular safety-related contraindications for light therapy.
Collapse
Affiliation(s)
- A Brouwer
- Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - H-T Nguyen
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - F J Snoek
- Departments of Medical Psychology, Amsterdam Public Health research institute, VU University Medical Center and Academic Medical Center, Amsterdam, The Netherlands
| | - D H van Raalte
- Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A T F Beekman
- Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - A C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - M A Bremmer
- Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Nioi A, Roe J, Gow A, McNair D, Aspinall P. Seasonal Differences in Light Exposure and the Associations With Health and Well-Being in Older Adults: An Exploratory Study. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2017; 10:64-79. [PMID: 29056090 PMCID: PMC5656103 DOI: 10.1177/1937586717697650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This article reports summer verses winter seasonal variations across a suite of blue light, illuminance levels and health and well-being indicators. BACKGROUND The quality of lighting in care homes has been assessed previously, yet seasonal comparisons and the associations with sleep quality are limited. This exploratory study investigates light exposure in two seasons to determine the changes over time and the associations with health and well-being. METHODS In a repeated measures design, 16 older people (aged 72-99 years) living in a care home had their personal light exposure and sleep/wake patterns monitored for 4 days. Cognitive ability, mental well-being, daytime physical activity, and visual function were assessed. Mean light levels at preset times across the day, duration in light exposure over 1,000 lux, and sleep parameters were computed. Statistical investigations included correlations exploring associations and paired means tests to detect the changes between seasons. RESULTS The mean morning illuminance level in summer was 466 lux and 65 lux in winter. Duration in bright light over 1,000 lux was 46 min in summer and 3 min in winter. Light measures were significantly higher in summer. There was no statistical difference in sleep quality parameters between seasons, but there were significant difference in daytime physical activity level (i.e., this was higher in summer). CONCLUSION The findings indicate low level of light exposures experienced in both seasons, with exposure levels being particularly low in winter. This provides new insights into the limited amount of light older people receive independent of season and the possible impacts on sleep and daytime physical activity level.
Collapse
Affiliation(s)
- Amanda Nioi
- Department of Human Health, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Jenny Roe
- Center for Design and Health, School of Architecture, University of Virginia, Charlottesville, VA, USA
- Stockholm Environment Institute, University of York, York, UK
| | - Alan Gow
- School of Management and Languages, Heriot-Watt University, Edinburgh, UK
- Centre for Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - David McNair
- Dementia Centre, Hammond Care, Sydney, Australia
| | - Peter Aspinall
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
31
|
Light color importance for circadian entrainment in a diurnal (Octodon degus) and a nocturnal (Rattus norvegicus) rodent. Sci Rep 2017; 7:8846. [PMID: 28821732 PMCID: PMC5562902 DOI: 10.1038/s41598-017-08691-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
The central circadian pacemaker (Suprachiasmatic Nuclei, SCN) maintains the phase relationship with the external world thanks to the light/dark cycle. Light intensity, spectra, and timing are important for SCN synchronisation. Exposure to blue-light at night leads to circadian misalignment that could be avoided by using less circadian-disruptive wavelengths. This study tests the capacity of a diurnal Octodon degus and nocturnal Rattus norvegicus to synchronise to different nocturnal lights. Animals were subjected to combined red-green-blue lights (RGB) during the day and to: darkness; red light (R); combined red-green LED (RG) lights; and combined red-green-violet LED (RGV) lights during the night. Activity rhythms free-ran in rats under a RGB:RG cycle and became arrhythmic under RGB:RGV. Degus remained synchronised, despite the fact that day and night-time lighting systems differed only in spectra, but not in intensity. For degus SCN c-Fos activation by light was stronger with RGB-light than with RGV. This could be relevant for developing lighting that reduces the disruptive effects of nocturnal light in humans, without compromising chromaticity.
Collapse
|
32
|
Huiberts LM, Smolders KCHJ, De Kort YAW. Seasonal and time-of-day variations in acute non-image forming effects of illuminance level on performance, physiology, and subjective well-being. Chronobiol Int 2017; 34:827-844. [PMID: 28548872 DOI: 10.1080/07420528.2017.1324471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated seasonal and time-of-day dependent moderations in the strength and direction of acute diurnal non-image forming (NIF) effects of illuminance level on performance, physiology, and subjective well-being. Even though there are indications for temporal variations in NIF-responsiveness to bright light, scientific insights into potential moderations by season are scarce. We employed a 2 (Light: 165 versus 1700 lx at the eye level, within) × 2 (Season: autumn/winter versus spring, between) × 2 (Time of day: morning versus afternoon, between) mixed-model design. During each of the two 90-min experimental sessions, participants (autumn/winter: N = 34; spring: N = 39) completed four measurement blocks (incl. one baseline block of 120 lx at the eye level) each consisting of a Psychomotor Vigilance Task (PVT) and a Backwards Digit-Span Task (BDST) including easy trials (4-6 digits) and difficult trials (7-8 digits). Heart rate (HR) and skin conductance level (SCL) were measured continuously. At the end of each lighting condition, subjective sleepiness, vitality, and mood were measured. The results revealed a clear indication for significant Light * Season interaction effects on both subjective sleepiness and vitality, which appeared only during the morning sessions. Participants felt significantly more vital and less sleepy in winter, but not in spring during bright light exposure in the morning. In line with these subjective parameters, participants also showed significantly better PVT performance in the morning in autumn/winter, but not in spring upon bright light exposure. Surprisingly, for difficult working memory performance, the opposite was found, namely worse performance during bright light exposure in winter, but better performance when exposed to bright light in spring. The effects of bright versus regular light exposure on physiology were quite subtle and largely nonsignificant. Overall, it can be concluded that acute illuminance-induced NIF effects on subjective alertness and vitality as well as objectively measured vigilance in the morning are significantly moderated by season. Possibly, these greater illuminance-induced benefits during the morning sessions in autumn/winter compared to spring occurred due to increased responsiveness to bright light exposure as a function of a relatively low prior light dose in autumn/winter.
Collapse
Affiliation(s)
- L M Huiberts
- a Human-Technology Interaction, School of Innovation Sciences, & Intelligent Lighting Institute , Eindhoven University of Technology , Eindhoven , the Netherlands
| | - K C H J Smolders
- a Human-Technology Interaction, School of Innovation Sciences, & Intelligent Lighting Institute , Eindhoven University of Technology , Eindhoven , the Netherlands
| | - Y A W De Kort
- a Human-Technology Interaction, School of Innovation Sciences, & Intelligent Lighting Institute , Eindhoven University of Technology , Eindhoven , the Netherlands
| |
Collapse
|
33
|
Stothard ER, McHill AW, Depner CM, Birks BR, Moehlman TM, Ritchie HK, Guzzetti JR, Chinoy ED, LeBourgeois MK, Axelsson J, Wright KP. Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr Biol 2017; 27:508-513. [PMID: 28162893 DOI: 10.1016/j.cub.2016.12.041] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023]
Abstract
Reduced exposure to daytime sunlight and increased exposure to electrical lighting at night leads to late circadian and sleep timing [1-3]. We have previously shown that exposure to a natural summer 14 hr 40 min:9 hr 20 min light-dark cycle entrains the human circadian clock to solar time, such that the internal biological night begins near sunset and ends near sunrise [1]. Here we show that the beginning of the biological night and sleep occur earlier after a week's exposure to a natural winter 9 hr 20 min:14 hr 40 min light-dark cycle as compared to the modern electrical lighting environment. Further, we find that the human circadian clock is sensitive to seasonal changes in the natural light-dark cycle, showing an expansion of the biological night in winter compared to summer, akin to that seen in non-humans [4-8]. We also show that circadian and sleep timing occur earlier after spending a weekend camping in a summer 14 hr 39 min:9 hr 21 min natural light-dark cycle compared to a typical weekend in the modern environment. Weekend exposure to natural light was sufficient to achieve ∼69% of the shift in circadian timing we previously reported after a week's exposure to natural light [1]. These findings provide evidence that the human circadian clock adapts to seasonal changes in the natural light-dark cycle and is timed later in the modern environment in both winter and summer. Further, we demonstrate that earlier circadian timing can be rapidly achieved through natural light exposure during a weekend spent camping.
Collapse
Affiliation(s)
- Ellen R Stothard
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Andrew W McHill
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Christopher M Depner
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Brian R Birks
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Thomas M Moehlman
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Hannah K Ritchie
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Jacob R Guzzetti
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Evan D Chinoy
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Monique K LeBourgeois
- Sleep and Development Laboratory, 1725 Pleasant Street, Clare Small 114, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, K8, Psychology Axelsson, Nobels Väg 9, 17177, Stockholm, Sweden; Stress Research Institute, Stockholm University, 14419 Stockholm, Sweden
| | - Kenneth P Wright
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| |
Collapse
|
34
|
Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr Rev 2016; 37:584-608. [PMID: 27763782 PMCID: PMC5142605 DOI: 10.1210/er.2016-1083] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.
Collapse
Affiliation(s)
- Gregory D M Potter
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Debra J Skene
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Josephine Arendt
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Janet E Cade
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J Grant
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Laura J Hardie
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
35
|
Chronobiological Hypothesis about the Association Between Height Growth Seasonality and Geographical Differences in Body Height According to Effective Day Length. J Circadian Rhythms 2016. [PMCID: PMC5388030 DOI: 10.5334/jcr.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on growth hormone therapy in children have shown that height velocity is greater in summer than in winter and that this difference increases with latitude. It is hypothesized that summer daylight is a causative factor and that geographical distribution of body height will approximate the distribution of summer day length over time. This is an ecological analysis of prefecture-level data on the height of Japanese youth. Mesh climatic data of effective day length were collated. While height velocity was greatest during the summer, the height of Japanese youth was strongly and negatively correlated with the distribution of winter effective day length. Therefore, it is anticipated that summer height velocity is greater according to winter day length (dark period). This may be due to epigenetic modifications, involving reversible DNA methylation and thyroid hormone regulation found in the reproductive system of seasonal breeding vertebrates. If the function is applicable to humans, summer height growth may quantitatively increase with winter day length, and height growth seasonality can be explained by thyroid hormone activities that-induced by DNA methylation-change depending on the seasonal difference in day length. Moreover, geographical differences in body height may be caused by geographical differences in effective day length, which could influence melatonin secretion among subjects who spend a significant time indoors.
Collapse
|
36
|
Adamsson M, Laike T, Morita T. Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length. J Physiol Anthropol 2016; 36:6. [PMID: 27435153 PMCID: PMC4952149 DOI: 10.1186/s40101-016-0103-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/05/2016] [Indexed: 01/17/2023] Open
Abstract
Background Seasonal variations in physiology and behavior have frequently been reported. Light is the major zeitgeber for synchronizing internal circadian rhythms with the external solar day. Non-image forming effects of light radiation, for example, phase resetting of the circadian rhythms, melatonin suppression, and acute alerting effects, depend on several characteristics of the light exposure including intensity, timing and duration, spectral composition and previous light exposure, or light history. The aim of the present study was to report on the natural pattern of diurnal and seasonal light exposure and to examine seasonal variations in the circadian change of melatonin and cortisol concentrations for a group of Swedish office workers. Methods Fifteen subjects participated in a field study that was carried out in the south of Sweden. Ambulatory equipment was used for monthly measurements of the daily exposure to light radiation across the year. The measurements included illuminance and irradiance. The subjects collected saliva samples every 4 h during 1 day of the monthly measuring period. Results The results showed that there were large seasonal differences in daily amount of light exposure across the year. Seasonal differences were observed during the time periods 04:00–08:00, 08:00–12:00, 12:00–16:00, 16:00–20:00, and 20:00–24:00. Moreover, there were seasonal differences regarding the exposure pattern. The subjects were to a larger extent exposed to light in the afternoon/evening in the summer. During the winter, spring, and autumn, the subjects received much of the daily light exposure in the morning and early afternoon. Regarding melatonin, a seasonal variation was observed with a larger peak level during the winter and higher levels in the morning at 07:00. Conclusions This study adds to the results from other naturalistic studies by reporting on the diurnal and seasonal light exposure patterns for a group living at a northern latitude of 56° N, with large annual variations in photoperiod length. It seems to be seasonal variation in the lighting conditions, both concerning intensities as well as regarding the pattern of the light exposure to which people living at high latitudes are exposed which may result in seasonal variation in the circadian profile of melatonin.
Collapse
Affiliation(s)
- Mathias Adamsson
- School of Engineering, Jönköping University, P.O. Box 1026, SE-551 11, Jönköping, Sweden.
| | - Thorbjörn Laike
- Department of Architecture and Built Environment, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| | - Takeshi Morita
- Department of Environmental Science, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
37
|
Goulet G, Mongrain V, Desrosiers C, Paquet J, Dumont M. Daily Light Exposure in Morning-Type and Evening-Type Individuals. J Biol Rhythms 2016; 22:151-8. [PMID: 17440216 DOI: 10.1177/0748730406297780] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Morning-type individuals (M-types) have earlier sleep schedules than do evening types (E-types) and therefore differ in their exposure to the external light-dark cycle. M-types and E-types usually differ in their endogenous circadian phase as well, but whether this is the cause or the consequence of the difference in light exposure remains controversial. In this study, ambulatory monitoring was used to measure 24-h light exposure in M-type and E-type subjects for 7 consecutive days. The circadian phase of each subject was then estimated in the laboratory using the dim-light melatonin onset in saliva (DLMO) and the core body temperature minimum (Tmin). On average, M-types had earlier sleep schedules and earlier circadian phases than E-types. They also showed more minutes of daily bright light exposure (> 1000 lux) than E-types. As expected, the 24-h patterns of light exposure analyzed in relation to clock time indicated that M-types were exposed to more light in the morning than E-types and that the reverse was true in the late evening. However, there was no significant difference when the light profiles were analyzed in relation to circadian phase, suggesting that, on average, the circadian pacemaker of both M-types and E-types was similarly entrained to the light-dark cycle they usually experience. Some M-types and E-types had different sleep schedules but similar circadian phases. These subjects also had identical light profiles in relation to their circadian phase. By contrast, M-types and E-types with very early or very late circadian phases showed large differences in their profiles of light exposure in relation to their circadian phase. This observation suggests that in these individuals, early or late circadian phases are related to relatively short and long circadian periods and that a phase-delaying profile of light exposure in M-types and a phase-advancing profile in E-types are necessary to ensure a stable entrainment to the 24-h day.
Collapse
Affiliation(s)
- Geneviève Goulet
- Chronobiology Laboratory, Sacré-Coeur Hospital of Montréal, Department of Psychology, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
38
|
Pachito DV, Eckeli AL, Desouky AS, Corbett MA, Partonen T, Wilson Rajaratnam SM, Riera R. Workplace lighting for improving mood and alertness in daytime workers. Hippokratia 2016. [DOI: 10.1002/14651858.cd012243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela V Pachito
- Prossono; Neurology and Sleep Medicine; Rua Itacolomi, 149 Alto da Boa Vista Ribeirão Preto Sao Paulo Brazil 14.025-250
| | - Alan L Eckeli
- São Paulo University; Neuroscience and Behavioural Sciences; Campus Universitario Ribeirão Preto São Paulo Brazil 14.048-900
| | | | - Mark A Corbett
- Corbett & Associates PtyLtd; PO Box 477 Walkerville South Australia Australia 5081
| | - Timo Partonen
- National Institute for Health and Welfare; Department of Health; Mannerheimintie 166 Helsinki Finland FI-00300
| | - Shanthakumar M Wilson Rajaratnam
- Monash University; School of Psychological Sciences; 18 Innovation Walk (Building 17) Monash University Clayton Campus Clayton Victoria Australia 3800
| | - Rachel Riera
- Brazilian Cochrane Centre; Centro de Estudos em Medicina Baseada em Evidências e Avaliação Tecnológica em Saúde; Rua Borges Lagoa, 564 cj 63 São Paulo SP Brazil 04038-000
| |
Collapse
|
39
|
Martin JS, Gaudreault MM, Perron M, Laberge L. Chronotype, Light Exposure, Sleep, and Daytime Functioning in High School Students Attending Morning or Afternoon School Shifts. J Biol Rhythms 2016; 31:205-17. [DOI: 10.1177/0748730415625510] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adolescent maturation is associated with delays of the endogenous circadian phase. Consequently, early school schedules may lead to a mismatch between internal and external time, which can be detrimental to adolescent sleep and health. In parallel, chronotype is known to play a role in adolescent health; evening chronotype adolescents are at higher risk for sleep problems and lower academic achievement. In the summer of 2008, Kénogami High School (Saguenay, Canada) was destroyed by fire. Kénogami students were subsequently relocated to Arvida High School (situated 5.3 km away) for the 2008-2009 academic year. A dual school schedule was implemented, with Arvida students attending a morning schedule (0740-1305 h) and Kénogami students an afternoon schedule (1325-1845 h). This study aimed to investigate the effects of such school schedules and chronotype on sleep, light exposure, and daytime functioning. Twenty-four morning and 33 afternoon schedule students wore an actigraph during 7 days to measure sleep and light exposure. Academic achievement was obtained from school. Subjects completed validated questionnaires on daytime sleepiness, psychological distress, social rhythms, school satisfaction, alcohol, and chronotype. Overall, afternoon schedule students had longer sleep duration, lower sleepiness, and lower light exposure than morning schedule students. Evening chronotypes (E-types) reported higher levels of sleepiness than morning chronotypes (M-types) in both morning and afternoon schedules. Furthermore, M-types attending the morning schedule reported higher sleepiness than M-types attending the afternoon schedule. No difference was found between morning and afternoon schedule students with regard to academic achievement, psychological distress, social rhythms, school satisfaction, and alcohol consumption. However, in both schedules, M-type had more regular social rhythms and lower alcohol consumption. In summary, this study emphasizes that an early school schedule is associated with detrimental effects in terms of sleep deprivation and daytime sleepiness, even for M-types. Furthermore, irrespective of school schedule, E-type adolescents face an increased risk for poor daytime functioning.
Collapse
Affiliation(s)
- Jeanne Sophie Martin
- Department of Ophthalmology and Otorhinolaryngology, Laval University, Québec, Québec, Canada
- Centre de recherche de l’Institut en santé mentale de Québec, Québec, Canada
| | | | - Michel Perron
- Chaire VISAJ, Département des sciences humaines, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Luc Laberge
- ÉCOBES—Recherche et transfert, Cégep de Jonquière, Saguenay, Québec, Canada
- Département des sciences de la santé, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| |
Collapse
|
40
|
Ikeno T, Deats SP, Soler J, Lonstein JS, Yan L. Decreased daytime illumination leads to anxiety-like behaviors and HPA axis dysregulation in the diurnal grass rat (Arvicanthis niloticus). Behav Brain Res 2015; 300:77-84. [PMID: 26684510 DOI: 10.1016/j.bbr.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
The impact of ambient light on mood and anxiety is best exemplified in seasonal affective disorder, in which patients experience depression and anxiety in winter when there is less light in the environment. However, the brain mechanisms underlying light-dependent changes in affective state remain unclear. Our previous work revealed increased depression-like behaviors in the diurnal Nile grass rat (Arvicanthis niloticus) housed in a dim light-dark (dim-LD) cycle as compared to the controls housed in a bright light-dark (bright-LD) condition. As depression is often comorbid with anxiety and is associated with dysregulation of the body's stress response system, the present study examined the anxiety-like behaviors as well as indicators of the hypothalamic-pituitary-adrenal (HPA) axis functioning in the grass rats. Animals housed in dim-LD showed increased anxiety-like behaviors compared to bright-LD controls, as revealed by fewer entries and less time spent at the center in the open field test and more marbles buried during the marble-burying test. Following the marble-burying test, dim-LD animals showed higher plasma corticosterone (CORT) levels and hippocampal Fos expression. Although the daily CORT rhythm was comparable between bright-LD and dim-LD groups, the day/night variation of corticotropin-releasing hormone mRNA expression in the paraventricular nucleus was diminished in dim-LD animals. In addition, glucocorticoid receptor and mineralocorticoid receptor mRNA expression were higher in the hippocampus of dim-LD animals. The results suggest that in diurnal species, reduced daytime illumination can lead to increased anxiety-like behaviors and altered HPA axis functioning, providing insights into the link between decreased environmental illumination and negative emotion.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Sean P Deats
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Joel Soler
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Smolensky MH, Sackett-Lundeen LL, Portaluppi F. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 2015; 32:1029-48. [PMID: 26374931 DOI: 10.3109/07420528.2015.1072002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like--now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children--is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm λ) spectrum synchronizes the CTS and whose UV-B (290-315 nm λ) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in today's man-made artificial light environment, which in our opinion is long overdue.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Linda L Sackett-Lundeen
- b American Association for Clinical Chronobiology and Chronotherapeutics , Roseville , MN , USA , and
| | - Francesco Portaluppi
- c Hypertension Center, S. Anna University Hospital, University of Ferrara , Ferrara , Italy
| |
Collapse
|
42
|
Sani M, Refinetti R, Jean-Louis G, Pandi-Perumal SR, Durazo-Arvizu RA, Dugas LR, Kafensztok R, Bovet P, Forrester TE, Lambert EV, Plange-Rhule J, Luke A. Daily activity patterns of 2316 men and women from five countries differing in socioeconomic development. Chronobiol Int 2015; 32:650-6. [PMID: 26035482 DOI: 10.3109/07420528.2015.1038559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Daily rhythmicity in the locomotor activity of laboratory animals has been studied in great detail for many decades, but the daily pattern of locomotor activity has not received as much attention in humans. We collected waist-worn accelerometer data from more than 2000 individuals from five countries differing in socioeconomic development and conducted a detailed analysis of human locomotor activity. Body mass index (BMI) was computed from height and weight. Individual activity records lasting 7 days were subjected to cosinor analysis to determine the parameters of the daily activity rhythm: mesor (mean level), amplitude (half the range of excursion), acrophase (time of the peak) and robustness (rhythm strength). The activity records of all individual participants exhibited statistically significant 24-h rhythmicity, with activity increasing noticeably a few hours after sunrise and dropping off around the time of sunset, with a peak at 1:42 pm on average. The acrophase of the daily rhythm was comparable in men and women in each country but varied by as much as 3 h from country to country. Quantification of the socioeconomic stages of the five countries yielded suggestive evidence that more developed countries have more obese residents, who are less active, and who are active later in the day than residents from less developed countries. These results provide a detailed characterization of the daily activity pattern of individual human beings and reveal similarities and differences among people from five countries differing in socioeconomic development.
Collapse
Affiliation(s)
- Mamane Sani
- Circadian Rhythm Laboratory, Department of Psychology, Boise State University , Boise, ID , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Crowley SJ, Molina TA, Burgess HJ. A week in the life of full-time office workers: work day and weekend light exposure in summer and winter. APPLIED ERGONOMICS 2015; 46 Pt A:193-200. [PMID: 25172304 PMCID: PMC4185224 DOI: 10.1016/j.apergo.2014.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/25/2014] [Accepted: 08/04/2014] [Indexed: 06/01/2023]
Abstract
Little is known about the light exposure in full-time office workers, who spend much of their workdays indoors. We examined the 24-h light exposure patterns of 14 full-time office workers during a week in summer, and assessed their dim light melatonin onset (DLMO, a marker of circadian timing) at the end of the working week. Six workers repeated the study in winter. Season had little impact on the workers' schedules, as the timing of sleep, commute, and work did not vary by more than 30 min in the summer and winter. In both seasons, workers received significantly more morning light on workdays than weekends, due to earlier wake times and the morning commute. Evening light in the two hours before bedtime was consistently dim. The timing of the DLMO did not vary between season, and by the end of the working week, the workers slept at a normal circadian phase.
Collapse
Affiliation(s)
- Stephanie J Crowley
- Biological Rhythms Research Laboratory, Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas A Molina
- Biological Rhythms Research Laboratory, Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Helen J Burgess
- Biological Rhythms Research Laboratory, Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
44
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
45
|
Deats SP, Adidharma W, Lonstein JS, Yan L. Attenuated orexinergic signaling underlies depression-like responses induced by daytime light deficiency. Neuroscience 2014; 272:252-60. [PMID: 24813431 DOI: 10.1016/j.neuroscience.2014.04.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
Light has profound effects on mood, as exemplified by seasonal affective disorder (SAD) and the beneficial effects of bright light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD (Leach et al., 2013a,b). By utilizing a 12:12-h dim light:dark (DLD) paradigm that simulates the lower light intensity of winter, we showed that the animals housed in DLD exhibited increased depression-like behaviors in the forced swim test (FST) and sweet solution preference (SSP) compared to animals housed in bright light during the day (BLD). The objective of the present study was to test the hypothesis that light affects mood by acting on the brain orexinergic system in the diurnal grass rat model of SAD. First, orexin A immunoreactivity (OXA-ir) was examined in DLD and BLD grass rats. Results revealed a reduction in the number of OXA-ir neurons in the hypothalamus and attenuated OXA-ir fiber density in the dorsal raphe nucleus of animals in the DLD compared to those in the BLD group. Then, the animals in BLD were treated systemically with SB-334867, a selective orexin 1 receptor (OX1R) antagonist, which led to a depressive phenotype characterized by increased immobility in the FST and a decrease in SSP compared to vehicle-treated controls. Results suggest that attenuated orexinergic signaling is associated with increased depression-like behaviors in grass rats, and support the hypothesis that the orexinergic system mediates the effects of light on mood.
Collapse
Affiliation(s)
- S P Deats
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - W Adidharma
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - J S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - L Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
46
|
Glickman GL, Harrison EM, Elliott JA, Gorman MR. Increased photic sensitivity for phase resetting but not melatonin suppression in Siberian hamsters under short photoperiods. Horm Behav 2014; 65:301-7. [PMID: 24440383 PMCID: PMC3963461 DOI: 10.1016/j.yhbeh.2014.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/19/2022]
Abstract
Light regulates a variety of behavioral and physiological processes, including activity rhythms and hormone secretory patterns. Seasonal changes in the proportion of light in a day (photoperiod) further modulate those functions. Recently, short (SP) versus long days (LP) were found to markedly increase light sensitivity for phase shifting in Syrian hamsters. To our knowledge, photoperiod effects on light sensitivity have not been studied in other rodents, nor is it known if they generalize to other circadian responses. We tested whether photic phase shifting and melatonin suppression vary in Siberian hamsters maintained under LP or SP. Select irradiances of light were administered, and shifts in activity were determined. Photic sensitivity for melatonin suppression was examined in a separate group of animals via pulses of light across a 4 log-unit photon density range, with post-pulse plasma melatonin levels determined via RIA. Phase shifting and melatonin suppression were greater at higher irradiances for both LP and SP. The lower irradiance condition was below threshold for phase shifts in LP but not SP. Melatonin suppression did not vary by photoperiod, and the half saturation constant for fitted sigmoid curves was similar under LP and SP. Thus, the photoperiodic modulation of light sensitivity for phase shifting is conserved across two hamster genera. The dissociation of photoperiod effects on photic phase shifting and melatonin suppression suggests that the modulation of sensitivity occurs downstream of the common retinal input pathway. Understanding the mechanistic basis for this plasticity may yield therapeutic targets for optimizing light therapy practices.
Collapse
Affiliation(s)
- G L Glickman
- University of California, San Diego, Department of Psychology, Center for Chronobiology, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - E M Harrison
- University of California, San Diego, Department of Psychology, Center for Chronobiology, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J A Elliott
- University of California, San Diego, Department of Psychology, Center for Chronobiology, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M R Gorman
- University of California, San Diego, Department of Psychology, Center for Chronobiology, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
47
|
Saxvig IW, Wilhelmsen-Langeland A, Pallesen S, Vedaa O, Nordhus IH, Bjorvatn B. A randomized controlled trial with bright light and melatonin for delayed sleep phase disorder: effects on subjective and objective sleep. Chronobiol Int 2013; 31:72-86. [PMID: 24144243 DOI: 10.3109/07420528.2013.823200] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Delayed sleep phase disorder (DSPD) is assumed to be common amongst adolescents, with potentially severe consequences in terms of school attendance and daytime functioning. The most common treatment approaches for DSPD are based on the administration of bright light and/or exogenous melatonin with or without adjunct behavioural instructions. Much is generally known about the chronobiological effects of light and melatonin. However, placebo-controlled treatment studies for DSPD are scarce, in particular in adolescents and young adults, and no standardized guidelines exist regarding treatment. The aim of the present study was, therefore, to investigate the short- and long-term effects on sleep of a DSPD treatment protocol involving administration of timed bright light and melatonin alongside gradual advancement of rise time in adolescents and young adults with DSPD in a randomized controlled trial and an open label follow-up study. A total of 40 adolescents and young adults (age range 16-25 years) diagnosed with DSPD were recruited to participate in the study. The participants were randomized to receive treatment for two weeks in one of four treatment conditions: dim light and placebo capsules, bright light and placebo capsules, dim light and melatonin capsules or bright light and melatonin capsules. In a follow-up study, participants were re-randomized to either receive treatment with the combination of bright light and melatonin or no treatment in an open label trial for approximately three months. Light and capsules were administered alongside gradual advancement of rise times. The main end points were sleep as assessed by sleep diaries and actigraphy recordings and circadian phase as assessed by salivary dim light melatonin onset (DLMO). During the two-week intervention, the timing of sleep and DLMO was advanced in all treatment conditions as seen by about 1 h advance of bed time, 2 h advance of rise time and 2 h advance of DLMO in all four groups. Sleep duration was reduced with approximately 1 h. At three-month follow-up, only the treatment group had maintained an advanced sleep phase. Sleep duration had returned to baseline levels in both groups. In conclusion, gradual advancement of rise time produced a phase advance during the two-week intervention, irrespective of treatment condition. Termination of treatment caused relapse into delayed sleep times, whereas long-term treatment with bright light and melatonin (three months) allowed maintenance of the advanced sleep phase.
Collapse
Affiliation(s)
- Ingvild West Saxvig
- Department of Global Public Health and Primary Care, University of Bergen , Bergen , Norway
| | | | | | | | | | | |
Collapse
|
48
|
Alvarez AA, Wildsoet CF. Quantifying light exposure patterns in young adult students. JOURNAL OF MODERN OPTICS 2013; 60:1200-1208. [PMID: 25342873 PMCID: PMC4204734 DOI: 10.1080/09500340.2013.845700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Exposure to bright light appears to be protective against myopia in both animals (chicks, monkeys) and children, but quantitative data on human light exposure are limited. In this study, we report on a technique for quantifying light exposure using wearable sensors. Twenty-seven young adult subjects wore a light sensor continuously for two weeks during one of three seasons, and also completed questionnaires about their visual activities. Light data were analyzed with respect to refractive error and season, and the objective sensor data were compared with subjects' estimates of time spent indoors and outdoors. Subjects' estimates of time spent indoors and outdoors were in poor agreement with durations reported by the sensor data. The results of questionnaire-based studies of light exposure should thus be interpreted with caution. The role of light in refractive error development should be investigated using multiple methods such as sensors to complement questionnaires.
Collapse
Affiliation(s)
- Amanda A. Alvarez
- Vision Science Graduate Group, School of Optometry, University of
California, Berkeley 588 Minor Hall, Berkeley, CA 94720-2020, USA
| | - Christine F. Wildsoet
- Vision Science Graduate Group, School of Optometry, University of
California, Berkeley 588 Minor Hall, Berkeley, CA 94720-2020, USA
| |
Collapse
|
49
|
Martinez-Nicolas A, Ortiz-Tudela E, Rol MA, Madrid JA. Uncovering different masking factors on wrist skin temperature rhythm in free-living subjects. PLoS One 2013; 8:e61142. [PMID: 23577201 PMCID: PMC3618177 DOI: 10.1371/journal.pone.0061142] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/06/2013] [Indexed: 11/21/2022] Open
Abstract
Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18–24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a “constant routine” protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.
Collapse
Affiliation(s)
- Antonio Martinez-Nicolas
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Murcia, Spain
| | - Elisabet Ortiz-Tudela
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Murcia, Spain
| | - Maria Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Murcia, Spain
- * E-mail:
| | - Juan Antonio Madrid
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
50
|
Leach G, Adidharma W, Yan L. Depression-like responses induced by daytime light deficiency in the diurnal grass rat (Arvicanthis niloticus). PLoS One 2013; 8:e57115. [PMID: 23437327 PMCID: PMC3577787 DOI: 10.1371/journal.pone.0057115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/18/2013] [Indexed: 01/12/2023] Open
Abstract
Seasonal Affective Disorder (SAD) is one of the most common mood disorders with depressive symptoms recurring in winter when there is less sunlight. The fact that light is the most salient factor entraining circadian rhythms leads to the phase-shifting hypothesis, which suggests that the depressive episodes of SAD are caused by misalignments between the circadian rhythms and the habitual sleep times. However, how changes in environmental lighting conditions lead to the fluctuations in mood is largely unknown. The objective of this study is to develop an animal model for some of the features/symptoms of SAD using the diurnal grass rats Arvichantis niloticus and to explore the neural mechanisms underlying the light associated mood changes. Animals were housed in either a 12∶12 hr bright light∶dark (1000lux, BLD) or dim light∶dark (50lux, DLD) condition. The depression-like behaviors were assessed by sweet-taste Saccharin solution preference (SSP) and forced swimming test (FST). Animals in the DLD group showed higher levels of depression-like behaviors compared to those in BLD. The anxiety-like behaviors were assessed in open field and light/dark box test, however no significant differences were observed between the two groups. The involvement of the circadian system on depression-like behaviors was investigated as well. Analysis of locomotor activity revealed no major differences in daily rhythms that could possibly contribute to the depression-like behaviors. To explore the neural substrates associated with the depression-like behaviors, the brain tissues from these animals were analyzed using immunocytochemistry. Attenuated indices of 5-HT signaling were observed in DLD compared to the BLD group. The results lay the groundwork for establishing a novel animal model and a novel experimental paradigm for SAD. The results also provide insights into the neural mechanisms underlying light-dependent mood changes.
Collapse
Affiliation(s)
- Greg Leach
- Department of Psychology, Michigan State University, East Lansing, Michigan, United States of America
| | - Widya Adidharma
- Department of Psychology, Michigan State University, East Lansing, Michigan, United States of America
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program. Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|