1
|
Tinkov AA, Skalny AV, Guo X, Korobeinikova TV, Ning Y, Rocha JBT, Zhang F, Aschner M. Review of the Protective Effects of Selenium against T-2 Toxin-Induced Toxicity. Chem Res Toxicol 2025. [PMID: 40397415 DOI: 10.1021/acs.chemrestox.5c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The objective of the present study was to review the potential protective effects of Se against T-2 toxin-induced adverse effects in cartilage and other tissues as well as to discuss the potential molecular mechanisms by which Se counteracts T-2 toxicity. Laboratory studies demonstrate that Se attenuates T-2 toxin-induced chondrocyte death by inhibition of the mitochondrial pathway of apoptosis. Protective effects of Se against T-2 toxin-induced oxidative stress in chondrocytes are mediated by improvement of antioxidant selenoprotein expression, which is altered upon mycotoxin exposure. In addition to T-2 toxin-induced oxidative stress, Se treatment is associated with the inhibition of mycotoxin-induced chondrocyte ferroptosis. Along with prevention of chondrocyte damage, Se improves extracellular matrix (ECM) metabolism by the up-regulation of type II collagen and proteoglycans expression and inhibition of T-2 toxin-induced ECM degradation by matrix metalloproteinases. It is also noteworthy that part of the interactive effects between Se treatment and T-2 toxin exposure is mediated by epigenetic mechanisms, especially modulation of noncoding RNA expression. Recent evidence also shows that Se mitigates the toxic effects of the T-2 toxin in the liver, kidney, immune system, and other organs. Notably, a number of studies demonstrated that a Se deficiency aggravates the adverse effects of T-2 toxin exposure, supporting the notion of the protective effects of Se. However, the existing data were obtained in laboratory in vivo and in vitro models, and the potential therapeutic effects of Se supplementation in T-2 toxin-exposed human subjects have yet to be fully characterized.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tatiana V Korobeinikova
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Wang P, Sun LH, Wang X, Wu Q, Liu A. Effective protective agents against the organ toxicity of T-2 toxin and corresponding detoxification mechanisms: A narrative review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:251-266. [PMID: 38362519 PMCID: PMC10867609 DOI: 10.1016/j.aninu.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.
Collapse
Affiliation(s)
- Pengju Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Lv-hui Sun
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
4
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
5
|
Sanapala P, Pola S, Nageswara Rao Reddy N, Pallaval VB. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. MARINE BIOMATERIALS 2022:307-349. [DOI: 10.1007/978-981-16-5374-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Dong X, Wang W, Jiang T, Zhang Y, Han H, Zhang Y, Yang C. Construction and potential application of bacterial superoxide dismutase expressed in Bacillus subtilis against mycotoxins. PLoS One 2021; 16:e0260047. [PMID: 34784394 PMCID: PMC8594817 DOI: 10.1371/journal.pone.0260047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress, which could be evoked by numerous inducements including mycotoxins like deoxynivalenol (DON), cause severe damages to organisms. Antioxidants are promising protectants against oxidative stress that could be applied in pharmaceutical, cosmetic, and food and feed industries. In this study, a thermostable and acidophilic superoxide dismutase (AaSOD) was used to develop an antioxidant product that can potentially protect organisms from oxidative stress related damages. The enzyme was successfully expressed as an extracelluar protein in Bacillus subtilis with a high yield. To obtain a feasible protocol for industrial production of AaSOD, the fermentation mediums that are commonly used for culturing B. subtilis were screened, the feasibility of expressing AaSOD without antibiotic as selection pressure was confirmed, and the effect of using lactose as an inducer instead of isopropyl-β-d-thiogalactoside (IPTG) was investigated. Batch fermentation was conducted to validate the optimized conditions for AaSOD production, and 6530 U mL-1 of SOD activity was obtained in the fermentation broth. The dry powder product of AaSOD with an activity of 22202 U g-1 was prepared by spray-drying and was administrated on zebrafish to test its function as a protectant against DON, and thus gained a significant redress of the reactive oxygen species (ROS) accumulation induced by DON. Taken together, this study provides a feasible protocol to prepare the AaSOD-based antioxidant product that is potentially applied in livestock industry.
Collapse
Affiliation(s)
- Xueqian Dong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shandong Provincial Key Laboratory of Food & Fermentation Engingeering, Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shandong Provincial Key Laboratory of Food & Fermentation Engingeering, Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yanmin Zhang
- Shandong Provincial Key Laboratory of Food & Fermentation Engingeering, Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongyu Han
- Shandong Provincial Key Laboratory of Food & Fermentation Engingeering, Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yonggang Zhang
- Shandong Provincial Key Laboratory of Food & Fermentation Engingeering, Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
7
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
8
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Lv L, Zhang H, Liu Z, Lei L, Feng Z, Zhang D, Ren Y, Zhao S. Comparative study of yeast selenium vs. sodium selenite on growth performance, nutrient digestibility, anti-inflammatory and anti-oxidative activity in weaned piglets challenged by Salmonella typhimurium. Innate Immun 2020; 26:248-258. [PMID: 31766926 PMCID: PMC7251790 DOI: 10.1177/1753425919888566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022] Open
Abstract
The present study was conducted to investigate the effects of dietary supplementation of selenium from different sources on the growth performance, nutrient digestibility, and blood immune indices of piglets orally challenged with Salmonella typhimurium (ST). In a 2 × 2 factorial arrangement, 32 piglets (6.43 ± 0.54 kg of body mass) were assigned into four groups with or without dietary inclusion of sodium selenite (SS) or yeast selenium (YS) and with or without ST challenge (5 ml 1 × 109 cfu/ml ST or 5 ml saline) on d 13. In each period, YS increased average daily feed intake and average daily gain but did not reach statistical significance. During the challenged stage, piglets fed YS had higher digestibility of dry matter, crude protein, crude fat, and YS reduced the amount of Escherichia coli in feces. Additionally, YS regulated the composition of T-lymphocyte subset and influenced the production of inflammatory cytokines. In conclusion, in this study selenium-enriched yeast was more effective in enhancing nutrient digestibility, and inhibiting inflammation and oxidative stress by inducing the activity of the lymphocytes, expression of antioxidant enzymes and so on.
Collapse
Affiliation(s)
- Liangkang Lv
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Hui Zhang
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Zhengya Liu
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Long Lei
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Zhi Feng
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Dandan Zhang
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Ying Ren
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| | - Shengjun Zhao
- Hubei Collaborative Innovation Center for Animal
Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed
Science,
Wuhan
Polytechnic University, China
| |
Collapse
|
10
|
Wang X, Yan X, Yang Y, Yang W, Zhang Y, Wang J, Ye D, Wu Y, Ma P, Yan B. Dibutyl phthalate-mediated oxidative stress induces splenic injury in mice and the attenuating effects of vitamin E and curcumin. Food Chem Toxicol 2019; 136:110955. [PMID: 31712109 DOI: 10.1016/j.fct.2019.110955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Dibutyl phthalate (DBP) is a ubiquitous environmental contaminant that at certain levels can be harmful to human health. Although DBP has been widely linked to immunotoxicity, any association between DBP exposure and splenic injury remains unknown. The purpose of this study was to investigate whether DBP exposure can induce splenic injury and the antagonistic effects of two antioxidants, vitamin E (VitE) and curcumin (Cur), on DBP-induced splenic injury. The levels of ROS, GSH, T-AOC, IL-1β, TNF-α, cytochrome C, caspase-8, caspase-9 and caspase-3 in the spleen homogenate of mice were measured. Any histopathological changes in the spleen were observed using H&E and toluidine blue staining. And the morphology of mitochondria was observed using Janus Green B staining. The results indicate that exposure to 50 mg/kg DBP could cause histopathological changes of the spleen and result in inflammation and apoptosis associated with oxidative stress, which may lead to splenic injury in mice. Moreover, both VitE and Cur could antagonize the oxidative stress induced by DBP to reduce splenic injury. These findings help to expand our understanding of DBP-mediated immunotoxicity, and to show that VitE and Cur can alleviate DBP-induced splenic injury and the possible DBP-associated decline in immune function.
Collapse
Affiliation(s)
- Xianliang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Xu Yan
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yuyan Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Wenjing Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yujing Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Jiao Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Dan Ye
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yang Wu
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Ping Ma
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Biao Yan
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
11
|
Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, Tang S, Velkov T. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol 2019; 93:3041-3056. [PMID: 31570981 DOI: 10.1007/s00204-019-02577-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungi. Mycotoxins cause animal feed and food contamination, resulting in mycotoxicosis. T-2 toxin is one of the most common and toxic trichothecene mycotoxins. For the last decade, it has garnered considerable attention due to its potent neurotoxicity. Worryingly, T-2 toxin can cross the blood-brain barrier and accumulate in the central nervous system (CNS) to cause neurotoxicity. This review covers the current knowledge base on the molecular mechanisms of T-2 toxin-induced oxidative stress and mitochondrial dysfunction in the CNS. In vitro and animal data have shown that induction of reactive oxygen species (ROS) and oxidative stress plays a critical role during T-2 toxin-induced neurotoxicity. Mitochondrial dysfunction and cascade signaling pathways including p53, MAPK, Akt/mTOR, PKA/CREB and NF-κB contribute to T-2 toxin-induced neuronal cell death. T-2 toxin exposure can also result in perturbations of mitochondrial respiratory chain complex and mitochondrial biogenesis. T-2 toxin exposure decreases the mitochondria unfolded protein response and dampens mitochondrial energy metabolism. Antioxidants such as N-acetylcysteine (NAC), activation of Nrf2/HO-1 and autophagy have been shown to provide a protective effect against these detrimental effects. Clearly, translational research and the discovery of effective treatment strategies are urgently required against this common food-borne threat to human health and livestock.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China. .,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Harry Hines Blvd, Dallas, TX, 5323, USA.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feifei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Fu J, Yang T, Wang W, Xu S. Effect of selenium antagonist lead-induced damage on Th1/Th2 imbalance in the peripheral blood lymphocytes of chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:74-82. [PMID: 30889402 DOI: 10.1016/j.ecoenv.2019.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a type of toxic metal that can hurt the immune system. Selenium (Se) can reduce the damage caused by heavy metals. To investigate the effects of Se against Pb on bird immune cells, as well as the immunotoxin mechanism of Pb, Se supplementation and/or Pb poisoning chicken models were established. One hundred eighty 1-year-old broiler chickens were randomly divided into four groups (n = 6). The four groups were the control group, the selenium-rich group (Se group), the Pb supplementation group (Pb group) and the Se and Pb compound group (Se + Pb group). The peripheral blood lymphocytes of chickens were collected to test the selenoproteins and cytokine mRNA levels at 30 and 60 d. Determination of the content of Se and Pb in the serum, principal component analysis and ingenuity pathway analysis were performed at the two time points. As a result, Pb exposure increased the content of Pb, activating the Th1/Th2 pathway in peripheral blood lymphocytes. Additionally, this experiment showed that Se supplementation and Pb exposure could influence the mRNA levels of selenoproteins and cytokines in the peripheral blood lymphocytes of chickens. However, all of the parameters that we detected in the experiment indicated that Se supplementation could alleviate the increase of selenoproteins and cytokine mRNA levels and the Th1/Th2 imbalance induced by Pb in peripheral blood lymphocytes. In summary, Se can alleviate the toxic effects caused by Pb in the peripheral blood lymphocytes of chickens, suggesting the antagonism between Se and Pb.
Collapse
Affiliation(s)
- Jiaxing Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianshu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Ren Z, He H, Fan Y, Chen C, Zuo Z, Deng J. Research Progress on the Toxic Antagonism of Selenium Against Mycotoxins. Biol Trace Elem Res 2019; 190:273-280. [PMID: 30267312 DOI: 10.1007/s12011-018-1532-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Animal feed is prone to becoming infected with molds during production and storage, resulting in secondary metabolite mycotoxins, such as aflatoxin B1 (AFB1), T-2 toxins, deoxynivalenol (DON), and ochratoxin A (OTA), which are harmful to humans and animals. Selenium is an essential trace element for humans and animals, and it is also an effective antioxidant. Many studies have shown that selenium can reduce the damage caused by mycotoxins in animals. This article reviews the current literature on the antagonistic effects of selenium on AFB1, T-2, DON, and OTA toxicity.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Hongyi He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Yu Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Changhao Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, China.
- Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
14
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
15
|
CD4+ cells as a potential biomarker for cytomegalovirus retinitis in children with acute lymphocytic leukemia. Chin Med J (Engl) 2019; 132:356-359. [PMID: 30681505 PMCID: PMC6595821 DOI: 10.1097/cm9.0000000000000065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Wang J, Yang C, Yuan Z, Yi J, Wu J. T-2 Toxin Exposure Induces Apoptosis in TM3 Cells by Inhibiting Mammalian Target of Rapamycin/Serine/Threonine Protein Kinase(mTORC2/AKT) to Promote Ca 2+Production. Int J Mol Sci 2018; 19:3360. [PMID: 30373220 PMCID: PMC6274855 DOI: 10.3390/ijms19113360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023] Open
Abstract
Although mTOR (the mammalian target of rapamycin) can regulate intracellular free Ca2+concentration in normal cultured podocytes, it remains elusive as to how mTORC2/AKT-mediated Ca2+participates in the process of T-2 toxin-induced apoptosis. The potential signaling responsible for intracellular Ca2+ concentration changes was investigated using immunoblot assays in an in vitro model of TM3 cell injury induced by T-2 toxin. Changes in Ca2+ were assessed using the Ca2+-sensitive fluorescent indictor dye Fura 2-AM. The cytotoxicity of TM3 cells was assessed with an MTT bioassay, and apoptosis was measured using Annexin V-FITC staining. Following T-2 toxin treatment, the growth of cells, phospho-mTORSer2481, phospho-mTORSer2448, and phospho-AktSer473 were significantly decreased in a time-dependent manner, whereas Ca2+ and apoptosis were increased. T-2 toxin-induced apoptosis was prevented by BAPTA-AM (a Ca2+chelator) and MHY1485 (an mTOR activator), and the application of mTOR activator MHY1485 also prevented the increase of intracellular free Ca2+concentration in TM3 cells. Our results strongly suggest that T-2 toxin exposure induces apoptosis in TM3 cells by inhibiting mTORC2/AKT to promote Ca2+ production.
Collapse
Affiliation(s)
- Ji Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Chenglin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Wang X, Zuo Z, Deng J, Zhang Z, Chen C, Fan Y, Peng G, Cao S, Hu Y, Yu S, Chen C, Ren Z. Protective Role of Selenium in Immune-Relevant Cytokine and Immunoglobulin Production by Piglet Splenic Lymphocytes Exposed to Deoxynivalenol. Biol Trace Elem Res 2018; 184:83-91. [PMID: 28948563 DOI: 10.1007/s12011-017-1160-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 11/28/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin that causes immunosuppression, especially in swine. Selenium (Se) is essential for proper functioning of the immune system in animals. However, little is known about the effects of DON and Se on cytokine or immunoglobulin production in piglets. Here, we addressed this gap by examining piglet splenic lymphocyte responses in vitro. Cells were stimulated with concanavalin A, a T cell stimulatory lectin, in the absence or presence of DON (0.1, 0.2, 0.4, and 0.8 μg/mL), Se (Na2SeO3, 2 μM), or combinations of Se 2 μM and DON 0.1-0.8 μg/mL for 12, 24, or 48 h. At each time point, supernatants and cells were collected and the expression of cytokine and immunoglobulin protein and mRNA was examined. Compared with control and Se-alone treatments, DON exposure significantly and dose dependently decreased the expression levels of IL-2, IL-4, IL-6, IL-10, IFN-γ, IgG, and IgM mRNA and protein. By contrast, co-treatment with DON + Se significantly increased the mRNA and protein levels of all factors examined, except IL-4 and IL-6, compared with DON treatment alone. The results of this investigation demonstrate that Se has the potential to counteract DON-induced immunosuppression in piglets and is a promising treatment for DON-mediated toxicity.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuo Zhang
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhao Chen
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Fan
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoxi Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, 610041, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Yatoo MI, Dimri U, Gopalakrishnan A, Saxena A, Wani SA, Dhama K. In vitro and in vivo immunomodulatory potential of Pedicularis longiflora and Allium carolinianum in alloxan-induced diabetes in rats. Biomed Pharmacother 2018; 97:375-384. [DOI: 10.1016/j.biopha.2017.10.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
|
19
|
Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, Li L, Zhang X, Kuca K. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget 2017; 8:110708-110726. [PMID: 29299181 PMCID: PMC5746416 DOI: 10.18632/oncotarget.22800] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
20
|
Ajith Y, Dimri U, Dixit SK, Singh SK, Gopalakrishnan A, Madhesh E, Rajesh JB, Sangeetha SG. Immunomodulatory basis of antioxidant therapy and its future prospects: an appraisal. Inflammopharmacology 2017; 25:10.1007/s10787-017-0393-5. [PMID: 28864996 DOI: 10.1007/s10787-017-0393-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
Antioxidants are agents which can modulate oxidant-antioxidant profile of body system by neutralizing pro-oxidant molecules. The current scientific knowledge on mechanisms of antioxidant activity of biomolecules was critically reviewed with a special emphasis on immunomodulation. The immuno-oxidative wreckage of animals in various disease conditions and the role of biomodulators in curbing the oxidative stress through immune pathways were analyzed. The critical role of immunomodulatory mechanisms in controlling oxidative damage was identified. Selection of antioxidant therapy considering the immunopharmacology of the drug as well as immunological basis of disease may reduce treatment failure and adverse health effects. Hence, it is suggested that future studies on antioxidants may focus on the immuno-oxidative pathobiology to better understand its clinical effects and effective disease management.
Collapse
Affiliation(s)
- Y Ajith
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| | - U Dimri
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - S K Dixit
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shanker K Singh
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, 281 001, India
| | - A Gopalakrishnan
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - E Madhesh
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - J B Rajesh
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - S G Sangeetha
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| |
Collapse
|
21
|
Li Y, Zhang J, Mao X, Wu Y, Liu G, Song L, Li Y, Yang J, You Y, Cao X. High-sensitivity chemiluminescent immunoassay investigation and application for the detection of T-2 toxin and major metabolite HT-2 toxin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:818-822. [PMID: 27185279 DOI: 10.1002/jsfa.7801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND T-2 toxin is a widely distributed mycotoxin in cereals. HT-2 toxin is the major metabolite, which is also a contaminant in cereals. T-2 toxin and HT-2 toxin have been identified as having carcinogenic, hepatotoxic, teratogenic and immunotoxic properties. To reduce the risk of contamination, a rapid, highly sensitive and inexpensive assay for the detection is required. RESULTS In this study a high-sensitivity chemiluminescent enzyme-linked immunoassay (CL-ELISA) of T-2 toxin and HT-2 toxin was developed. With the help of the chemiluminescent substrate, this protocol showed a highly sensitive character with an IC50 as low as 33.28 ng mL-1 and 27.27 ng mL-1 for T-2 and HT-2, respectively. In addition, this method had no cross-reaction with other structurally related mycotoxins. CONCLUSION These results indicated that the developed CL-ELISA could be applied for the detection of T-2 toxin and HT-2 toxin in actual samples without complicated steps. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanshen Li
- College of Life Science, Yantai University, Yantai 264005, P.R. China
| | - Jing Zhang
- College of Life Science, Yantai University, Yantai 264005, P.R. China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai 264005, P.R. China
- Hua Hai Property & Casualty Insurance Co., Ltd, Yantai, Shandong 264005, P.R. China
| | - Yongtao Wu
- College of Life Science, Yantai University, Yantai 264005, P.R. China
| | - Gongzhen Liu
- Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Science, Jining 272033, P.R. China
| | - Liting Song
- College of Life Science, Yantai University, Yantai 264005, P.R. China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, P.R. China
| | - Jianrong Yang
- College of Life Science, Yantai University, Yantai 264005, P.R. China
| | - Yanli You
- College of Life Science, Yantai University, Yantai 264005, P.R. China
| | - Xuelin Cao
- Logistics University Of People's Armed Police Forced Brigade Two, Tianjin 300000, P.R. China
| |
Collapse
|
22
|
Yuan Z, Matias FB, Yi JE, Wu J. T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:47-54. [PMID: 26707243 DOI: 10.1016/j.cbpc.2015.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/03/2023]
Abstract
T-2 toxin is a highly toxic mycotoxin produced by various Fusarium species, mainly, Fusarium sporotrichoides, and has been reported to have toxic effects on reproductive system of adult male animals. This study investigated the dose-dependent cytotoxicity of T-2 toxin on reproductive cells using TM3 Leydig cells. Specifically, the cytotoxic effect of T-2 toxin was assessed by measuring cell viability; lactate dehydrogenase (LDH); malondialdehyde (MDA); antioxidant activity by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and DNA damage; and cell apoptosis. Results showed that T-2 toxin is highly cytotoxic on TM3 Leydig cells. However, Trolox-treated TM3 Leydig cells showed significantly reduced oxidative damage, DNA damage, and apoptosis induced by T-2 toxin. This study proves that T-2 toxin can damage the testes and thus affects the reproductive capacity of animals and humans. Furthermore, oxidative stress plays an important role in the cytotoxic effect of T-2 toxin.
Collapse
Affiliation(s)
- Zhihang Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Froilan Bernard Matias
- Department of Animal Management, College of Veterinary Science and Medicine, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Jin-e Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jing Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|