1
|
Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. Nat Commun 2019; 10:4402. [PMID: 31562306 PMCID: PMC6765001 DOI: 10.1038/s41467-019-11879-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
T lymphocytes must be produced throughout life, yet the thymus, where T lymphocytes are made, exhibits accelerated atrophy with age. Even in advanced atrophy, however, the thymus remains plastic, and can be regenerated by appropriate stimuli. Logically, thymic atrophy is thought to reflect senescent cell death, while regeneration requires proliferation of stem or progenitor cells, although evidence is scarce. Here we use conditional reporters to show that accelerated thymic atrophy reflects contraction of complex cell projections unique to cortical epithelial cells, while regeneration requires their regrowth. Both atrophy and regeneration are independent of changes in epithelial cell number, suggesting that the size of the thymus is regulated primarily by rate-limiting morphological changes in cortical stroma, rather than by their cell death or proliferation. Our data also suggest that cortical epithelial morphology is under the control of medullary stromal signals, revealing a previously unrecognized endocrine-paracrine signaling axis in the thymus.
Collapse
|
2
|
Qu W, Zhao WH, Wen X, Yan HY, Liu HX, Hou LF, Ping J. Prenatal nicotine exposure induces thymic hypoplasia in mice offspring from neonatal to adulthood. Toxicol Lett 2018; 304:30-38. [PMID: 30605750 DOI: 10.1016/j.toxlet.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
Clinical study showed that smoking during pregnancy deceased the thymus size in newborns. However, the long-term effect remains unclear. This study was aimed to observe the effects of prenatal nicotine exposure (PNE) on the development of thymus and the T-lymphocyte subpopulation in mice offspring from the neonatal to adulthood. Both the thymus weight and cytometry data indicated that PNE caused persistent thymic hypoplasia in male offspring from neonatal to adult period and transient changes in female offspring from neonatal to prepuberal period. Flow cytometry analysis disclosed a permanent decreased proportion and number of mature CD4 single-positive (SP) T cells in thymus of both sex. In addition, the PNE male offspring showed a more serious thymus atrophy in the ovalbumin (OVA)-sensitized model. Moreover, increased autophagic vacuole and elevated mRNA expression of Beclin 1 were noted in PNE fetal thymus. In conclusion, PNE offspring showed thymus atrophy and CD 4 SP T cell reduction at different life stages. Mechanically, PNE induced excessive autophagy in fetal thymocytes might be involved in these changes. All the results provided evidence for elucidating the PNE-induced programmed immune diseases.
Collapse
Affiliation(s)
- Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
3
|
Balcan E. Quantitative approach to lectin-based glycoprofiling of thymic tissues in the control- and the dexamethasone-treated mice. Tissue Cell 2016; 48:168-82. [PMID: 27067421 DOI: 10.1016/j.tice.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Dexamethasone (DEX) is the most commonly used synthetic glucocorticoid in treatment of various inflammatory conditions. Here we focused on evaluating the effect of DEX on apoptosis and glycan profile in the mouse thymic tissues. Histological examinations revealed that the DEX treatment cause severe alterations in thymus, such as disruption of thymic capsule, impaired epithelial cell-thymocyte contacts, cellular loss and increased apoptosis. The identification of thymic glycans in the control- and the DEX-treated mice was carried out by using a panel of five plant lectins, Maackia amurensis agglutinin (MAA), peanut agglutinin (PNA), Sambucus nigra agglutinin (SNA), Concanavalin A (ConA) and wheat germ agglutinin (WGA). Lectin histochemistry results showed that glycosylation pattern of thymus changes upon DEX treatment. For further detailed quantitative analyses of the binding intensities for each lectin, histochemical data were scored as high positive (HP), mild positive (MP) and low positive (LP) and differences among signaling densities were investigated. The staining patterns of thymic regions observed with lectin histochemistry suggest that DEX can affect the thymic glycan profile as well as thymocyte apoptosis. These results are consistent with the opinion that not only sialic acid, but also other sugar motifs may be responsible for thymocyte development.
Collapse
Affiliation(s)
- Erdal Balcan
- Celal Bayar University, Faculty of Arts and Science, Department of Biology, Molecular Biology Section, 45047, Muradiye Campus, Manisa, Turkey.
| |
Collapse
|
4
|
Heikenwalder M, Prinz M, Zeller N, Lang KS, Junt T, Rossi S, Tumanov A, Schmidt H, Priller J, Flatz L, Rülicke T, Macpherson AJ, Holländer GA, Nedospasov SA, Aguzzi A. Overexpression of lymphotoxin in T cells induces fulminant thymic involution. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1555-70. [PMID: 18483211 PMCID: PMC2408416 DOI: 10.2353/ajpath.2008.070572] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2008] [Indexed: 01/12/2023]
Abstract
Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Schneider CP, Schwacha MG, Chaudry IH. Influence of gender and age on T-cell responses in a murine model of trauma-hemorrhage: differences between circulating and tissue-fixed cells. J Appl Physiol (1985) 2005; 100:826-33. [PMID: 16282430 DOI: 10.1152/japplphysiol.00898.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical studies indicate that peripheral blood lymphocyte functions are depressed following trauma; however, it is unclear whether tissue-fixed lymphocyte functions are also altered under those conditions. Moreover, the impact of gender and age on peripheral T-cell responses following trauma-hemorrhage (TH) are unknown. To study this, immature (approximately 3 wk of age), mature (approximately 7 wk of age), and aged (approximately 23 mo of age) male and proestrus female C3H/HeN mice were sham operated or subjected to trauma (i.e., midline laparotomy) and hemorrhagic shock (30+/-5 mmHg for 90 min). Twenty-four hours after resuscitation, blood and splenocytes were harvested and T-cell functions assessed. In immature animals, TH induced an enhanced immune response in the splenic compartment and a suppressed response in the peripheral blood mononuclear cells (PBMC) that was independent of gender. Differential responses were observed in cells from mature mice. Splenic responses were enhanced following TH, independent of gender, whereas PBMC displayed gender dimorphism with suppressed proliferation and T-cell helper 1 responses in males but not in females. A similar pattern was observed in cells from aged mice. Splenic T cells from male mice displayed a suppressed CD4-to-CD8 ratio after TH, whereas no such change was observed in cells from proestrus females. In contrast, only PBMC from mature males displayed a suppressed CD4-to-CD8 ratio after TH. Thus gender differences exist in PBMC responses after TH that do not necessarily correlate with changes in the tissue-fixed compartment. Age is also an important factor in the immune responses after TH. In view of this, both gender and age should be taken into consideration in evaluating the immune status and in treatment of TH shock.
Collapse
Affiliation(s)
- Christian P Schneider
- Center for Surgical Research, Department of Surgery, Univ. of Alabama at Birmingham, G 094Volker Hall, 1670 Univ. Blvd., Birmingham, AL 35294-0019, USA
| | | | | |
Collapse
|
6
|
Silva IA, Graber J, Nyland JF, Silbergeld EK. In vitro HgCl2 exposure of immune cells at different stages of maturation: effects on phenotype and function. ENVIRONMENTAL RESEARCH 2005; 98:341-8. [PMID: 15910788 DOI: 10.1016/j.envres.2005.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 05/02/2023]
Abstract
This is the first study to investigate the hypothesis that the immunotoxic effects of inorganic mercury may be modulated by inherent differences in the responsiveness of immune cells related to the age of the donor. We exposed cells from lymph nodes, spleen, and thymus, collected from 7- and 10-day-old CD.1 pups, as well as from adult CD.1 mice, in terms of the effects of mercury in vitro on responses to Con-A stimulation with respect to proliferation, cytokine production, and cell phenotype. The effects of mercury on proliferation were age and organ dependent, while effects on cytokine production were only age dependent. Effects of mercury were observed only on splenocyte T-cell subpopulations and only in cells from 10-day-old pups and from adults. Mercury had no effect on IFN-gamma and IL-4 production by splenocytes from 7-day-old pups, but significantly decreased release of these cytokines by splenocytes from 10-day-old pups and adults. Hg did not affect IL-4 production by lymph node cells or thymocytes. In lymph node cells Hg affected IFN-gamma production only at 7 days. These data indicate that inherent properties of immune cells at different stages of development may influence the response to immunotoxicants.
Collapse
Affiliation(s)
- I A Silva
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Room E6644, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
7
|
Filipov NM, Pinchuk LM, Boyd BL, Crittenden PL. Immunotoxic Effects of Short-term Atrazine Exposure in Young Male C57BL/6 Mice. Toxicol Sci 2005; 86:324-32. [PMID: 15888671 DOI: 10.1093/toxsci/kfi188] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The herbicide atrazine (ATR) is a very widely used pesticide; yet the immunotoxicological potential of ATR has not been studied extensively. Our objective was to examine the effect of ATR on selected immune parameters in juvenile mice. ATR (up to 250 mg/kg) was administered by oral gavage for 14 days to one-month-old male C57BL/6 mice. One day, one week, and seven weeks after the last ATR dose, mice were sacrificed, and blood, spleens, and thymuses were collected and processed for cell counting and flow cytometry. Thymus and spleen weights were decreased by ATR, with the thymus being more sensitive than the spleen; this effect was still present at seven days, but not at seven weeks after the last ATR dose. Similarly, organ cellularity was persistently decreased in the thymus and in the spleen, with the splenic, but not thymic cellularity still being depressed at seven weeks post ATR. Peripheral blood leukocyte counts were not affected by ATR. There were also alterations in the cell phenotypes in that ATR exposure decreased all phenotypes in the thymus, with the number of CD4(+)/CD8(+) being affected the least. At the higher doses, the decreases in the thymic T-cell populations were still present one week after the last ATR dose. In the spleen, the CD8(+) were increased and MHC-II(+) and CD19(+) cells were decreased one day after the last ATR dose. Also, ATR treatment decreased the number of splenic naïve T helper and T cytotoxic cells, whereas it increased the percentage of highly activated cytotoxic/memory T cells. Interestingly, the proportion of mature splenic dendritic cells (DC; CD11c(high)), was also decreased and it persisted for at least one week, suggesting that ATR inhibited DC maturation. In the circulation, ATR exposure decreased CD4(+) lymphocytes at one day, whereas at seven days after the last ATR dose, in addition to the decrease in CD4(+) lymphocytes, the MHC-II(+) cells were also decreased at the 250 mg/kg dose. Thus, ATR exposure appears to be detrimental to the immune system of juvenile mice by decreasing cellularity and affecting lymphocyte distribution, with certain effects persisting long after exposure has been terminated.
Collapse
Affiliation(s)
- Nikolay M Filipov
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100, USA.
| | | | | | | |
Collapse
|
8
|
Domínguez-Gerpe L, Rey-Méndez M. Evolution of the thymus size in response to physiological and random events throughout life. Microsc Res Tech 2003; 62:464-76. [PMID: 14635139 DOI: 10.1002/jemt.10408] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryogenesis and in the early stages of life, the thymus is a crucial organ for the generation of the T cell repertoire. T cells are generated from hematopoietic stem cells already differentiated to precursor T cells in the bone marrow. These cells enter the thymus guided by chemotactic factors secreted by this organ. The complex maturation process takes place that ensures self-tolerance and homeostasis. Thymocytes that show autoreactivity do not leave the thymus, but rather die by apoptosis. The final percentage of mature T cells that survive to migrate from the thymus to the periphery is very low: at most 5%, under optimal conditions. The highest migration occurs in childhood and adulthood, at least in mice and humans; however, it declines throughout life and is minimal in the elderly. Under normal circumstances, the thymus commences involution soon after birth, and this involution correlates with the capacity to export mature T cells to the periphery. Hormones, cytokines, and neurotransmitters all play a role in this age-associated process, but the reasons for and mechanisms of this involution remain unknown. Apart from physiological conditions that change throughout life and govern age-related thymus evolution, random states and events provoked by intrinsic or extrinsic factors can induce either thymus involution, as in reversible transient thymic hypoplasias, or thymic hyperplasias. The age-associated involution, unlike transient involutions, follows a regular pattern for all individuals, though there are clear differences between the sexes. Nevertheless, even the age-associated involution seems to be reversible, raising the possibility of therapeutic strategies aimed at enhancing thymus function in the elderly.
Collapse
Affiliation(s)
- Lourdes Domínguez-Gerpe
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, La Coruña, Spain.
| | | |
Collapse
|
9
|
Papet I, Dardevet D, Sornet C, Béchereau F, Prugnaud J, Pouyet C, Obled C. Acute phase protein levels and thymus, spleen and plasma protein synthesis rates differ in adult and old rats. J Nutr 2003; 133:215-9. [PMID: 12514293 DOI: 10.1093/jn/133.1.215] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aging induces a dysregulation of immune and inflammation functions that may affect protein synthesis rates in lymphoid tissue and plasma proteins. We quantified in vivo synthesis rates of thymus, spleen and plasma proteins, including albumin and acute phase proteins, in adult (8 mo old) and old (22 mo old) rats using the flooding dose method [L-(1-(13)C) phenylalanine]. Immunosenescence was reflected by thymus atrophy and spleen hypertrophy in old rats but not in adult rats. A low albumin plasma level associated with high concentrations of fibrinogen, alpha(2)-macroglobulin, alpha(1)-acid glycoprotein and proteins other than albumin revealed a low grade inflammation in old rats. Protein fractional synthesis rates (FSR) and protein synthesis efficiencies of thymus were 29 and 26% lower in old than in adult rats, respectively; these variables did not differ in spleen. Protein absolute synthesis rates (ASR) of the thymus and spleen were 76% lower and 67% greater in old than adult rats, respectively. The FSR and ASR of albumin and other plasma proteins were greater in old than in adult rats. Protein synthesis measurement is a valuable nonimmunological tool to assess, in vivo, immune and inflammatory variables. Alterations in secondary lymphoid organs and plasma protein synthesis may contribute to the significant repartitioning of amino acids in old compared with adult rats and may be involved in sarcopenia.
Collapse
Affiliation(s)
- Isabelle Papet
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique, Theix, 63 122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Here we describe changes in selected immune parameters related to age and sex in young mice. We focused on the T cell compartment and studied thymuses and spleens from mice 3 to 9 weeks of age in order to bracket the time period around murine puberty. With regard to distribution of immune cells, no significant sex-related changes were seen in thymocyte expression of CD3, CD4, CD8, or CD4/CD8 or splenocyte expression of CD3, CD4, CD8, or CD45R/B220, a pan B cell marker. For splenocytes, significantly more cells were positive for CD3 in older (6-9 week old) compared with younger (3-4 week old) mice. Splenocyte and thymocyte cell proliferation as measured by DNA synthesis in response to in vitro mitogens was compared for cells from male and female mice over the ages studied. Thymocyte proliferation was not related to age or sex of the mice. For splenocytes of the youngest mice (3 weeks old), the response to a cell surface-receptor-independent mitogenic combination of phorbol ester and ionomycin induced a significantly greater response in cells from female mice compared with male mice. This trend was reversed for mice of 4-6 weeks of age, where the response by splenocytes from males was significantly greater than that by cells from females. For mice 7-8 weeks of age, splenocytes from female mice responded significantly less to stimulation by antibody to CD3, a component of the T-cell receptor. Our results demonstrate that depending on the assays employed, sexual dimorphism in the immune system may be demonstrated prior to puberty.
Collapse
Affiliation(s)
- J L Rosen
- Department of Biochemistry, Midwestern University, Downers Grove, Illinois 60515, USA
| | | | | | | |
Collapse
|