1
|
Hsieh CY, Tsai TF. Guselkumab: a safe treatment option for patients with comorbid psoriasis and multiple sclerosis. Ital J Dermatol Venerol 2025; 160:192-193. [PMID: 40248968 DOI: 10.23736/s2784-8671.25.08167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Affiliation(s)
- Chang-Yu Hsieh
- Department of Dermatology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan (ROC)
| | - Tsen-Fang Tsai
- Department of Dermatology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan (ROC) -
| |
Collapse
|
2
|
Mado H, Stasiniewicz A, Adamczyk-Sowa M, Sowa P. Selected Interleukins Relevant to Multiple Sclerosis: New Directions, Potential Targets and Therapeutic Perspectives. Int J Mol Sci 2024; 25:10931. [PMID: 39456713 PMCID: PMC11506881 DOI: 10.3390/ijms252010931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that progresses with demyelination and neurodegeneration. To date, many studies have revealed the key role of interleukins in the pathogenesis of MS, but their impact has not been fully explained. The aim of the present study was to collect and review the results obtained so far regarding the influence of interleukins on the development and course of MS and to assess the potential for their further use. Through the platform "PubMed", terms related to interleukins and MS were searched. The following interval was set as the time criterion: 2014-2024. A total of 12,731 articles were found, and 100 papers were subsequently used. Cells that produce IL-10 have a neuroprotective effect, whereas those that synthesize IL-6 most likely exacerbate neuroinflammation. IL-12, IL-23 and IL-18 represent pro-inflammatory cytokines. It was found that treatment with an anti-IL-12p40 monoclonal antibody in a study group of MS patients showed a beneficial effect. IL-4 is a pleiotropic cytokine that plays a significant role in type 2 immune responses and inhibits MS progression. IL-13 is an anti-inflammatory cytokine through which the processes of oligodendrogenesis and remyelination occur more efficiently. The group of interleukins discussed in our paper may represent a promising starting point for further research aimed at finding new therapies and prognostic markers for MS.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Artur Stasiniewicz
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Lis M, Niedziela N, Adamczyk-Zostawa J, Wierzbicki K, Czuba Z, Zalejska-Fiolka J, Bartman W, Świętek A, Adamczyk-Sowa M. Can Vitamin D Supplementation Improve Inflammation in Relapsing-Remitting Multiple Sclerosis Patients? Biomedicines 2024; 12:1580. [PMID: 39062153 PMCID: PMC11274703 DOI: 10.3390/biomedicines12071580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Studies indicate that vitamin D (VitD) may reduce inflammation in multiple sclerosis (MS). The aim of the study was to assess the effect of supplementation with different doses of VitD on inflammation in relapsing-remitting MS (RRMS) patients. (2) Methods: The effect of 6-month supplementation with different doses of oral VitD (2000 IU/day) in a high-dose group (HD, n = 23) and a low-dose group (15,960 IU/month) (LD, n = 29) on selected markers of inflammation was assessed in 52 RRMS patients. (3) Results: Females constituted the majority of participants (63.46%). The median age [years] was 39.5 [34.5-49.8] and 47 [40.0-55.0] in the HD and LD groups, respectively. Significant differences were observed in age (p = 0.028), body weight (p = 0.014) and height (p = 0.001) between the study groups. Considering the BMI, statistically significant differences were not found (p = 0.496). The median 25(OH)D concentration [ng/mL] increased from 23.023 [15.578-25.76] in the HD group and 28.318 [20.644-32.232] in the LD group to 29.819 [24.937-38.064] and 30.837 [25.382-36.789], respectively (p < 0.01), and the increase was significantly higher in the HD group (p = 0.01). Hypovitaminosis D was found in most patients (71.2%) initially, and serum VitD levels were still <30.0 ng/mL in 46.2% of the participants at the follow-up. A significant increase in the levels of IL-4, IL-6, IL-17A, IL-22, IL-23 and TNF -α [pg/mL] and a decrease in IL-10 levels were reported during the study (p < 0.01). A significant positive correlation was observed between 25(OH)D serum levels and sCD40L (R = 0.33; p < 0.05) and TNF-α (R = 0.28; p < 0.05), and a significant negative correlation was reported between 25(OH)D and IL-23 (R = -0.32; p < 0.01) at the beginning of the study. (4) Conclusions: In RRMS patients, the doses of VitD were probably too low to induce beneficial effects on inflammation. Further studies are warranted to determine the effect of VitD supplementation on inflammatory markers in MS patients.
Collapse
Affiliation(s)
- Martyna Lis
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Jowita Adamczyk-Zostawa
- Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Krzysztof Wierzbicki
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Bartman
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| | - Agata Świętek
- Silesia LabMed Research and Implementation Center, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland;
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (M.A.-S.)
| |
Collapse
|
4
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
5
|
Central role of B cells in interleukin-23 dependent neuroinflammation in the GF-IL23 model. Neuroreport 2022; 33:577-582. [DOI: 10.1097/wnr.0000000000001818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zoubiri H, Tahar A, AitAbderrhmane S, Saidani M, Koceir EA. Oral Cholecalciferol Supplementation in Sahara Black People with Chronic Kidney Disease Modulates Cytokine Storm, Oxidative Stress Damage and Athero-Thromboembolic Risk. Nutrients 2022; 14:nu14112285. [PMID: 35684085 PMCID: PMC9182799 DOI: 10.3390/nu14112285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 25-hydroxyvitamin D3 (25OHD3) deficiency in chronic kidney disease (CKD) is associated with immune system dysfunction (pro-inflammatory cytokines storm) through macrophages renal infiltration, oxidative stress (OxS) damage and athero-thromboembolic risk. Conversely, cholecalciferol supplementation (25OHD-S) prevents kidney fibrosis by inhibition of vascular calcification and nephrotic apoptosis (nephrons reduction). The objective of this study was to investigate the pleiotropic effects of 25OHD-S on immunomodulation, antioxidant status and in protecting against thromboembolic events in deficiency CKD Black and White individuals living in the Southern Sahara (SS). The oral 25OHD-S was evaluated in 60,000 IU/month/36 weeks versus in 2000 IU/day/24 weeks in Black (n = 156) and White (n = 150). Total serum vitamin D was determined by liquid chromatography-tandem mass spectrometry. All biomarkers of pro-inflammatory cytokines (PIC) were assessed by ELISA tests. OxS markers were assessed by Randox kits. Homocysteine and lipoproteine (a) were evaluated by biochemical methods as biomarkers of atherothromboembolic risk. All statistical analyses were performed with Student’s t-test and one-way ANOVA. The Pearson test was used to calculate the correlation coefficient. The means will be significantly different at a level of p value < 0.05. Multiple logistic regressions were performed using Epi-info and Statview software. Vitamin D deficiency alters the PIC profile, OxS damage and atherothrombogenic biomarkers in both SS groups in the same manner; however, these disorders are more acute in Black compared to White SS individuals. The results showed that the serum 25OHD3 concentrations became normal (>75 nmol/L or >30 ng/mL) in the two groups. We have shown that the dose and duration of 25OHD-S treatment are not similar in Black SS residents compared to White SS subjects, whilst the same inhabit the south Sahara environment. It appears that a high dose intermittent over a long period (D60: 36 weeks) was more efficient in Black people; while a lower dose for a short time is sufficient (D2: 24 weeks) in their White counterparts. The oral 25OHD-S attenuates PIC overproduction and OxS damage, but does not reduce athero-thromboembolic risk, particularly in Black SS residents.
Collapse
Affiliation(s)
- Houda Zoubiri
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Biology and Physiology Laboratory, Ecole Nationale Supérieure de Kouba, Algiers 16308, Algeria
| | - Amina Tahar
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
| | | | - Messaoud Saidani
- Clinical Nephrology Exploration Dialysis and Kidney Transplantation Unit, University Hospital Center of Beni Messous, Algiers 16014, Algeria;
| | - Elhadj-Ahmed Koceir
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Correspondence: ; Tel.: +213-6-66-74-27-70; Fax: +213-(0)21-24-72-17
| |
Collapse
|
7
|
Gezmis H, Doran T, Mayda Domac F, Yucel D, Karaci R, Kirac D. CD4+ and CD25+ T-cell response to short-time interferon-beta therapy on IL10, IL23A and FOXP3 genes in multiple sclerosis patients. Int J Clin Pract 2021; 75:e14238. [PMID: 33884734 DOI: 10.1111/ijcp.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
AIM OF THE STUDY Interferon-beta (IFN-β), multiple sclerosis (MS) drug for years, does not have therapeutic effects on each patient. Yet, a considerable portion has experienced no therapeutic response to IFN-β. Therefore, it is necessary to determine disease-specific biomarkers that affect drug response. Here, we aimed to determine the effects of interleukin 10 (IL10) and 23 (IL23A), as well as forkhead box P3 (FOXP3) genes on MS after IFN-β therapy. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) of 42 MS patients were isolated to obtain CD4+ and CD25+ T cells. Both cell types were characterised by flow cytometry. To determine optimum drug concentration of IFN-β, cytotoxicity assays were assessed on each cell type for 4, 16, 24 and 48 hours respectively. Then, cells were cultured in the presence of 500 IU/mL of IFN-β. cDNA synthesis was performed after mRNA extraction. RT-PCR was performed to measure gene expressions of IL10, IL23A and FOXP3. Results were evaluated statistically. RESULTS It was found that the cytotoxic effect of IFN-β was more efficient as the exposure time was expanded regardless of drug concentration. Moreover, CD25+ T lymphocytes were more resistant to IFN-β. IL23A was down-regulated, whereas FOXP3 was up-regulated at 48 hours in CD4+ T cells. For CD25+ T cells, the graded increase in FOXP3 was obtained while IL10 expression was gradually decreased throughout the drug intake. CONCLUSION Although a considerable change in expression was obtained, the long-term IFN-β effect on both genes and cells should be determined by follow-up at least a year.
Collapse
Affiliation(s)
- Hazal Gezmis
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Materials, University of Oxford, Oxfordshire, OX1 3PH, UK
| | - Tansu Doran
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fusun Mayda Domac
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Yucel
- Department of Histology and Embryology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Rahsan Karaci
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
8
|
Nitsch L, Petzinna S, Zimmermann J, Schneider L, Krauthausen M, Heneka MT, Getts DR, Becker A, Müller M. Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model. J Neuroinflammation 2021; 18:101. [PMID: 33906683 PMCID: PMC8080359 DOI: 10.1186/s12974-021-02140-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin 23 is a critical cytokine in the pathogenesis of multiple sclerosis. But the local impact of interleukin 23 on the course of neuroinflammation is still not well defined. To further characterize the effect of interleukin 23 on CNS inflammation, we recently described a transgenic mouse model with astrocyte-specific expression of interleukin 23 (GF-IL23 mice). The GF-IL23 mice spontaneously develop a progressive ataxic phenotype with cerebellar tissue destruction and inflammatory infiltrates with high amounts of B cells most prominent in the subarachnoid and perivascular space. METHODS To further elucidate the local impact of the CNS-specific interleukin 23 synthesis in autoimmune neuroinflammation, we induced a MOG35-55 experimental autoimmune encephalomyelitis (EAE) in GF-IL23 mice and WT mice and analyzed the mice by histology, flow cytometry, and transcriptome analysis. RESULTS We were able to demonstrate that local interleukin 23 production in the CNS leads to aggravation and chronification of the EAE course with a severe paraparesis and an ataxic phenotype. Moreover, enhanced multilocular neuroinflammation was present not only in the spinal cord, but also in the forebrain, brainstem, and predominantly in the cerebellum accompanied by persisting demyelination. Thereby, interleukin 23 creates a pronounced proinflammatory response with accumulation of leukocytes, in particular B cells, CD4+ cells, but also γδ T cells and activated microglia/macrophages. Furthermore, transcriptome analysis revealed an enhanced proinflammatory cytokine milieu with upregulation of lymphocyte activation markers, co-stimulatory markers, chemokines, and components of the complement system. CONCLUSION Taken together, the GF-IL23 model allowed a further breakdown of the different mechanisms how IL-23 drives neuroinflammation in the EAE model and proved to be a useful tool to further dissect the impact of interleukin 23 on neuroinflammatory models.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.
| | - Simon Petzinna
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Linda Schneider
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.,Department of Surgery, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Marius Krauthausen
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Albert Becker
- Department of Neuropathology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Marcus Müller
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.,School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Nitsch L, Schneider L, Zimmermann J, Müller M. Microglia-Derived Interleukin 23: A Crucial Cytokine in Alzheimer's Disease? Front Neurol 2021; 12:639353. [PMID: 33897596 PMCID: PMC8058463 DOI: 10.3389/fneur.2021.639353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, amyloid β plaque formation and development of neurofibrillary tangles are among the characteristics of Alzheimer's disease (AD). In addition to neurodegeneration, inflammatory processes such as activation of microglia and astrocytes are crucial in the pathogenesis and progression of AD. Cytokines are essential immune mediators of the immune response in AD. Recent data suggest a role of interleukin 23 (IL-23) and its p40 subunit in the pathogenesis of AD and corresponding animal models, in particular concerning microglia activation and amyloid β plaque formation. Moreover, in animal models, the injection of anti-p40 antibodies resulted in reduced amyloid β plaque formation and improved cognitive performance. Here, we discuss the pathomechanism of IL-23 mediated inflammation and its role in AD.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Sales MC, Kasahara TM, Sacramento PM, Rossi ÁD, Cafasso MOS, Oyamada HA, Hygino J, Alvim F, Andrade RM, Cristina Vasconcelos C, Bento CA. Selective serotonin reuptake inhibitor attenuates the hyperresponsiveness of TLR2 + and TLR4 + Th17/Tc17-like cells in multiple sclerosis patients with major depression. Immunology 2021; 162:290-305. [PMID: 33112414 PMCID: PMC7884649 DOI: 10.1111/imm.13281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated frequency of Th17-like cells expressing Toll-like receptors (TLRs) has been recently associated with relapsing-remitting multiple sclerosis (MS) pathogenesis, a chronic inflammatory demyelinating autoimmune disease of the central nervous system. We aimed to investigate the impact of current major depressive disorder (MDD) on the behaviour of these cells following in vitro stimulation with TLR2, TLR4, TLR5 and TLR9 agonists. Here, the level of both cell proliferation and cytokine production related to Th17/Tc17 phenotypes in response to TLR2 (Pam3C) and TLR4 (LPS) ligands was significantly higher in CD4+ and CD8+ T-cell cultures from MS/MDD patients when compared to non-depressed patients. These cytokine levels were positively associated with neurological disabilities in patients. No difference for responsiveness to TLR5 (flagellin) and TLR9 (ODN) agonists was observed. LPS, but not Pam3C, induced significant IL-10 release, mainly in patients without MDD. Interestingly, more intense expression of TLR2 and TLR4 on these cells was observed in MDD patients. Finally, in vitro addition of serotonin and treatment of MDD patients with selective serotonin reuptake inhibitors (SSRIs) reduced the production of Th17/Tc17-related cytokines by CD4+ and CD8+ T cells in response to Pam3C and LPS. However, only SSRI therapy diminished the frequency and intensity of TLR2 and TLR4 expression on circulating CD4+ and CD8+ T cells. In summary, although preliminary, our findings suggest that adverse events that elevate circulating levels of TLR2 and TLR4 ligands can affect MS pathogenesis, particularly among depressed patients.
Collapse
Affiliation(s)
- Marisa C. Sales
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Taissa M. Kasahara
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Priscila M. Sacramento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Átila D. Rossi
- Department of GeneticsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Marcos Octávio S.D. Cafasso
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Hugo A.A. Oyamada
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Joana Hygino
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in NeurologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Fabianna Alvim
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Regis M. Andrade
- Department of General Medicine DepartmentFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | | | - Cleonice A.M. Bento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in NeurologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Department of General Medicine DepartmentFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
11
|
Shajarian M, Alsahebfosoul F, Etemadifar M. The Effect of IFN-β Treatment on Plasma Levels of BDNF and IL-6 in Relapsing-Remitting Multiple Sclerosis Patients. Neuroimmunomodulation 2021; 28:150-157. [PMID: 34182566 DOI: 10.1159/000515595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In recent investigations addressing neurodegenerative diseases, especially multiple sclerosis (MS), the roles of brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) have been examined. METHODS Forty-five relapsing-remitting MS (RRMS) patients, including 32 IFN-β-treated and 13 newly identified untreated cases as well as 45 sex- and age-matched healthy controls, were recruited in the study. Plasma levels of BDNF and IL-6 were assessed using the ELISA method. Data were analyzed by SPSS (ver.21). RESULTS There were significant differences between the case and healthy control groups in terms of the plasma levels of BDNF (p value = 0.044) and IL-6 (p value <0.001). Besides, the treatment with IFN-β had no significant impact on the level of BDNF or IL-6 in RRMS patients as compared to healthy controls (p value = 0.716 and 0.623 for BDNF and IL-6, respectively). Furthermore, the increase in the plasma levels of BDNF and IL-6 indicated a direct correlation in the case group (r = 0.508, p value = 0.008). In detail, following the classification of the case group into 2 subgroups of IFN-β-treated and untreated patients, a direct positive correlation was observed between the plasma levels of BDNF and IL-6 in IFN-β-treated patients (r = 0.495, p value = 0.026). CONCLUSION The IFN-β treatment seems not to be effective for upregulating BDNF and IL-6 in RRMS patients.
Collapse
Affiliation(s)
- Mansour Shajarian
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
13
|
Yan J, McCombe PA, Pender MP, Greer JM. Reduced IκB-α Protein Levels in Peripheral Blood Cells of Patients with Multiple Sclerosis-A Possible Cause of Constitutive NF-κB Activation. J Clin Med 2020; 9:jcm9082534. [PMID: 32781504 PMCID: PMC7465818 DOI: 10.3390/jcm9082534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
NF-κB signaling pathways are dysregulated in both the central nervous system (CNS) and peripheral blood cells in multiple sclerosis (MS), but the cause of this is unknown. We have recently reported that peripheral blood mononuclear cells (PBMC) of patients with MS have increased constitutive activation and translocation of the transcription factor NF-κB to the nucleus compared to healthy subjects. NF-κB can be activated through either canonical or non-canonical pathways. In the canonical pathway, activation of NF-κB is normally negatively regulated by the inhibitor IκB. We therefore hypothesized that the increased activation of NF-κB could be caused by reduced IκB-α in the cells of patients with MS, possibly due to increased activity of the IκB kinase (IKK) complex, which regulates IκB-α. Alternatively, changes to the activity of key molecules in the non-canonical pathway, such as IKKα, could also lead to increased NF-κB activation. We therefore used Western blotting to detect IκB-α levels and ELISA to investigate NF-κB DNA binding activity and phosphorylation of IKKα and IKKβ in samples from PBMC of MS patients and controls. The level of full-length IκB-α protein in the cytosolic fraction of PBMC of MS patients was significantly reduced compared to healthy subjects, with significantly more evidence of multiple low molecular weight putative degradation products of IκB-α present in MS patients compared to healthy subjects. Conversely, the level of NF-κB DNA binding activity was increased in whole cell lysates from MS patients. Both IKKα and IKKβ showed increased overall activity in MS compared to healthy subjects, although not all of the MS patients showed increased activity compared to the healthy subjects, suggesting that there may be several different mechanisms underlying the constitutive activation of NF-κB in MS. Taken together, these findings suggest that there may be multiple points at which the NF-κB pathway is dysregulated in MS and that decreased levels of the full-length IκB-α protein are a major component in this.
Collapse
Affiliation(s)
- Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia; (J.Y.); (P.A.M.)
| | - Pamela A. McCombe
- UQ Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia; (J.Y.); (P.A.M.)
- Wesley Medical Research, The Wesley Hospital, Auchenflower, QLD 4066, Australia
| | - Michael P. Pender
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
- Department of Neurology, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia; (J.Y.); (P.A.M.)
- Wesley Medical Research, The Wesley Hospital, Auchenflower, QLD 4066, Australia
- Correspondence: ; Tel.: +(61)-07-3346-6018
| |
Collapse
|
14
|
Nitsch L, Zimmermann J, Krauthausen M, Hofer MJ, Saggu R, Petzold GC, Heneka MT, Getts DR, Becker A, Campbell IL, Müller M. CNS-Specific Synthesis of Interleukin 23 Induces a Progressive Cerebellar Ataxia and the Accumulation of Both T and B Cells in the Brain: Characterization of a Novel Transgenic Mouse Model. Mol Neurobiol 2019; 56:7977-7993. [PMID: 31154574 DOI: 10.1007/s12035-019-1640-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Interleukin 23 (IL-23) is a key mediator in neuroinflammation in numerous autoimmune diseases including multiple sclerosis (MS). However, the pathophysiology of IL-23 and how it contributes to neuroinflammation is poorly defined. To further clarify the role of IL-23 in CNS inflammation, we generated a transgenic mouse model (GF-IL23) with astrocyte-targeted expression of both IL-23 subunits, IL-23p19, and IL-23p40. These GF-IL23 mice spontaneously develop a progressive ataxic phenotype, which corresponds to cerebellar tissue destruction, and inflammatory infiltrates most prominent in the subarachnoidal and perivascular space. The CNS-cytokine milieu was characterized by numerous inflammatory mediators such as IL-17a and IFNγ. However, the leukocytic infiltrates were surprisingly predominated by B cells. To further examine the impact of the CNS-specific IL-23 synthesis on an additional systemic inflammatory stimulus, we applied the LPS-induced endotoxemia model. Administration of LPS in GF-IL23 mice resulted in early and pronounced microglial activation, enhanced cytokine production and, in sharp contrast to control animals, in the formation of lymphocytic infiltrates. Our model confirms a critical role for IL-23 in the induction of inflammation in the CNS, in particular facilitating the accumulation of lymphocytes in and around the brain. Thereby, CNS-specific synthesis of IL-23 is able to induce a cascade of inflammatory cytokines leading to microglia activation, astrocytosis, and ultimately tissue damage. The presented transgenic model will be a useful tool to further dissect the role of IL-23 in neuroinflammation.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Marius Krauthausen
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Markus J Hofer
- School of Life and Environmental Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Raman Saggu
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, D-53127, Bonn, Germany
| | - Gabor C Petzold
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, D-53127, Bonn, Germany
| | - Michael T Heneka
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
- Clinical Neuroscience Unit, Universitaetsklinikum Bonn, Bonn, Germany
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Albert Becker
- Department of Neuropathology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Iain L Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Marcus Müller
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany.
- School of Molecular Bioscience, University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Miteva L, Trenova A, Slavov G, Stanilova S. IL12B gene polymorphisms have sex-specific effects in relapsing-remitting multiple sclerosis. Acta Neurol Belg 2019; 119:83-93. [PMID: 30554348 DOI: 10.1007/s13760-018-01066-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
IL-12-family cytokines play a pivotal role in neuroinflammation and neurodegeneration in relapsing-remitting multiple sclerosis (RRMS). The aim of the study was to evaluate whether two polymorphisms in IL12B gene, rs17860508 and rs3212227, are associated with RRMS, and to define their function effect on serum level of IL-12p40 and IL-23 and degree of disability in RRMS cases. In total 156 Bulgarian patients with Expanded Disability Status Scale score ranging from 1.0 to 3.5 in remission of the disease and 379 controls were genotyped by polymerase chain reaction-based methods. The IL-12p40 and IL-23 serum levels were determined by enzyme-linked immunosorbent assay. We have found substantially higher IL-12p40 and IL-23 serum levels in cases than in controls (p < 0.01) in a sex-dependent manner. Women with RRMS had significantly higher IL-12р40 and IL-23 than men. Gender-stratified association analyses showed a significant impact of rs3212227 polymorphism on RRMS susceptibility in men. The carriers of rs3212227*CC-genotype (OR 3.390, 95% CI 1.007-11.545, p = 0.023) and haplotype rs17860508*2-allele/rs3212227*C-allele (OR 3.740; 95% CI 1.36-10.32, p = 0.007), showed higher risk of RRMS in men, in contrast to women. In women, both IL12B polymorphisms influencing the course, rather than genetic predisposition of RRMS. The rs17860508*22-genotype was associated with significantly lower disability (OR 0.208; 95% CI 0.055-0.725; pc = 0.01) and lower IL-23 serum levels (p = 0.0345), while rs3212227*AA-genotype was associated with early onset of the disease (OR 2.368; 95% CI 1.007-5.608; p = 0.03). Our results suggest that sex-specific effects of IL12B polymorphisms, rs17860508 and rs3212227, on genetic predisposition and disease course of RRMS, is probably mediated by their gender-dependent functional effect on IL-12p40-containing cytokines.
Collapse
Affiliation(s)
- Lyuba Miteva
- Department of Molecular biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska 11 str, 6000, Stara Zagora, Bulgaria.
| | - Anastasiya Trenova
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Slavov
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Spaska Stanilova
- Department of Molecular biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska 11 str, 6000, Stara Zagora, Bulgaria
| |
Collapse
|
16
|
Göbel K, Ruck T, Meuth SG. Cytokine signaling in multiple sclerosis: Lost in translation. Mult Scler 2018; 24:432-439. [DOI: 10.1177/1352458518763094] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical studies delineate abnormal expression of specific cytokines over the course of disease. Preclinical studies using animal models of MS have yielded promising results in manipulating the activity of certain cytokines to improve the clinical outcome. However, the translation of these findings into the clinic is often disappointing. The reason for this might be the complex nature of cytokine networks and the pathogenesis of neuroinflammation, as well as an oversimplified interpretation of preclinical observations. This review presents an overview on cytokines that potentially contribute to the development of MS and provides examples of success and failure in translating basic science into clinical benefit for people with MS.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology, University of Münster, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Bonin S, Zanotta N, Sartori A, Bratina A, Manganotti P, Trevisan G, Comar M. Cerebrospinal Fluid Cytokine Expression Profile in Multiple Sclerosis and Chronic Inflammatory Demyelinating Polyneuropathy. Immunol Invest 2017; 47:135-145. [DOI: 10.1080/08820139.2017.1405978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Serena Bonin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Nunzia Zanotta
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Arianna Sartori
- Unit of Neurology, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Alessio Bratina
- Unit of Neurology, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Unit of Neurology, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Giusto Trevisan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Unit of Neurology, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Manola Comar
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
18
|
Li YF, Zhang SX, Ma XW, Xue YL, Gao C, Li XY. Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: A meta-analysis. Mult Scler Relat Disord 2017; 18:20-25. [PMID: 29141810 DOI: 10.1016/j.msard.2017.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple reports have described the proportion of Th17 cells in peripheral blood and serum levels of Th17-related cytokines in patients with multiple sclerosis (MS). To clarify the status of Th17 cells and Th17-related cytokines in MS patients, we did a meta-analysis of the results published previously to assess the levels of peripheral Th17 cells and serum Th17-related cytokines in patients with MS. METHODS We searched Embase, PubMed, Cochrane, Web of Knowledge, FDA.gov, and Clinical Trials.gov systematically for studies reporting the proportion of Th17 cells and the serum levels of Th17-related cytokines (IL-17, IL23) in MS patients. Our main endpoints were the proportion of Th17 cells among CD4+ T cells in peripheral blood (PB), serum IL-17 levels, and serum IL-23 levels. We assessed pooled data by using a random-effects model. It has been registered at International Prospective Register of Systematic Reviews (PROSPERO) (number CRD42017059113). RESULTS Of 560 identified studies, a total of 12 studies were selected in our analysis. Compared with control subjects, MS patients had a higher proportion of Th17 cells [1.37, (0.53, 2.21)] in PB, an elevated levels of serum IL-17 [2.48, (1.25, 3.71)] and an increased IL-23 levels in serum [2.29, (0.58, 4.00)]. CONCLUSION Under random effect model of meta-analysis, the data showed that the proportion of Th17 cells in PB and levels of serum IL-17 and IL-23 increased among MS patients compared to control subjects. This result demonstrated that Th17 cells and Th17-related cytokines may be involved in the pathogenic mechanisms of MS.
Collapse
Affiliation(s)
- Yu-Feng Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng street, Taiyuan, Shanxi 030024, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Xiao-Wen Ma
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Yu-Long Xue
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng street, Taiyuan, Shanxi 030024, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xin-Yi Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng street, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
19
|
Alsahebfosoul F, Rahimmanesh I, Shajarian M, Etemadifar M, Sedaghat N, Hejazi Z, Naderi S. Interleukin-33 plasma levels in patients with relapsing-remitting multiple sclerosis. Biomol Concepts 2017; 8:55-60. [PMID: 28107165 DOI: 10.1515/bmc-2016-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/25/2016] [Indexed: 02/08/2023] Open
Abstract
Cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS). Interleukin (IL)-33, one of the recently discovered members of the IL-1 superfamily, is a dual functional cytokine involved in various autoimmune disorders. In a case-control study, venous blood was collected from healthy subjects categorized as control group (n=44) and MS patients (n=44). All recruited patients were clinically diagnosed with relapsing-remitting MS (RRMS), including patients without treatment (new identified cases, n=16) and those treated with interferon beta (IFN-β) (n=28). The plasma levels of IL-33 in subjects were measured with ELISA. Significantly elevated IL-33 plasma levels were observed in RRMS patients (p=0.005). Furthermore, IFN-β-treated MS patients had lower levels of IL-33 compared to the untreated patients (p<0.001). Increased IL-33 plasma levels in the patient group might be associated with development of MS. These results could contribute to our better understanding about the role of IL-33 in the immunopathogenesis of MS.
Collapse
Affiliation(s)
- Fereshteh Alsahebfosoul
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Departments of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Shajarian
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Sedaghat
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hejazi
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Departments of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Isfahan Research Center of Multiple Sclerosis, Isfahan, Iran.,Departments of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Salehi Z, Doosti R, Beheshti M, Janzamin E, Sahraian MA, Izad M. Differential Frequency of CD8+ T Cell Subsets in Multiple Sclerosis Patients with Various Clinical Patterns. PLoS One 2016; 11:e0159565. [PMID: 27467597 PMCID: PMC4965085 DOI: 10.1371/journal.pone.0159565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/04/2016] [Indexed: 12/05/2022] Open
Abstract
Recent evidence points to a pathogenic role for CD8+ cytotoxic T (Tc) cells in Multiple sclerosis (MS). Based on cytokine profile, Tc cells can be divided into different subsets: IFN-γ (Tc1), IL-4 (Tc2), IL-10 (Tc10), IL-17 (Tc17), IL-21 (Tc21), IL-22 (Tc22) and TNF-α producing cells. In this study we evaluated the frequency of Tc cell subsets and the serum level of Tc17 differentiation cytokines in MS patients with different clinical patterns. We analyzed Tc cell subsets percentage in peripheral blood of relapsing-remitting (RRMS) (n = 28), secondary-progressive (SPMS) (n = 10) and primary-progressive (PPMS) (n = 4) MS patients in comparison to healthy controls (n = 15) using flow cytometry. Serum level of TGF-β, IL-6 and IL-23 were measured by ELISA. We showed elevated levels of Tc1 and Tc17 cells in SPMS and RRMS patients in relapse phase, respectively (P = 0.04). Interestingly, the percentage of TNF-α producing CD8+ T cells in relapse and remission phase of RRMS and SPMS patients were higher than controls (P = 0.01, P = 0.004, P = 0.01, respectively) and Tc21 increased in remission phase of RRMS compared to SPMS (P = 0.03). We also found higher frequency of CD8+ IFN-γ+ TNF-α+ IL-17+ T cells in relapse phase of RRMS compared to remission phase, SPMS patients and controls (P = 0.01, P = 0.004 and P = 0.02, respectively). TGF- β increased in sera of RRMS patients in remission phase (P = 0.03) and SPMS (P = 0.05) compared to healthy subjects. Increased level of Tc17 and CD8+ IFN-γ+ TNF-α+ IL-17+ T cells in relapse phase highlights the critical role of IL-17 in RRMS pathogenesis.
Collapse
Affiliation(s)
- Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Doosti
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beheshti
- Pathophysiology laboratory, Sina hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Janzamin
- Flow Cytometry laboratory, Department of Stem Cell and Developmental Biology, Royan Institute, Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MI); (M-AS)
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (MI); (M-AS)
| |
Collapse
|
21
|
Rahimi Z, Abdan Z, Rahimi Z, Razazian N, Shiri H, Vaisi-Raygani A, Shakiba E, Vessal M, Moradi MT. Functional Promoter Polymorphisms of MMP-2 C-735T and MMP-9 C-1562T and Their Synergism with MMP-7 A-181G in Multiple Sclerosis. Immunol Invest 2016; 45:543-52. [DOI: 10.1080/08820139.2016.1180303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ziba Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Razazian
- Department of Neurology, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Shiri
- Department of Biochemistry, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Shakiba
- Department of Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Vessal
- Department of Biochemistry, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Mohammad-Taher Moradi
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Naderi S, Hejazi Z, Shajarian M, Alsahebfosoul F, Etemadifar M, Sedaghat N. IL-27 plasma level in relapsing remitting multiple sclerosis subjects: The double-faced cytokine. J Immunoassay Immunochem 2016; 37:659-70. [DOI: 10.1080/15321819.2016.1195746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
De Mercanti S, Rolla S, Cucci A, Bardina V, Cocco E, Vladic A, Soldo-Butkovic S, Habek M, Adamec I, Horakova D, Annovazzi P, Novelli F, Durelli L, Clerico M. Alemtuzumab long-term immunologic effect: Treg suppressor function increases up to 24 months. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e194. [PMID: 26819963 PMCID: PMC4723135 DOI: 10.1212/nxi.0000000000000194] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To analyze changes in T-helper (Th) subsets, T-regulatory (Treg) cell percentages and function, and mRNA levels of immunologically relevant molecules during a 24-month follow-up after alemtuzumab treatment in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS Multicenter follow-up of 29 alemtuzumab-treated patients with RRMS in the Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis (CARE-MS) I and CARE-MS II trials. Peripheral blood (PB) samples were obtained at months 0, 6, 12, 18, and 24. We evaluated (1) mRNA levels of 26 immunologic molecules (cytokines, chemokines, chemokine receptors, and transcriptional factors); (2) Th1, Th17, and Treg cell percentages; and (3) myelin basic protein (MBP)-specific Treg suppressor activity. RESULTS We observed 12 relapses in 9 patients. mRNA levels of the anti-inflammatory cytokines interleukin (IL)-10, IL-27, and transforming growth factor-β persistently increased whereas those of proinflammatory molecules related to the Th1 or Th17 subsets persistently decreased after alemtuzumab administration throughout the follow-up period. PB CD4+ cell percentage remained significantly lower than baseline while that of Th1 and Th17 cells did not significantly change. A significant increase in Treg cell percentage was observed at month 24 and was accompanied by an increase in Treg cell suppressive activity against MBP-specific Th1 and Th17 cells. CONCLUSIONS The long-lasting therapeutic benefit of alemtuzumab in RRMS may involve a shift in the cytokine balance towards inhibition of inflammation associated with a reconstitution of the PB CD4+ T-cell subsets that includes expansion of Treg cells with increased suppressive function.
Collapse
Affiliation(s)
- Stefania De Mercanti
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Simona Rolla
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Angele Cucci
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Valentina Bardina
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Eleonora Cocco
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Anton Vladic
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Silva Soldo-Butkovic
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Mario Habek
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Ivan Adamec
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Dana Horakova
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Pietro Annovazzi
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Francesco Novelli
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Luca Durelli
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| | - Marinella Clerico
- Division of Neurology (S.D.M., S.R., A.C., L.D., M.C.) and the Department of Clinical and Biological Sciences (S.D.M., A.C., L.D., M.C.), University of Torino, San Luigi Gonzaga University Hospital, Orbassano; Center for Experimental Research and Medical Studies (CERMS) (S.R., V.B., F.N.), Azienda Ospedaliera Città della Salute e della Scienza di Torino; Department of Molecular Biotechnology and Health Sciences (V.B., F.N.), Università degli Studi di Torino; Multiple Sclerosis Center (E.C.), Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Italy; Department of Neurology (A.V., S.S.-B.), Clinical Hospital Sveti Duh Zagreb; Medical Faculty University (A.V., S.S.-B.), J.J. Strossmayer Osijek; Department of Neurology (M.H., I.A.), Referral Center for Demyelinating Diseases of the Central Nervous System, University Hospital Center Zagreb, Croatia; Department of Neurology and Center of Clinical Neuroscience (D.H.), Charles University in Prague, First Faculty of Medicine and General University Hospital, Czech Republic; and Multiple Sclerosis Study Center (P.A.), AO S. Antonio Abate, Gallarate (VA), Italy
| |
Collapse
|
24
|
Use of the VH6-1 gene segment to code for anti-interleukin-18 autoantibodies in multiple sclerosis. Immunogenetics 2016; 68:237-46. [PMID: 26743536 DOI: 10.1007/s00251-015-0895-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
We investigated whether levels and repertoires of anti-interleukin-18 (IL-18) autoantibodies (auto-Abs) differ in multiple sclerosis (MS) patients and healthy donors (HDs). IL-18 concentration in MS patients' sera was higher than in HD, but the level of anti-IL-18 auto-Abs was lower in MS patients. Correlation patterns of IL-18/anti-IL-18 auto-Abs system differed in HD and MS patients, so we have compared segment composition of the anti-IL-18 single-chain variable fragments (scFvs) selected from MS and naïve phage display libraries. Considerable differences between anti-IL-18 auto-Abs of these libraries were found. MS panel contained auto-Abs displaying both signs of "fetal" and somatically hypermutated repertoires. Naïve panel mainly contained the naïve antibodies. These variations from the norm are possible results of abnormal regulation of the repertoire perhaps determined by remodeling of the molecular mechanisms involved in the V(D)J recombination and/or abnormal selection by antigen in MS pathogenesis.
Collapse
|