1
|
Islam SN, Arif Z, Badar A, Moinuddin, Khan MA, Alam K. Glycoxidation of mammalian whole histone generates highly immunogenic aggregates: Sera of SLE patients contain autoantibodies against aggregates. Scand J Immunol 2024; 100:e13389. [PMID: 38816907 DOI: 10.1111/sji.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Non-enzymatic glycation and oxidation of self-proteins, causing formation and accumulation of advanced glycation end products (AGEs), have been reported in an array of pathologies, including systemic lupus erythematosus (SLE). Such modifications may generate neo-epitopes, break immunological tolerance, and induce antibody response. In this study, we have first analysed the structural modifications of whole histone in the presence of deoxyribose followed by oxidation with hydroxyl radicals. Changes in the secondary and tertiary structure of the whole histone were determined by spectroscopic techniques and biochemical assays. Fluorescence spectroscopy and UPLC-MS showed the generation of AGEs such as carboxymethyl lysine and pentosidine, while DLS and TEM indicated the presence of amorphous AGE-aggregates. Moreover, rabbits immunized with these histone-AGEs exhibited enhanced immunogenicity and ELISA and western immunoblot of IgG antibodies from SLE patients' sera showed a significantly higher specificity towards modified histone-AGEs than the native histone.
Collapse
Affiliation(s)
- Shireen Naaz Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Asim Badar
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Md Asad Khan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
2
|
Lin Y, Wu X, Yang Y, Wu Y, Xiang L, Zhang C. The multifaceted role of autophagy in skin autoimmune disorders: a guardian or culprit? Front Immunol 2024; 15:1343987. [PMID: 38690268 PMCID: PMC11058840 DOI: 10.3389/fimmu.2024.1343987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Tian R, Yuan L, Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Perturbed autophagy intervenes systemic lupus erythematosus by active ingredients of traditional Chinese medicine. Front Pharmacol 2023; 13:1053602. [PMID: 36733375 PMCID: PMC9887156 DOI: 10.3389/fphar.2022.1053602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a common multisystem, multiorgan heterozygous autoimmune disease. The main pathological features of the disease are autoantibody production and immune complex deposition. Autophagy is an important mechanism to maintain cell homeostasis. Autophagy functional abnormalities lead to the accumulation of apoptosis and induce the autoantibodies that result in immune disorders. Therefore, improving autophagy may alleviate the development of SLE. For SLE, glucocorticoids or immunosuppressive agents are commonly used in clinical treatment, but long-term use of these drugs causes serious side effects in humans. Immunosuppressive agents are expensive. Traditional Chinese medicines (TCMs) are widely used for immune diseases due to their low toxicity and few side effects. Many recent studies found that TCM and its active ingredients affected the pathological development of SLE by regulating autophagy. This article explains how autophagy interferes with immune system homeostasis and participates in the occurrence and development of SLE. It also summarizes several studies on TCM-regulated autophagy intervention in SLE to generate new ideas for basic research, the development of novel medications, and the clinical treatment of SLE.
Collapse
Affiliation(s)
- Rui Tian
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- College of Biological Science and Technology, Hubei MinZu University, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, China
| | - Yuan Huang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jingfeng Tang
- National “111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Lead Contact, Wuhan, China
| |
Collapse
|
4
|
Kamel AM, Badary MS, Mohamed WA, Ahmed GH, El-Feky MA. Evaluation of autophagy-related genes in Egyptian systemic lupus erythematosus patients. Int J Rheum Dis 2020; 23:1226-1232. [PMID: 32783391 DOI: 10.1111/1756-185x.13910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Disturbances in autophagy are known to be implicated in autoimmune disorders. Many studies have connected polymorphisms in autophagy-related gene 5 (ATG-5) to systemic lupus erythematosus (SLE). Our aim was the determination of the expression level of ATG-5, Beclin-1 and microtubule-associated protein-light chain 3 (LC-3) in Egyptian SLE patients to investigate the impact of disturbances in autophagy genes on the incidence and progression of the disease. Also, we investigated the incidence of single nucleotide polymorphism (SNP) rs573775 in ATG-5 gene among Egyptian SLE patients. Our results showed that the mean levels of Beclin-1, LC-3 and interleukin (IL)-10 transcripts were significantly higher in SLE patients compared to healthy controls. The previous transcripts were positively correlated with SLE Disease Activity Index (SLEDAI). Beclin-1 and LC-3 transcripts were negatively correlated to complement component 3 (C3) levels. Only LC-3 transcripts were negatively correlated to complement component 4 (C4). The rs573775 SNP of ATG-5 with the variant allele was significantly associated with disease susceptibility, conferring a higher risk of SLE development. This variant allele was more prevalent in patients below 30 years, patients with anemia and in patients with anti-double-stranded DNA (dsDNA), confirming the essential role of ATG-5 polymorphism in the susceptibility of Egyptian patients to SLE.
Collapse
Affiliation(s)
- Ayat M Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed S Badary
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wegdan A Mohamed
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghada H Ahmed
- Rheumatoloy Unit, Internal Medicine Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Feky
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Luo XY, Yuan JL, Liu J, Luo CN, Yang MH, Wei Q, Yang M, Chen Y, Liu Y, Yuan GH. Increased Macroautophagy in Interferon-Gamma-Producing T Cells from Patients with Newly Diagnosed Systemic Lupus Erythematosus. Chin Med J (Engl) 2018; 131:1527-1532. [PMID: 29941705 PMCID: PMC6032673 DOI: 10.4103/0366-6999.235110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Imbalance of interferon-gamma (IFN-γ), interleukin (IL)-4, and IL-17 producing by T cells is confirmed to contribute to the pathogenesis of systemic lupus erythematosus (SLE). Autophagy is now emerging as a core player in the development and the function of the immune system. Therefore, we investigated the autophagic behavior in IFN-γ-, IL-4-, and IL-17-producing T cells from patients with SLE. Methods Thirty patients with SLE and 25 healthy controls matched for gender and age were recruited between September 2016 and May 2017. The autophagic levels in IFN-γ+ T cells, IL-4+ T cells, and IL-17+ T cells from patients with newly diagnosed SLE and healthy controls were measured using flow cytometry. The plasma levels of IFN-γ were determined by enzyme-linked immunosorbent assay in SLE patients and healthy controls. Unpaired t-tests and the nonparametric Mann-Whitney U-test were used to compare data from patients with SLE and controls. Spearman's rank correlation coefficient was applied for calculation of the correlation between parallel variables in single samples. Results Our results showed increased percentage of autophagy in IFN-γ+ T cells from patients with SLE and healthy controls ([8.07 ± 2.72]% vs. [3.76 ± 1.67]%, t = 5.184, P < 0.001), but not in IL-4+ T cells or IL-17+ T cells (P > 0.05) as compared to healthy donors. Moreover, the plasma levels of IFN-γ in SLE patients were significantly higher than those in healthy controls ([68.9 ± 29.1] pg/ml vs. [24.7 ± 17.6] pg/ml, t = 5.430, P < 0.001). Moreover, in SLE patients, the percentage of autophagy in IFN-γ+ T cells was positively correlated with the plasma levels of IFN-γ (r = 0.344, P = 0.046), as well as the disease activity of patients with SLE (r = 0.379, P = 0.039). Conclusion The results indicate that autophagy in IFN-γ+ T cells from SLE patients is activated, which might contribute to the persistence of T cells producing IFN-γ, such as Th1 cells, and consequently result in the high plasma levels of IFN-γ, and then enhance the disease activity of SLE.
Collapse
Affiliation(s)
- Xiong-Yan Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia-Li Yuan
- Department of Rheumatology, The First People's Hospital of Jian Yang City, Chengdu, Sichuan 641400, China
| | - Jing Liu
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 63700, China
| | - Cai-Nan Luo
- Department of Rheumatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| | - Ming-Hui Yang
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 63700, China
| | - Qin Wei
- Department of Rheumatology, The First People's Hospital of Xinxiang, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Min Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Chen
- Department of Rheumatology, The First People's Hospital of Jian Yang City, Chengdu, Sichuan 641400, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guo-Hua Yuan
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 63700, China
| |
Collapse
|
6
|
Qi YY, Zhou XJ, Cheng FJ, Hou P, Ren YL, Wang SX, Zhao MH, Yang L, Martinez J, Zhang H. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis. Ann Rheum Dis 2018; 77:1799-1809. [PMID: 30209031 PMCID: PMC6800572 DOI: 10.1136/annrheumdis-2018-213028] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE More recent studies suggested that defects in autophagy contribute to the pathogenesis of SLE, especially in adaptive immunity. Occurrence and progression of lupus nephritis (LN) is the end result of complex interactions between regulation of immune responses and pathological process by renal resident cells, but there is still a lot of missing information for an establishment on the role of autophagy in pathogenesis of LN and as a therapy target. METHODS Systemic and organ-specific aetiologies of autophagy were first evaluated by autophagy protein quantification in tissue homogenates in MRL lpr/lpr lupus prone and female C57BL mice. Analysis of gene expression was also adopted in human blood and urine sediments. Then, some key mediators of the disease, including complement inactivated serum, IgG from patients with LN (IgG-LN) and interferon (IFN)-α were chosen to induce podocyte autophagy. Podocyte injuries including apoptosis, podocin derangement, albumin filtration and wound healing were monitored simultaneously with autophagy steady-state and flux. RESULTS Elevated LC3B in kidney homogenates and increased autophagosomes in podocyte from MRL lpr/lpr were observed. In humans, mRNA levels of some key autophagy genes were increased in blood and urinary sediments, and podocyte autophagosomes were observed in renal biopsies from patients with LN. Complement inactivated serum, IgG-LN and IFN-α could induce podocyte autophagy in a time-dependent and dosage-dependent manner, and by reactive oxygen species production and mTORC1 inhibition, respectively. Autophagy inhibition aggravated podocyte damage whereas its inducer relieved the injury. CONCLUSION Podocyte autophagy is activated in lupus-prone mice and patients with lupus nephritis. Increased autophagy is cytoprotective against antibody and interferon-α induced podocyte injury.
Collapse
Affiliation(s)
- Yuan-Yuan Qi
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Fa-Juan Cheng
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ping Hou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ya-Li Ren
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Su-Xia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, Carolina, USA
| | - Hong Zhang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Morita E. Membrane closure in stress induced-autophagosome formation. Cell Stress 2018; 2:122-124. [PMID: 31223143 PMCID: PMC6551682 DOI: 10.15698/cst2018.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
8
|
Qi YY, Zhou XJ, Nath SK, Sun C, Wang YN, Hou P, Mu R, Li C, Guo JP, Li ZG, Wang G, Xu HJ, Hao YJ, Zhang ZL, Yue WH, Zhang H, Zhao MH, Zhang H. A Rare Variant (rs933717) at FBXO31-MAP1LC3B in Chinese Is Associated With Systemic Lupus Erythematosus. Arthritis Rheumatol 2018; 70:287-297. [PMID: 29044928 DOI: 10.1002/art.40353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent evidence from genetic, cell biology, and animal model studies has suggested a pivotal role of autophagy in mediating systemic lupus erythematosus (SLE). However, the genetic basis has not yet been thoroughly examined. Therefore, the aim of the present study was to identify additional susceptibility variants in autophagy-related genes along with their functional significance. METHODS First, we performed a gene family-based genetic association analysis in SLE patients with the use of ImmunoChip arrays, and then we selected the most strongly associated polymorphisms for replication in additional cohorts. To identify regulatory clues, we analyzed publicly available blood expression quantitative trait locus data and Encyclopedia of DNA Elements data on transcription factor binding sites and cell type-specific differential expression. Functional effects were tested by luciferase reporter assays, electrophoretic mobility shift assays, and differential gene expression assays. RESULTS In 14,474 samples, we observed that the rare Chinese variant rs933717T was associated with susceptibility to SLE (0.11% in cases versus 0.87% in controls; P = 2.36 × 10-10 , odds ratio 0.13). The rs933717 risk allele C correlated with increased MAP1LC3B expression; increased MAP1LC3B messenger RNA was observed in SLE patients and in lupus-prone mice. In reporter gene constructs, the risk allele increased luciferase activity up to 2.7-3.8-fold in both HEK 293T and Jurkat cell lines, and the binding of HEK 293T and Jurkat cell nuclear extracts to the risk allele was also increased. CONCLUSION We observed a likely genetic association between light chain 3B, a widely used marker for autophagy, and susceptibility to SLE.
Collapse
Affiliation(s)
- Yuan-Yuan Qi
- Peking University First Hospital, Beijing, China
| | - Xu-Jie Zhou
- Peking University First Hospital, Beijing, China
| | | | - Celi Sun
- Oklahoma Medical Research Foundation, Oklahoma City
| | - Yan-Na Wang
- Peking University First Hospital, Beijing, China
| | - Ping Hou
- Peking University First Hospital, Beijing, China
| | - Rong Mu
- Peking University People's Hospital, Beijing, China
| | - Chun Li
- Peking University People's Hospital, Beijing, China
| | | | - Zhan-Guo Li
- Peking University People's Hospital, Beijing, China
| | - Geng Wang
- Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hu-Ji Xu
- Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan-Jie Hao
- Peking University First Hospital, Beijing, China
| | | | - Wei-Hua Yue
- Peking University Sixth Hospital, Beijing, China
| | | | | | - Hong Zhang
- Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Hsieh CW, Chang CY, Chen YM, Chen HH, Hung WT, Gung NR, Wey SJ, Chen DY. Impaired autophagic flux and its related inflammation in patients with adult-onset Still's disease. Oncotarget 2017; 9:110-121. [PMID: 29416600 PMCID: PMC5787422 DOI: 10.18632/oncotarget.23098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
The pathogenic role of autophagic immune regulation in adult-onset Still’s disease (AOSD) is unclear. We investigated the relative levels of autophagy in AOSD patients and healthy controls, its association with disease activity or course, and the change in autophagy after 6 months of therapy. Autophagosome levels were determined from the mean fluorescence intensity of autophagosomotropic dye incorporated into circulating immune cells. The fluorescent signal from lymphocytes, monocytes, and granulocytes from AOSD patients was greater than from controls. Levels of p62 fluorescence measured using flow cytometry in lymphocytes and granulocytes from AOSD patients was greater than in the corresponding cells from healthy controls. Expression of Atg5 and LC3-II mRNA and protein levels of p62 and LC3-II were elevated in AOSD patients. Moreover, AOSD activity scores correlated positively with autophagosome levels in monocytes and granulocytes, p62 levels in circulating immune cells, and levels of Beclin-1, Atg5, and LC3-II mRNA. Autophagosome levels and Atg mRNA expression decreased with disease remission in AOSD patients. Elevated autophagosome formation and p62 levels suggest impaired autophagic flux in AOSD.
Collapse
Affiliation(s)
- Chia-Wei Hsieh
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Yu Chang
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hsin-Hua Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Wei-Ting Hung
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Ning-Rong Gung
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiow-Jiuan Wey
- Division of Dermatology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
10
|
Zhang YM, Zhou XJ, Cheng FJ, Qi YY, Hou P, Zhao MH, Zhang H. Autophagy-related gene LRRK2 is likely a susceptibility gene for systemic lupus erythematosus in northern Han Chinese. Oncotarget 2017; 8:13754-13761. [PMID: 28099919 PMCID: PMC5355135 DOI: 10.18632/oncotarget.14631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/06/2017] [Indexed: 01/24/2023] Open
Abstract
Autophagy is associated with various immune diseases, including systemic lupus erythematosus (SLE). Seven variants within autophagy-related genes previously reported to show top association signals by genome-wide association studies in immune diseases were selected for analysis. Initially, 510 SLE patients (631 controls) were enrolled in the study. An additional independent cohort of 511 SLE patients (687 controls) was included for replication. Polymorphism rs2638272 in LRRK2 gene showed significant association with susceptibility to SLE (P = 1.14 × 10−2) within the initial patient population. This was independently replicated (second patient cohort), and was reinforced with combination (P = 2.82 × 10−3). By combining multiple layers of regulatory effects, rs1491941 in high linkage disequilibrium with rs2638272 (r2 = 0.99) was regarded to have the strongest function in LRRK2. The rs1491941 protective A-allele exhibited an increase of nuclear protein binding, and an increase in LRRK2 transcription compared with G-allele. Furthermore, we observed increased transcription levels of LRRK2 in peripheral blood mononuclear cells from SLE patients compared with controls. In conclusion, we have identified a novel genetic association between the autophagy-related LRRK2 gene and susceptibility to SLE. By integrating layers of functional data, we derived the beneficial effect of autophagy on the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yue-Miao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Fa-Juan Cheng
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Yuan-Yuan Qi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Ping Hou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
11
|
Cui JH, Xie X. UCH-L1 Expressed by Podocytes: a Potentially Therapeutic Target for Lupus Nephritis? Inflammation 2017; 40:657-665. [DOI: 10.1007/s10753-017-0512-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Li X, Liu F, Zhang X, Shi G, Ren J, Ji J, Ding L, Fan H, Dou H, Hou Y. Notch-Hes-1 axis controls TLR7-mediated autophagic death of macrophage via induction of P62 in mice with lupus. Cell Death Dis 2016; 7:e2341. [PMID: 27537524 PMCID: PMC5108329 DOI: 10.1038/cddis.2016.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023]
Abstract
The increased death of macrophages has been considered as a pathogenic factor for systemic lupus erythematosus (SLE), and dysfunction of autophagy may contribute to improper cell death. However, the effect of autophagy on macrophage during the pathogenesis of SLE is still unclear. Here we found that the death rate and autophagy level of macrophages significantly increased in MRL/lpr lupus-prone mice. Activation of toll-like receptor 7 (TLR7) triggered macrophage death in an autophagy-dependent but caspase-independent way in vitro. Moreover, P62/SQSTM1 is thought to have an essential role in selective autophagy. We also demonstrated that P62/SQSTM1 was required for TLR7-induced autophagy, and knockdown of P62 suppressed R848-induced cell death and LC3II protein accumulation. As an important mediator for cell-cell communication, Notch signaling is responsible for cell-fate decisions. Our results showed that activation of TLR7 also upregulated the expression of Notch1, especially its downstream target gene Hairy and enhancer of split 1 (Hes-1) in macrophages. Of note, we found that Hes-1, as a transcriptional factor, controlled TLR7-induced autophagy by regulating P62 expression. Furthermore, to confirm the above results in vivo, TLR7 agonist imiquimod (IMQ)-induced lupus mouse model was prepared. Splenic macrophages from IMQ-treated mice exhibited increased autophagy and cell death as well as enhanced expressions of Notch1 and Hes-1. Our results indicate that Notch1-Hes-1 signaling controls TLR7-induced autophagic death of macrophage via regulation of P62 in mice with lupus.
Collapse
Affiliation(s)
- Xiaojing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xuefang Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jianjian Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| |
Collapse
|
13
|
Wang L, Law HKW. The Role of Autophagy in Lupus Nephritis. Int J Mol Sci 2015; 16:25154-67. [PMID: 26506346 PMCID: PMC4632796 DOI: 10.3390/ijms161025154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in lysosome and reused. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In particular, autophagy can affect almost all parts of the immune system and is involved in autoimmune diseases. Based on genetic analysis, cell biology, and mechanism studies of the classic and innovative therapeutic drugs, there are growing lines of evidence suggesting the relationship between autophagy and lupus nephritis. In the present review, we summarize the recent publications investigating the relationship between autophagy and lupus nephritis and provide a new perspective towards the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| |
Collapse
|
14
|
Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 2015; 6:252. [PMID: 26042127 PMCID: PMC4437184 DOI: 10.3389/fimmu.2015.00252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating autophagy processes appears most promising for therapy of such autoimmune diseases. Autophagy can be said non-selective or selective; it is classified into three main forms, namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), the former process being by far the most intensively investigated. The role of CMA remains largely underappreciated in autoimmune diseases, even though CMA has been claimed to play pivotal functions into major histocompatibility complex class II-mediated antigen processing and presentation. Therefore, hereby, we give a special focus on CMA as a therapeutic target in autoimmune diseases, based in particular on our most recent experimental results where a phosphopeptide modulates lupus disease by interacting with CMA regulators. We propose that specifically targeting lysosomes and lysosomal pathways, which are central in autophagy processes and seem to be altered in certain autoimmune diseases such as lupus, could be an innovative approach of efficient and personalized treatment.
Collapse
Affiliation(s)
- Fengjuan Wang
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France
| | - Sylviane Muller
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France ; University of Strasbourg Institute for Advanced Study , Strasbourg , France
| |
Collapse
|
15
|
Fenton K. The effect of cell death in the initiation of lupus nephritis. Clin Exp Immunol 2015; 179:11-6. [PMID: 25041590 DOI: 10.1111/cei.12417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2014] [Indexed: 12/27/2022] Open
Abstract
Cell death and the release of chromatin have been demonstrated to activate the immune system producing autoantibodies against nuclear antigens in patients with systemic lupus erythematosus (SLE). Apoptosis, necrosis, necroptosis, secondary necrosis, autophagy and the clearance of dying cells by phagocytosis are processes believed to have a role in tolerance avoidance, activation of autoimmune lymphocytes and tissue damage by effector cells. The released chromatin not only activates the immune system; it also acts as antigen for the autoantibodies produced, including anti-dsDNA antibodies. The subsequent immune complex formed is deposited within the basement membranes and the mesangial matrix of glomeruli. This may be considered as an initiating event in lupus nephritis. The origin of the released chromatin is still debated, and the possible mechanisms and cell sources are discussed in this study.
Collapse
Affiliation(s)
- K Fenton
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
16
|
Zhou XJ, Nath SK, Qi YY, Cheng FJ, Yang HZ, Zhang Y, Yang W, Ma JY, Zhao MH, Shen N, Zhang H. Brief Report: identification of MTMR3 as a novel susceptibility gene for lupus nephritis in northern Han Chinese by shared-gene analysis with IgA nephropathy. Arthritis Rheumatol 2014; 66:2842-8. [PMID: 24943867 DOI: 10.1002/art.38749] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 06/12/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Several novel susceptibility genes for systemic lupus erythematosus (SLE) and IgA nephropathy have been identified in recent genome-wide association studies. Since both lupus nephritis and IgA nephropathy are autoimmune diseases of the kidney, they may share common disease mechanisms that overlap with genetic susceptibility. To test this hypothesis, we sought to identify genetic variants associated with IgA nephropathy in lupus nephritis. METHODS In the first stage, 500 patients with lupus nephritis, 240 SLE patients without nephritis, and 500 healthy controls were enrolled. Fifteen single-nucleotide polymorphisms (SNPs) that had the topmost association signals with IgA nephropathy were selected for further testing in patients with lupus nephritis. Three independent cohorts from Beijing, Shanghai, and Hong Kong were included as replicates. We also analyzed the functional significance of identified noncoding variants on regulatory motifs and gene expression. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS In addition to associations with HLA gene polymorphisms, genetic variants of MTMR3 in 22q12 showed associations with lupus nephritis (for rs9983A, OR 1.61 [95% CI 1.19-2.19], P = 2.07 × 10(-3) ) compared to healthy controls in the first stage. Associations were replicated and reinforced among northern Han Chinese (for lupus nephritis patients versus SLE patients without nephritis, P = 0.01) but not southern Han Chinese, although significant genetic heterogeneity was observed. Conservative and regulatory features of rs9983 were predicted in in silico analyses. In expression analysis, we observed lower MTMR3 transcription levels in samples of blood with rs9983A and in renal biopsy samples from lupus nephritis and IgA nephropathy patients. CONCLUSION Our results suggest that the MTMR3 gene is shared between IgA nephropathy and lupus nephritis in the northern Chinese population, further highlighting the role of autophagy in SLE. However, widespread replication of these experiments, fine mapping, and functional assays are required to establish this connection.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, and Key Laboratory of Chronic Kidney Disease Prevention and Treatment at Peking University, Ministry of Education of China, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yan Q, Du F, Huang X, Fu Q, Chen S, Dai D, Bao C. Prevention of immune nephritis by the small molecular weight immunomodulator iguratimod in MRL/lpr mice. PLoS One 2014; 9:e108273. [PMID: 25271634 PMCID: PMC4182720 DOI: 10.1371/journal.pone.0108273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study was performed to investigate the therapeutic effects of iguratimod in a lupus mouse model. METHODS Female MRL/lpr mice were treated with iguratimod, vehicle solution or cyclophosphamide. Proteinuria was monitored and kidney injury was blindly scored by a renal pathologist. Serum anti-double-stranded DNA antibodies were monitored by radioimmunoassay. Kidney IgG and CD20 were stained by immunohistochemistry. Splenic lymphocyte phenotypes were analyzed by flow cytometry. BAFF, IL-17A, IL-6, and IL-21 levels in serum and splenic lymphocytes were detected by ELISA or quantitative PCR. RESULTS Compared with the vehicle-treated controls, MRL/lpr mice treated with iguratimod showed less protenuria, less acute pathological lesions and no chronic changes in the kidneys. There were significant differences in glomerular injury and vasculitis scores, as well as in the semi-quantitative analysis of immune complex deposition between the two groups. Disease activity markers in sera (anti-dsDNA antibodies and immunoglobulin levels) were reduced and hypocomplementemia was attenuated. Lymphocyte expression of BAFF, IL-6, IL-17A and IL-21 was decreased. The abnormal splenic B220+ T cell and plasma cell populations in MRL/lpr mice were reduced by iguratimod treatment, with recovery of the total B cell population and inhibition of B cell infiltration of the kidney tissue. The dosage of iguratimod used in this study showed no significant cytotoxic effects in vivo and no overt side-effects were observed. CONCLUSION Iguratimod ameliorates immune nephritis in MRL/lpr mice via a non-antiproliferative mechanism. Our data suggest a potential therapeutic role of iguratimod in lupus.
Collapse
Affiliation(s)
- Qingran Yan
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Rheumatology, Shanghai, China
| | - Fang Du
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Rheumatology, Shanghai, China
| | - Xinfang Huang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Rheumatology, Shanghai, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Rheumatology, Shanghai, China
| | - Sheng Chen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Rheumatology, Shanghai, China
| | - Dai Dai
- Institute of Health Science, Shanghai Institute for Biological Science, Chinese Academy of Science and Shanghai Jiaotong University School of Medicine, Laboratory of Molecular Rheumatology, Shanghai, China
| | - Chunde Bao
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Rheumatology, Shanghai, China
| |
Collapse
|