1
|
Koyuncu S, Sipahioğlu H, Karakukcu C, İçaçan G, Biçer NS, Kocyigit I. The relationship between changes in peritoneal permeability with CA-125 and HIF-1α. Ther Apher Dial 2025; 29:269-275. [PMID: 39233434 DOI: 10.1111/1744-9987.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a major, persistent complication of prolonged peritoneal dialysis that eventually leads to peritoneal ultrafiltration failure and termination of peritoneal dialysis. Prolonged exposure to high glucose concentrations, degradation products, uremic toxins, and episodes of peritonitis can cause some changes in the peritoneal membrane, resulting in intraperitoneal inflammation and PF, leading to failure of ultrafiltration and dialysis. CA-125 can be used as a biomarker of peritoneal mesothelial cell count in the peritoneal dialysate and for monitoring cell count in PD patients. Hypoxia-inducible factor 1-alpha (HIF-1α) has been reported to cause PF, but has not been reported to be associated with changes in peritoneal structure. We hypothesized that peritoneal adequacy can be followed using HIF-1α and CA-125 values. In the present study, therefore, we investigated the relationship between HIF-1α and CA-125 levels and parietal membrane permeability changes in PD patients. METHODS Forty-five patients were included in the study. Peritoneal permeability was constant in 20 of these, while peritoneal permeability increased in 11 and decreased in 14. The HIF-1α value from the blood samples of the patients and the CA-125 measurement from the peritoneal fluids were measured. The relationship between peritoneal variability and CA-125 and HIF levels after follow-up was investigated. RESULTS We compared serum HIF-1α and peritoneal fluid CA-125 levels in the three groups receiving peritoneal dialysis treatment. HIF-1α levels increased with peritoneal permeability changes, while CA-125 levels decreased. In patients with high to low permeability changes, HIF-1α levels were higher compared to those with stable or low to high changes, which was statistically significant. Conversely, CA-125 levels significantly decreased in patients whose peritoneal permeability changed from high to low, compared to the other two groups. CONCLUSION Changes in peritoneal structure can be followed with biomarkers. It has been shown that CA-125 and HIF-1α levels can guide the changes in the peritoneal membrane. This can be useful in the monitoring of peritoneal dialysis.
Collapse
Affiliation(s)
- Sumeyra Koyuncu
- Department of Nephrology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioğlu
- Department of İntensive Care Unit, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Erciyes Medical Faculty, Kayseri, Turkey
| | - Gamze İçaçan
- Department of Nephrology, Izmir City Hospital, Izmir, Turkey
| | | | - Ismail Kocyigit
- Department of Nephrology, Erciyes Medical Faculty, Kayseri, Turkey
| |
Collapse
|
2
|
Wang J, Lv X, Lin Y, Aniwan A, Liu H, Zhou S, Yu P. Genistein inhibits HIF-1α and attenuates high glucose-induced peritoneal mesothelial-mesenchymal transition and fibrosis via the mTOR/OGT pathway. Sci Rep 2024; 14:24369. [PMID: 39420031 PMCID: PMC11487250 DOI: 10.1038/s41598-024-74879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Peritoneal fibrosis has been linked to hypoxia-inducible factor 1-alpha (HIF-1α) as well as O-linked-N-acetylglucosaminylation (O-GlcNAcylation) in peritoneal dialysis (PD). Genistein, recognized for its HIF-1α inhibitory and antifibrotic effects, presents a potential intervention against peritoneal mesothelial-mesenchymal transition (MMT) as well as fibrosis in PD. This study employed human peritoneal mesothelial cells (HPMCs) together with adenine-induced chronic kidney disease (CKD) rats undergoing peritoneal dialysis to explore Genistein's role in high glucose-induced peritoneal MMT and fibrosis. Our findings reveal that Genistein exerts anti-MMT and anti-fibrotic effects by inhibiting HIF-1α in HPMCs under high glucose conditions. Genistein inhibited O-GlcNAcylation status of HIF-1α through the mTOR/O-GlcNAc transferase (OGT) pathway, promoting its ubiquitination as well as the subsequent proteasomal degradation. In adenine-induced CKD rats undergoing peritoneal dialysis, Genistein suppressed the mTOR/OGT expression and reduced the abundance of O-GlcNAcylation along with HIF-1α in the peritoneum. Additionally, Genistein protected against increased peritoneal thickness, fibrosis, and angiogenesis, while improving peritoneal function. Based on our results, it could be inferred that Genistein might inhibit the abundance of HIF-1α via the mTOR/OGT pathway, thereby ameliorating MMT as well as fibrosis in PD.
Collapse
Affiliation(s)
- Jian Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xin Lv
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
3
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
4
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
5
|
Yahyazadeh R, Baradaran Rahimi V, Ahmad Mohajeri S, Iranshahy M, Hasanpour M, Askari VR. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats. Saudi Pharm J 2024; 32:102092. [PMID: 38737808 PMCID: PMC11087237 DOI: 10.1016/j.jsps.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Post-operative peritoneal adhesions (PA) are a common and important clinical problem. In this study, we focused on the ameliorative efficacy of ginger and gingerol compounds on surgical-induced peritoneal adhesion, and their strategies that disrupted the PA formation pathways to suppress their incidence. First, liquid chromatography-mass spectrometry (LC-MS) was established to separate and identify several chemical groups of ginger rhizome extract. In the next steps, male Wistar albino rats were randomly selected and divided into various groups, namely sham, control, ginger extract (0.6, 1.8, 5 %w/v), and gingerol (0.05, 0.1, 0.3, and 1 %w/v). Finally, we investigated the macroscopic parameters such as wound healing, body weight as well as spleen height and weight. In addition, visual peritoneal adhesion assessment was performed via Nair et al and Adhesion Scoring Scheme. Moreover, the microscopic parameters and biological assessment was performed via and immunoassays. The present findings revealed significant improvement in wound healing and reduction of the adhesion range, as Nair et al. and Adhesion Scoring Scheme scoring, in both the ginger and gingerol groups compared to the PA group (P < 0.05). Whereas, gingerol (0.3 % w/v) was able to increase the body weight in rats (P < 0.0001) at end stage of experiment. Also, inflammation, angiogenesis, and fibrosis were significantly decreased due to the downregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), respectively, in the ginger and gingerol groups compared to the PA group (P < 0.05). In contrast, the levels of IL-10 were increased in the ginger and gingerol groups compared to the control group (P < 0.01). Our results proved that ginger rhizome and gingerol, as novel therapeutic compounds, could be used to prevent PA for their beneficial anti-inflammatory as well as anti-fibrosis properties in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger and gingerol.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhao JL, Zhao L, Zhan QN, Liu M, Zhang T, Chu WW. BMSC-derived Exosomes Ameliorate Peritoneal Dialysis-associated Peritoneal Fibrosis via the Mir-27a-3p/TP53 Pathway. Curr Med Sci 2024; 44:333-345. [PMID: 38622424 DOI: 10.1007/s11596-024-2853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Peritoneal fibrosis (PF) is the main cause of declining efficiency and ultrafiltration failure of the peritoneum, which restricts the long-term application of peritoneal dialysis (PD). This study aimed to investigate the therapeutic effects and mechanisms of bone marrow mesenchymal stem cells-derived exosomes (BMSC-Exos) on PF in response to PD. METHODS Small RNA sequencing analysis of BMSC-Exos was performed by second-generation sequencing. C57BL/6J mice were infused with 4.25% glucose-based peritoneal dialysis fluid (PDF) for 6 consecutive weeks to establish a PF model. A total of 36 mice were randomly divided into 6 groups: control group, 1.5% PDF group, 2.5% PDF group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to measure the expression level of miR-27a-3p in BMSC-Exos and peritoneum of mice treated with different concentrations of PDF. HE and Masson staining were performed to evaluate the extent of PF. The therapeutic potential of BMSC-Exos for PF was examined through pathological examination, RT-qPCR, Western blotting, and peritoneal function analyses. Epithelial-mesenchymal transition (EMT) of HMrSV5 was induced with 4.25% PDF. Cells were divided into control group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Cell Counting Kit-8 assay was used to measure cell viability, and transwell migration assay was used to verify the capacity of BMSC-Exos to inhibit EMT in HMrSV5 cells. RESULTS Small RNA sequencing analysis showed that miR-27a-3p was highly expressed in BMSC-derived exosomes compared to BMSCs. The RT-qPCR results showed that the expression of miR-27a-3p was upregulated in BMSC-Exos, but decreased in PD mice. We found that PF was glucose concentration-dependently enhanced in the peritoneum of the PD mice. Compared with the control mice, the PD mice showed high solute transport and decreased ultrafiltration volume as well as an obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-SMA, collagen-I, fibronectin, and ECM1. The mice with PD showed decreased miR-27a-3p. Peritoneal structural and functional damage was significantly attenuated after BMSC-Exos treatment, while PF and mesothelial damage were significantly ameliorated. Additionally, markers of fibrosis (α-SMA, collagen-I, fibronectin, ECM1) and profibrotic cytokines (TGF-β1, PDGF) were downregulated at the mRNA and protein levels after BMSC-Exos treatment. In HMrSV5 cells, BMSC-Exos reversed the decrease in cell viability and the increase in cell migratory capacity caused by high-glucose PDF. Western blotting and RT-qPCR analysis revealed that BMSC-Exos treatment resulted in increased expression of E-cadherin (epithelial marker) and decreased expression of α-SMA, Snail, and vimentin (mesenchymal markers) compared to those of the 4.25% PDF-treated cells. Importantly, a dual-luciferase reporter assay showed that TP53 was a target gene of miR-27a-3p. TP53 overexpression significantly reversed the decreases in PF and EMT progression induced by BMSC-Exos. CONCLUSION The present results demonstrate that BMSC-Exos showed an obvious protective effect on PD-related PF and suggest that BMSC-derived exosomal miR-27a-3p may exert its inhibitory effect on PF and EMT progression by targeting TP53.
Collapse
Affiliation(s)
- Jun-Li Zhao
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Lin Zhao
- Orthopedic Department, Guangming Traditional Chinese Medicine Hospital of Pudong New Area, Shanghai, 201399, China
| | - Qiu-Nan Zhan
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Miao Liu
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Ting Zhang
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Wen-Wen Chu
- Department of Nephrology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| |
Collapse
|
7
|
Wang J, Xin lv, Aniwan A, Liu H, Lin Y, Shao X, Zhou S, Yu P. O-GlcNAcylation regulates HIF-1α and induces mesothelial-mesenchymal transition and fibrosis of human peritoneal mesothelial cells. Heliyon 2023; 9:e22916. [PMID: 38144265 PMCID: PMC10746441 DOI: 10.1016/j.heliyon.2023.e22916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that regulates various biological processes. However, its involvement in peritoneal dialysis fibrosis remains unclear. This study aimed to investigate the impact of O-GlcNAcylation on human peritoneal mesothelial cells (HPMCs) cultured in control and high-glucose medium. To manipulate cellular conditions, we employed knockdown techniques targeting HIF-1α and OGT, along with the administration of pharmacological agents (PUGNAc, OSMI-1, MG-132, FG-4592, and HIF-1α inhibitor). Our findings revealed that elevated glucose levels increased global O-GlcNAcylation and the abundance of HIF-1α, α-SMA, fibronectin, and COL1A2. Conversely, the expression of E-Cadherin was decreased. Significantly, a positive correlation was observed between O-GlcNAcylation, HIF-1α, mesothelial-to-mesenchymal transition (MMT), and fibrosis in HPMCs. Notably, O-GlcNAcylation was found to regulate HIF-1α, thereby promoting MMT and fibrosis under high glucose conditions. Furthermore, we discovered that high glucose levels induced O-GlcNAcylation of HIF-1α, preventing its ubiquitination and proteasomal degradation. In summary, our study demonstrates the critical role of O-GlcNAcylation-mediated regulation of HIF-1α in MMT and fibrosis during peritoneal dialysis.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xin lv
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| |
Collapse
|
8
|
Li J, Liu Y, Liu J. A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Front Physiol 2023; 14:1220450. [PMID: 37817984 PMCID: PMC10560738 DOI: 10.3389/fphys.2023.1220450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective alternative treatment for patients with end-stage renal disease (ESRD) and is increasingly being adopted and promoted worldwide. However, as the duration of peritoneal dialysis extends, it can expose problems with dialysis inadequacy and ultrafiltration failure. The exact mechanism and aetiology of ultrafiltration failure have been of great concern, with triggers such as biological incompatibility of peritoneal dialysis solutions, uraemia toxins, and recurrent intraperitoneal inflammation initiating multiple pathways that regulate the release of various cytokines, promote the transcription of fibrosis-related genes, and deposit extracellular matrix. As a result, peritoneal fibrosis occurs. Exploring the pathogenic factors and molecular mechanisms can help us prevent peritoneal fibrosis and prolong the duration of Peritoneal dialysis.
Collapse
Affiliation(s)
- Jin’e Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinghong Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Wang J, Lv X, A-Ni-Wan ASJ, Tian SS, Wang JM, Liu HY, Fan XG, Zhou SJ, Yu P. Canagliflozin alleviates high glucose-induced peritoneal fibrosis via HIF-1α inhibition. Front Pharmacol 2023; 14:1152611. [PMID: 37251320 PMCID: PMC10213900 DOI: 10.3389/fphar.2023.1152611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The cardioprotective effects of sodium-glucose cotransporter type 2 (SGLT2) inhibitors have been demonstrated in many studies. However, their benefits for end-stage kidney disease patients, particularly those on peritoneal dialysis, remain unclear. SGLT2 inhibition has shown peritoneal protective effects in some studies, but the mechanisms are still unknown. Herein, we investigated the peritoneal protective mechanisms of Canagliflozin in vitro by simulating hypoxia with CoCl2 in human peritoneal mesothelial cells (HPMCs) and rats by intraperitoneal injection of 4.25% peritoneal dialysate simulating chronic high glucose exposure. CoCl2 hypoxic intervention significantly increased HIF-1α abundance in HPMCs, activated TGF-β/p-Smad3 signaling, and promoted the production of fibrotic proteins (Fibronectin, COL1A2, and α-SMA). Meanwhile, Canagliflozin significantly improved the hypoxia of HPMCs, decreased HIF-1α abundance, inhibited TGF-β/p-Smad3 signaling, and decreased the expression of fibrotic proteins. Five-week intraperitoneal injection of 4.25% peritoneal dialysate remarkably increased peritoneal HIF-1α/TGF-β/p-Smad3 signaling and promoted peritoneal fibrosis and peritoneal thickening. At the same time, Canagliflozin significantly inhibited the HIF-1α/TGF-β/p-Smad3 signaling, prevented peritoneal fibrosis and peritoneal thickening, and improved peritoneal transportation and ultrafiltration. High glucose peritoneal dialysate increased the expression of peritoneal GLUT1, GLUT3 and SGLT2, all of which were inhibited by Canagliflozin. In conclusion, we showed that Canagliflozin could improve peritoneal fibrosis and function by ameliorating peritoneal hypoxia and inhibiting the HIF-1α/TGF-β/p-Smad3 signaling pathway, providing theoretical support for the clinical use of SGLT2 inhibitors in patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Jian Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xin Lv
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - A-Shan-Jiang A-Ni-Wan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Sha-Sha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jun-Mei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hong-Yan Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xiao-Guang Fan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Henan Provincial People’s Hospital, Department of Nephrology of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai-Jun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Di Marzio N, Ananthanarayanan P, Guex AG, Alini M, Riganti C, Serra T. Sound-based assembly of a microcapillary network in a saturn-like tumor model for drug testing. Mater Today Bio 2022; 16:100357. [PMID: 35880098 PMCID: PMC9307464 DOI: 10.1016/j.mtbio.2022.100357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022] Open
Abstract
The tumor microenvironment (TME), consisting of extracellular matrix, proteins, stromal cells, and a vascular system, is reported to have a key role in cancer progression and prognosis. Thereby, the interaction between the vascular network and tumor mass is an important feature of the TME since the anticancer agents which are delivered to the TME can trigger the vascular response and influence the therapeutic outcome of the treatment. To identify and develop new therapeutic strategies, 3D in vitro models that recapitulate the complexity of the TME are urgently needed. Among them, vascularized tumor models are a promising approach, allowing to target tumor angiogenesis and reduce tumor growth. By using sound patterning, cells can be condensed locally into highly reproducible patterns through the action of mild hydrodynamic forces. Here, we use a soundwave-driven cell assembly approach to create a ring-shaped microcapillary network in fibrin hydrogel. Then, we generate a 3D vascularized tumor model by combining a tumor heterotypic spheroid, consisting of fibroblasts and Malignant Pleural Mesothelioma (MPM) cells, with the surrounding vascular ring. Based on its shape, we name it Saturn-like vascularized Tumor Model (STM). The growth of the microcapillary network is monitored over time by fluorescence imaging. The area covered by the microcapillary network, and its continuous increase in presence of the heterotypic tumor spheroid was monitored. Interestingly, this effect is enhanced when treating the STM with the anticancer agent Cisplatin. Overall, we show the use of sound patterning as a fast and cell-friendly approach to spatially organize and condense cells, to generate a 3D in vitro platform from which simple readouts of drug tests can be extracted by image analysis, with the potential to provide a model system for tailored tumor therapy. Reproducible ring-shaped microcapillary networks were created by sound assembly. Ring microcapillary network and tumor spheroid formed the Saturn-like tumor model. ‘Radial profile’ analysis was used to monitor the ring microcapillary networks. Growth of the microcapillaries was modulated by tumor spheroid and anticancer drug. Anticancer drug upregulated pro-angiogenic related genes in the tumor spheroid.
Collapse
Affiliation(s)
- Nicola Di Marzio
- AO Research Institute Davos, 7270 Davos, Switzerland.,Department of Health Sciences, Università Del Piemonte Orientale (UPO), Novara, Italy
| | | | | | - Mauro Alini
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126, Torino, Italy.,Inter-departmental Centre "G. Scansetti" for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10126, Torino, Italy
| | - Tiziano Serra
- AO Research Institute Davos, 7270 Davos, Switzerland
| |
Collapse
|
11
|
Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9226022. [PMID: 35308169 PMCID: PMC8930249 DOI: 10.1155/2022/9226022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Postoperative peritoneal adhesion (PPA) is a major clinical complication after open surgery or laparoscopic procedure. Ligustrazine is the active ingredient extracted from the natural herb Ligusticum chuanxiong Hort, which has promising antiadhesion properties. This study is aimed at revealing the underlying mechanisms of ligustrazine in preventing PPA at molecular and cellular levels. Both rat primary peritoneal mesothelial cells (PMCs) and human PMCs were used for analysis in vitro. Several molecular biological techniques were applied to uncover the potential mechanisms of ligustrazine in preventing PPA. And molecular docking and site-directed mutagenesis assay were used to predict the binding sites of ligustrazine with PPARγ. The bioinformatics analysis was further applied to identify the key pathway in the pathogenesis of PPA. Besides, PPA rodent models were prepared and developed to evaluate the novel ligustrazine nanoparticles in vivo. Ligustrazine could significantly suppress hypoxia-induced PMC functions, such as restricting the production of profibrotic cytokines, inhibiting the expression of migration and adhesion-associated molecules, repressing the expression of cytoskeleton proteins, restricting hypoxia-induced PMCs to obtain myofibroblast-like phenotypes, and reversing ECM remodeling and EMT phenotype transitions by activating PPARγ. The antagonist GW9662 of PPARγ could restore the inhibitory effects of ligustrazine on hypoxia-induced PMC functions. The inhibitor KC7F2 of HIF-1α could repress hypoxia-induced PMC functions, and ligustrazine could downregulate the expression of HIF-1α, which could be reversed by GW9662. And the expression of HIF-1α inhibited by ligustrazine was dramatically reversed after transfection with si-SMRT. The results showed that the benefit of ligustrazine on PMC functions is contributed to the activation of PPARγ on the transrepression of HIF-1α in an SMRT-dependent manner. Molecular docking and site-directed mutagenesis tests uncovered that ligustrazine bound directly to PPARγ, and Val 339/Ile 341 residue was critical for the binding of PPARγ to ligustrazine. Besides, we discovered a novel nanoparticle agent with sustained release behavior, drug delivery efficiency, and good tissue penetration in PPA rodent models. Our study unravels a novel mechanism of ligustrazine in preventing PPA. The findings indicated that ligustrazine is a potential strategy for PPA formation and ligustrazine nanoparticles are promising agents for preclinical application.
Collapse
|
12
|
Liu Y, Ma Z, Huang Z, Zou D, Li J, Feng P. MiR-122-5p promotes peritoneal fibrosis in a rat model of peritoneal dialysis by targeting Smad5 to activate Wnt/β-catenin pathway. Ren Fail 2022; 44:191-203. [PMID: 35170385 PMCID: PMC8856067 DOI: 10.1080/0886022x.2022.2030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Peritoneal fibrosis (PF) is the main reason leading to declining efficiency and ultrafiltration failure of peritoneum, which restricts the application of peritoneal dialysis (PD). We aimed to investigate the effects and mechanisms of miR-122-5p on the PF. Sprague-Dawley (SD) rats were infused with glucose-based standard PD fluid to establish PF model. HE staining was performed to evaluate the extent of PF. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were performed to measure the expression level of miR-122-5p. Western blot was used to test the expression of transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-A, Fibronectin 1 (FN1), extracellular matrix protein 1 (ECM1), Smad5, α-smooth muscle actin (SMA), collagen type 1(COL-1), Vimentin, E-Cadherin, Wnt1, β-catenin, p-β-catenin, c-Myc, c-Jun, and Cyclin D1. Immunohistochemistry (IHC) staining was used to detect type I collagen alpha 1 (Col1α1), α-SMA, and E-Cadherin expression. We found PF was glucose concentration-dependently enhanced in peritoneum of PD rat. The PD rats showed increased miR-122-5p and decreased Smad5 expression. MiR-122-5p silencing improved PF and epithelial–mesenchymal transition (EMT) process in PD rats. MiR-122-5p silencing attenuated the activity of the Wnt/β-catenin signaling pathway. Importantly, dual-luciferase reporter assay showed Smad5 was a target gene of miR-122-5p. Smad5 overexpression significantly reversed the increases of PF and EMT progression induced by miR-122-5p overexpression. Moreover, miR-122-5p mimic activated Wnt/β-catenin activity, which was blocked by Smad5 overexpression. Overall, present results demonstrated that miR-122-5p overexpression showed a deterioration effect on PD-related PF by targeting Smad5 to activate Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yirong Liu
- Department of Nephrology, Xining No.1 People's Hospital, Xining, PR China
| | - Zhihong Ma
- Department of Nephrology, Xining No.1 People's Hospital, Xining, PR China
| | - Zhenxing Huang
- Department of Nephrology, Xining No.1 People's Hospital, Xining, PR China
| | - Dongmei Zou
- Department of Endocrinology, Xining No.1 People's Hospital, Xining, PR China
| | - Junbin Li
- Department of Nephrology, Xining No.1 People's Hospital, Xining, PR China
| | - Ping Feng
- Department of Endocrinology, Xining No.1 People's Hospital, Xining, PR China
| |
Collapse
|
13
|
Krediet RT, Parikova A. Relative Contributions of Pseudohypoxia and Inflammation to Peritoneal Alterations with Long-Term Peritoneal Dialysis Patients. Clin J Am Soc Nephrol 2022; 17:1259-1266. [PMID: 35168992 PMCID: PMC9435980 DOI: 10.2215/cjn.15371121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-term peritoneal dialysis (PD) is associated with alterations in peritoneal function, like the development of high small solute transfer rates and impaired ultrafiltration. Also morphologic changes can develop, the most prominent being loss of mesothelium, vasculopathy and interstitial fibrosis. Current research suggests peritoneal inflammation as the driving force for these alterations. In this review the available evidence for inflammation is examined and a new hypothesis is put forward consisting of high glucose-induced pseudohypoxia. Hypoxia of cells is characterized by a high NADH/NAD+ ratio in their cytosol. Pseudohypoxia is similar, but occurs when excessive amounts of glucose are metabolized, as is the case for peritoneal interstitial cells in PD. The glucose- induced high NADH/NAD+ ratio upregulates the hypoxia-inducible factor-1 gene, which stimulates not only the glucose transporter-1 gene, but also many profibrotic genes like TGFβ, VEGF, PAI-1 and CTGF, all known to be involved in the development of peritoneal fibrosis. This review discusses the causes and consequences of pseudohypoxia in PD and the available options for treatment and prevention. Reducing peritoneal exposure to the excessively high dialysate glucose load is the cornerstone to avoid the pseudohypoxia-induced alterations. This can partly be done by the use of icodextrin, or by combinations of low molecular weight osmotic agents, all in a low dose. The addition of alanyl-glutamine to the dialysis solution needs further clinical investigation.
Collapse
Affiliation(s)
- Raymond T. Krediet
- Division of Nephrology, Department of Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Alena Parikova
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
14
|
Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med 2021; 19:283. [PMID: 34193173 PMCID: PMC8246671 DOI: 10.1186/s12967-021-02946-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of mesothelial cells is a key step in the peritoneal fibrosis (PF). Recent evidence indicates that signal transducer and activator of transcription 3 (STAT3) might mediate the process of renal fibrosis, which could induce the expression of hypoxia-inducible factor-1α (HIF-1α). Here, we investigated the effect of STAT3 activation on HIF-1α expression and the EMT of mesothelial cells, furthermore the role of pharmacological blockade of STAT3 in the process of PF during peritoneal dialysis (PD) treatment. METHODS Firstly, we investigated the STAT3 signaling in human peritoneal mesothelial cells (HPMCs) from drained PD effluent. Secondly, we explored the effect of STAT3 signaling activation on the EMT and the expression of HIF-1α in human mesothelial cells (Met-5A) induced by high glucose. Finally, peritoneal fibrosis was induced by daily intraperitoneal injection with peritoneal dialysis fluid (PDF) so as to explore the role of pharmacological blockade of STAT3 in this process. RESULTS Compared with the new PD patient, the level of phosphorylated STAT3 was up-regulated in peritoneal mesothelial cells from long-term PD patients. High glucose (60 mmol/L) induced over-expression of Collagen I, Fibronectin, α-SMA and reduced the expression of E-cadherin in Met-5A cells, which could be abrogated by STAT3 inhibitor S3I-201 pretreatment as well as by siRNA for STAT3. Furthermore, high glucose-mediated STAT3 activation in mesothelial cells induced the expression of HIF-1α and the profibrotic effect of STAT3 signaling was alleviated by siRNA for HIF-1α. Daily intraperitoneal injection of high-glucose based dialysis fluid (HG-PDF) induced peritoneal fibrosis in the mice, accompanied by the phosphorylation of STAT3. Immunostaining showed that phosphorylated STAT3 was expressed mostly in α-SMA positive cells in the peritoneal membrane induced by HG-PDF. Administration of S3I-201 prevented the progression of peritoneal fibrosis, angiogenesis, macrophage infiltration as well as the expression of HIF-1α in the peritoneal membrane induced by high glucose. CONCLUSIONS Taken together, these findings identified a novel mechanism linking STAT3/HIF-1α signaling to peritoneal fibrosis during long-term PD treatment. It provided the first evidence that pharmacological inhibition of STAT3 signaling attenuated high glucose-mediated mesothelial cells EMT as well as peritoneal fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
15
|
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798:145796. [PMID: 34175393 DOI: 10.1016/j.gene.2021.145796] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia induicible factor-1 alpha (HIF-1α) is a key transcription factor in cancer progression and target therapy in cancer. HIF-1α acts differently depending on presence or absence of Oxygen. In an oxygen-immersed environment, HIF-1α completely deactivated and destroyed by the ubiquitin proteasome pathway (UPP). In contrast, in the oxygen-free environment, it escapes destruction and enters to the nucleus of cells then upregulates many genes involved in cancer progression. Overexpressed HIF-1α and downstream genes support cancer progression through various mechanisms including angiogenesis, proliferation and survival of cells, metabolism reprogramming, invasion and metastasis, cancer stem cell maintenance, induction of genetic instability, and treatment resistance. HIF-1α can be provoked by signaling pathways unrelated to hypoxia during cancer progression. Therefore, cancer development and progression can be modulated by targeting HIF-1α and its downstream signaling molecules. In this regard, HIF-1α inhibitors which are categorized into the agents that regulate HIF-1α in gene, mRNA and protein levels used as an efficient way in cancer treatment. Also, HIF-1α expression can be negatively affected by the agents suppressing the activation of mTOR, PI3k/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rostami Zadeh
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Ramezani
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules 2021; 11:biom11050692. [PMID: 34063089 PMCID: PMC8147932 DOI: 10.3390/biom11050692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Post-surgical adhesions are internal scar tissue and a major health and economic burden. Adhesions affect and involve the peritoneal lining of the abdominal cavity, which consists of a continuous mesothelial covering of the cavity wall and majority of internal organs. Our understanding of the full pathophysiology of adhesion formation is limited by the fact that the mechanisms regulating normal serosal repair and regeneration of the mesothelial layer are still being elucidated. Emerging evidence suggests that mesothelial cells do not simply form a passive barrier but perform a wide range of important regulatory functions including maintaining a healthy peritoneal homeostasis as well as orchestrating events leading to normal repair or pathological outcomes following injury. Here, we summarise recent advances in our understanding of serosal repair and adhesion formation with an emphasis on molecular mechanisms and novel gene expression signatures associated with these processes. We discuss changes in mesothelial biomolecular marker expression during peritoneal development, which may help, in part, to explain findings in adults from lineage tracing studies using experimental adhesion models. Lastly, we highlight examples of where local tissue specialisation may determine a particular response of peritoneal cells to injury.
Collapse
|
17
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
18
|
Citeroni MR, Mauro A, Ciardulli MC, Di Mattia M, El Khatib M, Russo V, Turriani M, Santer M, Della Porta G, Maffulli N, Forsyth NR, Barboni B. Amnion-Derived Teno-Inductive Secretomes: A Novel Approach to Foster Tendon Differentiation and Regeneration in an Ovine Model. Front Bioeng Biotechnol 2021; 9:649288. [PMID: 33777919 PMCID: PMC7991318 DOI: 10.3389/fbioe.2021.649288] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine has greatly progressed, but tendon regeneration mechanisms and robust in vitro tendon differentiation protocols remain to be elucidated. Recently, tendon explant co-culture (CO) has been proposed as an in vitro model to recapitulate the microenvironment driving tendon development and regeneration. Here, we explored standardized protocols for production and storage of bioactive tendon-derived secretomes with an evaluation of their teno-inductive effects on ovine amniotic epithelial cells (AECs). Teno-inductive soluble factors were released in culture-conditioned media (CM) only in response to active communication between tendon explants and stem cells (CMCO). Unsuccessful tenogenic differentiation in AECs was noted when exposed to CM collected from tendon explants (CMFT) only, whereas CMCO upregulated SCXB, COL I and TNMD transcripts, in AECs, alongside stimulation of the development of mature 3D tendon-like structures enriched in TNMD and COL I extracellular matrix proteins. Furthermore, although the tenogenic effect on AECs was partially inhibited by freezing CMCO, this effect could be recovered by application of an in vivo-like physiological oxygen (2% O2) environment during AECs tenogenesis. Therefore, CMCO can be considered as a waste tissue product with the potential to be used for the development of regenerative bio-inspired devices to innovate tissue engineering application to tendon differentiation and healing.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | | | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Michael Santer
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
- Research Centre for Biomaterials BIONAM, University of Salerno, Fisciano, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
19
|
Yan D, Liu X, Xu H, Guo SW. Mesothelial Cells Participate in Endometriosis Fibrogenesis Through Platelet-Induced Mesothelial-Mesenchymal Transition. J Clin Endocrinol Metab 2020; 105:5894452. [PMID: 32813013 DOI: 10.1210/clinem/dgaa550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT While fibrosis in endometriosis has recently loomed prominently, the sources of myofibroblasts, the principal effector cell in fibrotic diseases, remain largely obscure. Mesothelial cells (MCs) can be converted into myofibroblasts through mesothelial-mesenchymal transition (MMT) in many fibrotic diseases and adhesion. OBJECTIVE To evaluate whether MCs contribute to the progression and fibrogenesis in endometriosis through MMT. SETTING, DESIGN, PATIENTS, INTERVENTION, AND MAIN OUTCOME MEASURES Dual immunofluorescence staining and immunohistochemistry using antibodies against calretinin, Wilms' tumor-1 (WT-1), and α-smooth muscle actin (α-SMA) were performed on lesion samples from 30 patients each with ovarian endometrioma (OE) and deep endometriosis (DE), and 30 normal endometrial (NE) tissue samples. Human pleural and peritoneal MCs were co-cultured with activated platelets or control medium with and without neutralization of transforming growth factor β1 (TGF-β1) and/or platelet-derived growth factor receptor (PDGFR) and their morphology, proliferation, and expression levels of genes and proteins known to be involved in MMT were evaluated, along with their migratory and invasive propensity, contractility, and collagen production. RESULTS The number of calretinin/WT-1 and α-SMA dual-positive fibroblasts in OE/DE lesions was significantly higher than NE samples. The extent of lesional fibrosis correlated positively with the lesional α-SMA staining levels. Human MCs co-cultured with activated platelets acquire a morphology suggestive of MMT, concomitant with increased proliferation, loss of calretinin expression, and marked increase in expression of mesenchymal markers. These changes coincided with functional differentiation as reflected by increased migratory and invasive capacity, contractility, and collagen production. Neutralization of TGF-β1 and PDGFR signaling abolished platelet-induced MMT in MCs. CONCLUSIONS MCs contribute to lesional progression and fibrosis through platelet-induced MMT.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Wang Q, Xu L, Zhang X, Liu D, Wang R. GSK343, an inhibitor of EZH2, mitigates fibrosis and inflammation mediated by HIF-1α in human peritoneal mesothelial cells treated with high glucose. Eur J Pharmacol 2020; 880:173076. [PMID: 32222493 DOI: 10.1016/j.ejphar.2020.173076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Inflammation and fibrosis in peritoneal mesothelial cells caused by long-term peritoneal dialysis (PD) are the main reasons why patients withdraw from peritoneal dialysis treatment. However, the related mechanism is still unclear. In the current study, we revealed that the expression of EZH2 was positively related to EMT and fibrosis in an in vitro model using human peritoneal mesothelial cells (HPMCs) stimulated with high glucose. Moreover, EZH2 also exhibited a positive correlation with HIF-1α expression. Using an sh-RNA lentivirus specific to EZH2, the EZH2 inhibitor GSK343 and rescue experiments of HIF-1α, we showed that EZH2 was an inducer of inflammation and fibrosis mediated by HIF-1α. Mechanistically, we revealed that on the one hand, EZH2 could increase the trimethylation of H3K4 at the HIF-1α gene promoter and directly activate HIF-1α transcription, as demonstrated by co-IP and ChIP-RT-PCR experiments. On the other hand, we verified that EZH2 could increase the trimethylation of H3K27 at the miR-142 gene promoter, which repressed the expression of miR-142. Combining bioanalysis and dual-luciferase assays, we found that miR-142 could regulate HIF-1α expression by directly binding to its mRNA 3'-UTR. Inhibition of miR-142 could rescue the protective effect of GSK343 on inflammation and fibrosis. In conclusion, our current study revealed that EZH2 plays a vital role in peritoneal fibrosis mediated by HIF-1α and related mechanisms. To our knowledge, this is the first study to demonstrate the effect of the EZH2-HIF-1α interaction and miR-142 on peritoneal fibrosis and inflammation and to suggest EZH2 and miR-142 as potential targets for the treatment of peritoneal fibrosis in patients with PD.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Liang Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xianzheng Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dan Liu
- Department of Nephrology, Yanzhou District People's Hospital, Jining, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Parikova A, Hruba P, Krejcik Z, Stranecky V, Franekova J, Krediet RT, Viklicky O. Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. Am J Physiol Renal Physiol 2020; 318:F229-F237. [DOI: 10.1152/ajprenal.00274.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term peritoneal dialysis (PD) is associated with functional and structural alterations of the peritoneal membrane. Inflammation may be the key moment, and, consequently, fibrosis may be the end result of chronic inflammatory reaction. The objective of the present study was to identify genes involved in peritoneal alterations during PD by comparing the transcriptome of peritoneal cells in patients with short- and long-term PD. Peritoneal effluent of the long dwell of patients with stable PD was centrifuged to obtain peritoneal cells. The gene expression profiles of peritoneal cells using microarray between patients with short- and long-term PD were compared. Based on microarray analysis, 31 genes for quantitative RT-PCR validation were chosen. A 4-h peritoneal equilibration test was performed on the day after the long dwell. Transport parameters and protein appearance rates were assessed. Genes involved in the immune system process, immune response, cell activation, and leukocyte and lymphocyte activation were found to be substantially upregulated in the long-term group. Quantitative RT-PCR validation showed higher expression of CD24, lymphocyte antigen 9 ( LY9), TNF factor receptor superfamily member 4 ( TNFRSF4), Ig associated-α ( CD79A), chemokine (C-C motif) receptor 7 ( CCR7), carcinoembryonic antigen-related cell adhesion molecule 1 ( CEACAM1), and IL-2 receptor-α ( IL2RA) in patients with long-term PD, with CD24 having the best discrimination ability between short- and long-term treatment. A relationship between CD24 expression and genes for collagen and matrix formation was shown. Activation of CD24 provoked by pseudohypoxia due to extremely high glucose concentrations in dialysis solutions might play the key role in the development of peritoneal membrane alterations.
Collapse
Affiliation(s)
- Alena Parikova
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdenek Krejcik
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Viktor Stranecky
- Institute of Inherited Metabolic Disorders, Prague, Czech Republic
| | - Janka Franekova
- Department of Laboratory Methods, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Raymond T. Krediet
- Department of Nephrology, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
22
|
Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1α in lung cancer cells through alternative splicing mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118550. [PMID: 31491447 DOI: 10.1016/j.bbamcr.2019.118550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/30/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Alternative splicing (AS) constitutes a pivotal mechanism for expanding the transcriptome and proteome diversity in higher eukaryotes. In contrast, misregulated AS events are relevant to carcinogenic signatures, including migration, angiogenesis, immortality, and drug resistance of cancer cells. Using a transcriptome analysis, discriminative splicing profiles of hypoxia-inducible factor (HIF)-1α transcripts were identified in tumorous tissues compared to adjacent normal tissues of lung cancer (LC) patients. In cancerous tissues or LC-derived cells, relatively high levels of HIF-1α-ex14 transcripts encoding the HIF-1αS isoform were noted compared to adjacent normal tissues and non-cancerous cells. The HIF-1αS isoform exhibited a more-prominent effect than that of the HIF-1αL isoform translated from HIF-1α+ex14 transcripts on enhancing promoter activities of the vascular endothelial growth factor receptor 2 (VEGFR2), serine/arginine splicing factor 1 (SRSF1), and c13orf25 genes. An increase in the SRSF1 protein facilitated the generation of HIF-1α-ex14 transcripts, whereas overexpression of RNA-binding motif protein 4 (RBM4) enhanced the expression of HIF-1α+ex14 transcripts in the A549 cells. Results of splicing reporter assays demonstrated the differential impacts of RBM4 and SRSF1 on the utilization of HIF-1α exon 14 in a CU element-dependent manner. In addition to transcriptional regulation, overexpression of the HIF-1αS and HIF-1αL isoforms differentially enhanced the metastatic signatures of A549 cells. Taken together, SRSF1 and RBM4 constitute an antagonistic mechanism on regulating the splicing profiles of HIF-1α gene, which is relevant to the oncogenic signatures of LC cells.
Collapse
Affiliation(s)
- Huai-Liang Chang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Li J, Li SX, Gao XH, Zhao LF, Du J, Wang TY, Wang L, Zhang J, Wang HY, Dong R, Guo ZY. HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract 2018; 215:644-652. [PMID: 30598338 DOI: 10.1016/j.prp.2018.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/05/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Peritoneal fibrosis is a major intractable complication of long-term peritoneal dialysis, and would eventually lead to peritoneal ultrafiltration failure and the termination of peritoneal dialysis. Hypoxia-inducible factor 1-alpha (HIF1A) has been reported to regulate vascular endothelial growth factor (VEGF) and involves in peritoneal fibrosis, but the exact molecular regulation mechanism remains unknown. METHODS HIF1A and VEGF protein levels were measured in 42 peritoneal patients using enzyme linked immunosorbent assay. Bioinformatics, reverse transcription-polymerase chain reaction, correlation analysis, RNA interference, gene over-expression and luciferase assays were performed to clarify the competing endogenous RNA (ceRNA) regulation between HIF1A and VEGF. RESULTS Both HIF1A and VEGF levels were elevated in the peritoneal effluent of peritoneal dialysis patients with ultrafiltration problems, and were positively correlated with each other at protein level and mRNA level. Bioinformatics analysis identified 8 common targeted miRNAs for HIF1A and VEGF, including miR-17-5p, 20a, 20b, 93, 106a, 106b, 199a-5p and 203. MiR-17-5p was proved to be present in patients' peritoneal effluent and selected for further studies. HIF1A mRNA and VEGF mRNA could regulate each other, and miR-17-5p was required in the regulations. Down/up regulation of HIF1A mRNA and VEGF mRNA resulted in up/down regulation of miR-17-5p. Furthermore, down/up regulation of miR-17-5p was associated with up/down regulation of HIF1A mRNA and VEGF mRNA. Luciferase assay indicated that HIF1A and VEGF regulated each other through 3'UTR. CONCLUSION HIF1A and VEGF could regulate each other in peritoneal mesothelial cell in the mediation of miR-17-5p and 3'UTR, indicating HIF1A and VEGF might regulate each other through competing endogenous RNA mechanism in the development of peritoneal fibrosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Shuang Xi Li
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Xian Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Li Fang Zhao
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Jun Du
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Tie Yun Wang
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Li Wang
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Hai Yan Wang
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Rui Dong
- Department of Nephrology, Changhai Hospital, Shanghai, China.
| | - Zhi Yong Guo
- Department of Nephrology, Changhai Hospital, Shanghai, China.
| |
Collapse
|
24
|
Du J, Zhu Y, Meng X, Xie H, Wang J, Zhou Z, Wang R. Atorvastatin attenuates paraquat poisoning-induced epithelial-mesenchymal transition via downregulating hypoxia-inducible factor-1 alpha. Life Sci 2018; 213:126-133. [PMID: 30336147 DOI: 10.1016/j.lfs.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022]
Abstract
AIM This study investigated the effects of atorvastatin (ATS) on the paraquat (PQ)-induced epithelial-mesenchymal transition (EMT) and the potential mechanism through hypoxia-inducible factor-1 alpha (HIF-1α). MAIN METHODS Sprague-Dawley (SD) rats were randomly divided into a control group (n = 5), PQ group (n = 20), PQ + ATS L group (n = 20, ATS 20 mg/kg daily) and PQ + ATS H group (n = 20, ATS 40 mg/kg daily). All treated rats were given a 20% PQ solution (50 mg/kg) once by gavage and then sacrificed 12, 24, 72 and 168 h after PQ exposure. The A549 and RLE-6TN cell lines were treated with ATS, PQ or both for 24 h. Mesenchymal (α-SMA and vimentin) and epithelial (E-cadherin and ZO-1) cell marker expression was tested both in vivo and in vitro. The effects of ATS on HIF-1α and β‑catenin expression were also evaluated. KEY FINDINGS ATS alleviated PQ poisoning-induced lung injury and pulmonary fibrosis in vivo. This effect was dose-dependent. ATS treatment attenuated the EMT by increasing the levels of the epithelial markers E-cadherin and ZO-1 and by decreasing the expression of the mesenchymal markers α-SMA and vimentin in both lung tissues and in vitro cell culture. In addition, ATS treatment may decrease the HIF-1α and β‑catenin levels both in vivo and in vitro. SIGNIFICANCE In conclusion, ATS can attenuate PQ-induced pulmonary fibrosis. The mechanism may involve the downregulation of the HIF-1α/β‑catenin pathway and the inhibition of the PQ-induced EMT by ATS. ATS may be considered as a therapeutic agent for PQ poisoning-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiang Du
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
| | - Hui Xie
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Jinfeng Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China
| | - Zhigang Zhou
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Ruilan Wang
- Department of Emergency, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China.
| |
Collapse
|
25
|
Wu H, Li X, Feng M, Yao L, Deng Z, Zao G, Zhou Y, Chen S, Du Z. Downregulation of RNF138 inhibits cellular proliferation, migration, invasion and EMT in glioma cells via suppression of the Erk signaling pathway. Oncol Rep 2018; 40:3285-3296. [PMID: 30272353 PMCID: PMC6196598 DOI: 10.3892/or.2018.6744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common adult malignant primary brain tumor; however, the effect of chemotherapy is often limited by drug‑resistance and poor prognosis is common. Ring finger protein 138 (RNF138) belongs to the E3 ligase family, and has significantly higher expression level in glioma tissue than in noncancerous brain tissues. Epithelial-mesenchymal-transition (EMT) has a critical role in cancer invasion and metastasis, ultimately leading to increased cell motility and resistance to genotoxic agents. Extracellular‑signal regulated kinase (Erk) pathways promote the growth of glioma cells and enhance tumor invasion, with a role in the progression of EMT. However, the association between RNF138 and human glioma progression remains poorly understood. Relatively little is known about the association between RNF138, Erk, and EMT in glioma progression. In the current study, experiments were performed to explore the potential roles and mechanisms of RNF138 in glioblastoma in vitro and in vivo. Glioma cell line proliferation, migration and invasion were inhibited by knockdown of RNF138 in vitro. By lowering the RNF138 expression, cleaved caspase3 and E‑cadherin were upregulated, while phospho‑Erk1/2, vimentin, MMP2, HIF‑1α and VEGF were downregulated in U87 and U251 cells in vitro. In vivo findings revealed that the growth of U87 cell‑transplanted tumors in nude mice was inhibited in tumors with RNF138 knockdown. These findings suggested that downregulation of RNF138 inhibited glioma cell proliferation, migration, and invasion, and reversed EMT, potentially via Erk signaling pathway. Therefore, RNF138 may be a potential therapeutic target against glioma.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ming Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guozheng Zao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sansong Chen
- Department of Neurosurgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ziwei Du
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
26
|
Nahomi RB, Nagaraj RH. The role of HIF-1α in the TGF-β2-mediated epithelial-to-mesenchymal transition of human lens epithelial cells. J Cell Biochem 2018; 119:6814-6827. [PMID: 29693273 DOI: 10.1002/jcb.26877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Human lens epithelial cells (HLE) undergo mesenchymal transition and become fibrotic during posterior capsule opacification (PCO), which is a frequent complication after cataract surgery. TGF-β2 has been implicated in this fibrosis. Previous studies have focused on the role of hypoxia-inducible factor-1α (HIF-1α) in fibrotic diseases, but the role of HIF-1α in the TGF-β2-mediated fibrosis in HLE is not known. TGF-β2 treatment (10 ng/mL, 48 h) increased the HIF-1α levels along with the EMT markers in cultured human lens epithelial cells (FHL124 cells). The increase in HIF-1α corresponded to an increase in VEGF-A in the culture medium. However, exogenous addition of VEGF-A (up to 10 ng/mL) did not alter the EMT marker levels in HLE. Addition of a prolyl hydroxylase inhibitor, dimethyloxalylglycine (DMOG, up to 10 µM), enhanced the levels of HIF-1α, and secreted VEGF-A but did not alter the EMT marker levels. However, treatment of cells with a HIF-1α translational inhibitor, KC7F2, significantly reduced the TGF-β2-mediated EMT response. This was accompanied by a reduction in the ERK phosphorylation and nuclear translocation of Snail and Slug. Together, these data suggest that HIF-1α is important for the TGF-β2-mediated EMT of human lens epithelial cells.
Collapse
Affiliation(s)
- Rooban B Nahomi
- Department of Ophthalmology, University of Colorado, Aurora, Colorado
| | - Ram H Nagaraj
- Department of Ophthalmology, University of Colorado, Aurora, Colorado.,Department of Pharmaceutical Science, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| |
Collapse
|
27
|
Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol (Oxf) 2018; 222:e12999. [PMID: 29159875 DOI: 10.1111/apha.12999] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.
Collapse
Affiliation(s)
- C. P. C. Ow
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - J. P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - M. M. Ullah
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - L. M. Hilliard
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| |
Collapse
|
28
|
Wilson RB. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 2018; 3:20180103. [PMID: 30911653 PMCID: PMC6405013 DOI: 10.1515/pp-2018-0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Peritoneal response to various kinds of injury involves loss of peritoneal mesothelial cells (PMC), danger signalling, epithelial-mesenchymal transition and mesothelial-mesenchymal transition (MMT). Encapsulating peritoneal sclerosis (EPS), endometriosis (EM) and peritoneal metastasis (PM) are all characterized by hypoxia and formation of a vascularized connective tissue stroma mediated by vascular endothelial growth factor (VEGF). Transforming growth factor-β1 (TGF-β1) is constitutively expressed by the PMC and plays a major role in the maintenance of a transformed, inflammatory micro-environment in PM, but also in EPS and EM. Persistently high levels of TGF-β1 or stimulation by inflammatory cytokines (interleukin-6 (IL-6)) induce peritoneal MMT, adhesion formation and fibrosis. TGF-β1 enhances hypoxia inducible factor-1α expression, which drives cell growth, extracellular matrix production and cell migration. Disruption of the peritoneal glycocalyx and exposure of the basement membrane release low molecular weight hyaluronan, which initiates a cascade of pro-inflammatory mediators, including peritoneal cytokines (TNF-α, IL-1, IL-6, prostaglandins), growth factors (TGF-α, TGF-β, platelet-derived growth factor, VEGF, epidermal growth factor) and the fibrin/coagulation cascade (thrombin, Tissue factor, plasminogen activator inhibitor [PAI]-1/2). Chronic inflammation and cellular transformation are mediated by damage-associated molecular patterns, pattern recognition receptors, AGE-RAGE, extracellular lactate, pro-inflammatory cytokines, reactive oxygen species, increased glycolysis, metabolomic reprogramming and cancer-associated fibroblasts. The pathogenesis of EPS, EM and PM shows similarities to the cellular transformation and stromal recruitment of wound healing.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper GI Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, 2170, NSW, Australia
| |
Collapse
|
29
|
Chen RJ, Kuo HC, Cheng LH, Lee YH, Chang WT, Wang BJ, Wang YJ, Cheng HC. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. Int J Mol Sci 2018; 19:ijms19010287. [PMID: 29346311 PMCID: PMC5796233 DOI: 10.3390/ijms19010287] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS) has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Hsiao-Che Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 707010, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40401, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
30
|
Taglieri L, Nardo T, Vicinanza R, Ross JM, Scarpa S, Coppotelli G. Thyroid hormone regulates fibronectin expression through the activation of the hypoxia inducible factor 1. Biochem Biophys Res Commun 2017; 493:1304-1310. [PMID: 28974422 DOI: 10.1016/j.bbrc.2017.09.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 01/17/2023]
Abstract
Thyroid hormones regulate gene expression via both canonical and non-canonical signaling. Hyperthyroidism is associated with elevated plasma levels of fibronectin (FN): in this study we elucidate the molecular mechanism through which triiodothyronine (T3) regulates FN and demonstrate that T3 induces FN expression via a non-canonical pathway by activating hypoxia-inducible factor-1 (HIF-1). We found that T3 treatment increased cellular and secreted FN in human hepatoma cells (HepG2) and human dermal fibroblasts (HF) via the PI3K/Akt/HIF-1 pathway. The inhibition of either Akt phosphorylation with wortmannin or HIF-1 with YC1 in both cell types prevented HIF-1α synthesis and FN positive regulation upon T3 treatment. We showed that HIF-1α overexpression per se was sufficient to up-regulate FN in both cell lines as demonstrated by the transient transfection of both the constitutively active and wild-type forms of HIF-1α. Our data demonstrate the involvement of the PI3K/Akt/HIF-1 pathway in mediating T3 induced FN up-regulation.
Collapse
Affiliation(s)
- Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tiziana Nardo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberto Vicinanza
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Studies, Sapienza University, Rome, Italy
| | - Jaime M Ross
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, 171 77 Stockholm, Sweden
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | |
Collapse
|
31
|
Shang Y, Chen H, Ye J, Wei X, Liu S, Wang R. HIF-1α/Ascl2/miR-200b regulatory feedback circuit modulated the epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Exp Cell Res 2017; 360:243-256. [PMID: 28899657 DOI: 10.1016/j.yexcr.2017.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/17/2022]
Abstract
We have reported that Achaete scute-like 2 (Ascl2) transcriptionally repressed miR-200 family members and affected the epithelial-mesenchymal transition (EMT)-mesenchymal-epithelial transition (MET) plasticity in colorectal cancer (CRC) cells. However, little is known about the regulation of the Ascl2/miR-200 axis. Here, we found that hypoxia inducible factor-1α (HIF-1α) mRNA levels were positively correlated with Ascl2 mRNA levels and inversely correlated with miR-200b in CRC samples. Mechanistically, we showed that Ascl2 was a downstream target of HIF-1α and had a critical role in the EMT phenotype induced by hypoxia or HIF-1α over-expression. Hypoxia or HIF-1α over-expression activated Ascl2 expression in CRC cells in a direct transcriptional mechanism via binding with the hypoxia-response element (HRE) at the proximal Ascl2 promoter. HIF-1α-induced Ascl2 expression repressed miR-200b expression to induce EMT occurrence. Furthermore, we found HIF-1α was a direct target of miR-200b. MiR-200b bound with the 3'-UTR of HIF-1α in CRC cells. HIF-1α/Ascl2/miR-200b regulatory feedback circuit modulated the EMT-MET plasticity of CRC cells. Our results confirmed a novel HIF-1α/Ascl2/miR-200b regulatory feedback circuit in modulating EMT-MET plasticity of CRC cells, which could serve as a possible therapeutic target.
Collapse
Affiliation(s)
- Yangyang Shang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Haoyuan Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Ye
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiaolong Wei
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Shanxi Liu
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
32
|
Zhu L, Zhao Q. Hypoxia-inducible factor 1α participates in hypoxia-induced epithelial-mesenchymal transition via response gene to complement 32. Exp Ther Med 2017; 14:1825-1831. [PMID: 28810656 DOI: 10.3892/etm.2017.4665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to explore the function of response gene to complement 32 (RGC-32) in hypoxia-induced epithelial-mesenchymal transition (EMT) in pancreatic cancer. Three kinds of hypoxia-inducible factor 1α (HIF-1α) small interfering (si)RNA were synthesized and the different effects on the expression of HIF-1α were detected by western blotting. In human pancreatic cancer BxPC-3 cells, HIF-1α levels were diminished using siRNA transfection or HIF-1α inhibitor pretreatment, and the expression levels of RGC-32 and EMT-associated proteins were analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Subsequently, the protein levels of epithelial marker, E-cadherin, and mesenchymal marker, vimentin, were determined by western blotting. Results demonstrated that HIF-1α-Homo-488 siRNA and HIF-1α-Homo-1216 siRNA diminished the protein level of HIF-1α. Compared with normoxia, hypoxia induced the levels of HIF-1α, RGC-32, N-cadherin and vimentin, but suppressed the expression of E-cadherin and cytokeratins. The inhibition of HIF-1α by HIF-1α-Homo-1216 siRNA transfection or HIF-1α inhibitor repressed hypoxia-induced HIF-1α, RGC-32, N-cadherin and vimentin, but increased the expression of E-cadherin and cytokeratins. When RGC-32 was knocked down, hypoxia-induced vimentin was suppressed; however, hypoxia-suppressed N-cadherin was released. In conclusion, the present results demonstrated that hypoxia induced the expression of HIF-1α to activate the levels of RGC-32, in turn to regulate the expression EMT-associated proteins for EMT. These findings revealed the function of RGC-32 in hypoxia-induced EMT and may have identified a novel link between HIF-1α and EMT for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
33
|
Shi J, Yu M, Sheng M. Angiogenesis and Inflammation in Peritoneal Dialysis: The Role of Adipocytes. Kidney Blood Press Res 2017; 42:209-219. [PMID: 28478435 DOI: 10.1159/000476017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation and angiogenesis are the most common complications in patients undergoing maintenance peritoneal dialysis (PD), resulting in progressive peritoneum remolding and, eventually, utrafiltration failure. Contributing to the deeper tissue under the peritoneal membrane, adipocytes play a neglected role in this process. Some adipokines act as inflammatory and angiogenic promoters, while others have the opposite effects. Adipokines, together with inflammatory factors and other cytokines, modulate inflammation and neovascularization in a coordinated fashion. This review will also emphasize cellular regulators and their crosstalk in long-term PD. Understanding the molecular mechanism, targeting changes in adipocytes and regulating adipokine secretion will help extend therapeutic methods for preventing inflammation and angiogenesis in PD.
Collapse
|
34
|
Zhang W, Wu X, Hu L, Ma Y, Xiu Z, Huang B, Feng Y, Tang X. Overexpression of Human Papillomavirus Type 16 Oncoproteins Enhances Epithelial-Mesenchymal Transition via STAT3 Signaling Pathway in Non-Small Cell Lung Cancer Cells. Oncol Res 2016; 25:843-852. [PMID: 28508744 PMCID: PMC7841029 DOI: 10.3727/096504016x14813880882288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human papillomavirus (HPV) infection may be associated with the development and progression of non-small cell lung cancer (NSCLC). However, the role of HPV-16 oncoproteins in the development and progression of NSCLC is not completely clear. Epithelial–mesenchymal transition (EMT), a crucial step for invasion and metastasis, plays a key role in the development and progression of NSCLC. Here we explored the effect of HPV-16 oncoproteins on EMT and the underlying mechanisms. NSCLC cell lines, A549 and NCI-H460, were transiently transfected with the EGFP-N1-HPV-16 E6 or E7 plasmid. Real-time PCR and Western blot analysis were performed to analyze the expression of EMT markers. A protein microarray was used to screen the involved signaling pathway. Our results showed that overexpression of HPV-16 E6 and E7 oncoproteins in NSCLC cells significantly promoted EMT-like morphologic changes, downregulated the mRNA and protein levels of EMT epithelial markers (E-cadherin and ZO-1), and upregulated the mRNA and protein levels of EMT mesenchymal markers (N-cadherin and vimentin) and transcription factors (ZEB-1 and Snail-1). Furthermore, the HPV-16 E6 oncoprotein promoted STAT3 activation. Moreover, WP1066, a specific signal transducer and activator of transcription 3 (STAT3) inhibitor, reversed the effect of HPV-16 E6 on the expression of ZO-1, vimentin, and ZEB-1 in transfected NSCLC cells. Taken together, our results suggest that overexpression of HPV-16 E6 and E7 oncoproteins enhances EMT, and the STAT3 signaling pathway may be involved in HPV-16 E6-induced EMT in NSCLC cells.
Collapse
|
35
|
Kawanishi K. Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum 2016; 1:79-89. [PMID: 30911611 DOI: 10.1515/pp-2016-0009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mesothelial cells (MCs) form the superficial anatomic layer of serosal membranes, including pleura, pericardium, peritoneum, and the tunica of the reproductive organs. MCs produce a protective, non-adhesive barrier against physical and biochemical damages. MCs express a wide range of phenotypic markers, including vimentin and cytokeratins. MCs play key roles in fluid transport and inflammation, as reflected by the modulation of biochemical markers such as transporters, adhesion molecules, cytokines, growth factors, reactive oxygen species and their scavengers. MCs synthesize extracellular matrix related molecules, and the surface of MC microvilli secretes a highly hydrophilic protective barrier, "glycocalyx", consisting mainly of glycosaminoglycans. MCs maintain a balance between procoagulant and fibrinolytic activation by producing a whole range of regulators, can synthetize fibrin and therefore form adhesions. Synthesis and recognition of hyaluronan and sialic acids might be a new insight to explain immunoactive and immunoregulatory properties of MCs. Epithelial to mesenchymal transition of MCs may involve serosal repair and remodeling. MCs might also play a role in the development and remodeling of visceral adipose tissue. Taken together, MCs play important roles in health and disease in serosal cavities of the body. The mesothelium is not just a membrane and should be considered as an organ.
Collapse
|