1
|
Fang L, Sun YP, Cheng JC. The role of amphiregulin in ovarian function and disease. Cell Mol Life Sci 2023; 80:60. [PMID: 36749397 PMCID: PMC11071807 DOI: 10.1007/s00018-023-04709-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
She M, Li B, Li T, Zhou X. Dynamic Changes of AREG in the Sclera during the Development of Form-Deprivation Myopia in Guinea Pigs. Curr Eye Res 2021; 47:477-483. [PMID: 34766531 DOI: 10.1080/02713683.2021.1998543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate amphiregulin (AREG) expression in the sclera during the development of form-deprivation myopia (FDM) and after the recovery of FDM in guinea pigs. METHODS Sixty-four 2-week-old guinea pigs were randomly divided into the control and FDM groups. The right eyes of animals in FDM group were covered for 2 weeks (2 W) and 4 weeks (4 W), or were covered for 4 weeks and then uncovered for the subsequent 2 weeks (6 W). The diopters and axial lengths (AL) in the right eyes of guinea pigs were measured. Reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence, and western blotting assays were used to detect the relative mRNA and protein expressions of AREG in the sclera of guinea pigs. RESULTS Before masking (0 W), the refraction and AL in the right eyes of guinea pigs in the control and FDM groups did not differ significantly (both p > .05). Myopic shift was induced in guinea pigs with the diopters gradually decreased and AL increased in the FDM group. While no significant difference was found in control group at different time points, the relative AREG mRNA and protein expression levels in the FDM group were significantly increased in 2 W and 4 W and then decreased after 4 weeks of covering followed by uncovering for 2 weeks (all p < .05). CONCLUSIONS AREG was expressed in the sclera of guinea pigs. Moreover, the expression levels of AREG increased during the development of FDM and downregulated after recovery of FDM. Therefore, AREG may be involved in the regulation of scleral remodeling in myopia.
Collapse
Affiliation(s)
- Man She
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Bing Li
- Central Laboratory, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Guerard M, Robin T, Perron P, Hatat AS, David-Boudet L, Vanwonterghem L, Busser B, Coll JL, Lantuejoul S, Eymin B, Hurbin A, Gazzeri S. Nuclear translocation of IGF1R by intracellular amphiregulin contributes to the resistance of lung tumour cells to EGFR-TKI. Cancer Lett 2018; 420:146-155. [PMID: 29421153 DOI: 10.1016/j.canlet.2018.01.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Many Receptor Tyrosine Kinases translocate from the cell surface to the nucleus in normal and pathological conditions, including cancer. Here we report the nuclear expression of insulin-like growth factor-1 receptor (IGF1R) in primary human lung tumours. Using lung cancer cell lines and lung tumour xenografts, we demonstrate that the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib induces the nuclear accumulation of IGF1R in mucinous lung adenocarcinoma by a mechanism involving the intracellular re-localization of the growth factor amphiregulin. Amphiregulin allows the binding of IGF1R to importin-β1 and promotes its nuclear transport. The nuclear accumulation of IGF1R by amphiregulin induces cell cycle arrest through p21WAF1/CIP1 upregulation, and prevents the induction of apoptosis in response to gefitinib. These results identify amphiregulin as the first nuclear localization signal-containing protein that interacts with IGF1R and allows its nuclear translocation. Furthermore they indicate that nuclear expression of IGF1R contributes to EGFR-TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Marie Guerard
- Team "RNA splicing, cell signalling and response to therapies", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France; Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | - Thomas Robin
- Team "RNA splicing, cell signalling and response to therapies", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France; Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | - Pascal Perron
- Team "RNA splicing, cell signalling and response to therapies", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France; Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | - Anne-Sophie Hatat
- Team "RNA splicing, cell signalling and response to therapies", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | | | - Laetitia Vanwonterghem
- Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | - Benoit Busser
- Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France; Grenoble Univ. Hospital, 38000 Grenoble France.
| | - Jean-Luc Coll
- Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | | | - Beatrice Eymin
- Team "RNA splicing, cell signalling and response to therapies", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | - Amandine Hurbin
- Team "Cancer targets and experimental therapeutics", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| | - Sylvie Gazzeri
- Team "RNA splicing, cell signalling and response to therapies", Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France.
| |
Collapse
|
4
|
Induction of amphiregulin by p53 promotes apoptosis via control of microRNA biogenesis in response to DNA damage. Proc Natl Acad Sci U S A 2013; 111:717-22. [PMID: 24379358 DOI: 10.1073/pnas.1313675111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Upon DNA damage, tumor suppressor p53 determines cell fate by repairing DNA lesions to survive or by inducing apoptosis to eliminate damaged cells. The decision is based on its posttranslational modifications. Especially, p53 phosphorylation at Ser46 exerts apoptotic cell death. However, little is known about the precise mechanism of p53 phosphorylation on the induction of apoptosis. Here, we show that amphiregulin (AREG) is identified for a direct target of Ser46 phosphorylation via the comprehensive expression analyses. Ser46-phosphorylated p53 selectively binds to the promoter region of AREG gene, indicating that the p53 modification changes target genes by altering its binding affinity to the promoter. Although AREG belongs to a family of the epidermal growth factor, it also emerges in the nucleus under DNA damage. To clarify nuclear function of AREG, we analyze AREG-binding proteins by mass spectrometry. AREG interacts with DEAD-box RNA helicase p68 (DDX5). Intriguingly, AREG regulates precursor microRNA processing (i.e., miR-15a) with DDX5 to reduce the expression of antiapoptotic protein Bcl-2. These findings collectively support a mechanism in which the induction of AREG by Ser46-phosphorylated p53 is required for the microRNA biogenesis in the apoptotic response to DNA damage.
Collapse
|
5
|
Yoshida M, Shimura T, Fukuda S, Mizoshita T, Tanida S, Kataoka H, Kamiya T, Nakazawa T, Higashiyama S, Joh T. Nuclear translocation of pro-amphiregulin induces chemoresistance in gastric cancer. Cancer Sci 2012; 103:708-15. [PMID: 22320154 DOI: 10.1111/j.1349-7006.2012.02204.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/20/2023] Open
Abstract
Amphiregulin (AR) is derived from a membrane-anchored form (proAR) by ectodomain shedding, and is a ligand that activates epidermal growth factor receptor (EGFR). We have recently shown that proAR translocates from the plasma membrane to the nucleus after truncation of 11 amino acids at the C-terminus, which is independent of the conventional EGFR signaling pathway. Although proAR immunoreactivity has reportedly been detected in the nucleus of cancer cells, its biological meaning has never been investigated. This study was performed to investigate the roles of proAR nuclear translocation in human gastric cancer. We constructed proAR truncated 11 amino acids at the C-terminus (proARΔC11) that spontaneously translocates to the nucleus, and established proARΔC11-expression regulatable gastric cancer cells (MKN45, MKN28) using the tet-off system. Using these cells, we found that proAR nuclear translocation significantly induced chemoresistance in vitro and in vivo. Analyzing the relationship between immunoreactive localization of proAR and the clinical outcome for 46 advanced gastric cancer cases treated with chemotherapy, median survival time was 311 days in 16 patients with AR-positive staining in the nucleus and 387 days in 30 patients with AR-negative staining (P < 0.05). The present study demonstrates that proAR nuclear translocation increases resistance to anti-cancer drugs, which might be associated with poor prognosis in human gastric cancer.
Collapse
Affiliation(s)
- Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Doherty GA, Byrne SM, Molloy ES, Malhotra V, Austin SC, Kay EW, Murray FE, Fitzgerald DJ. Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer. BMC Cancer 2009; 9:207. [PMID: 19558693 PMCID: PMC2714158 DOI: 10.1186/1471-2407-9-207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/26/2009] [Indexed: 11/25/2022] Open
Abstract
Background Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1–4) to examine the mechanisms by which PGE2 regulates tumour progression. Methods Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. Results EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 μM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 μM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1/CIP1 was also seen with PD153025 (1 μM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. Conclusion COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.
Collapse
Affiliation(s)
- Glen A Doherty
- Molecular Medicine Group, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Willmarth NE, Ethier SP. Amphiregulin as a novel target for breast cancer therapy. J Mammary Gland Biol Neoplasia 2008; 13:171-9. [PMID: 18437539 DOI: 10.1007/s10911-008-9081-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022] Open
Abstract
Amphiregulin, an EGF family growth factor, binds and activates the epidermal growth factor receptor (EGFR or ErbB1). Activation of the EGFR by amphiregulin can occur through autocrine, paracrine and juxtacrine mechanisms. Amphiregulin plays a role in several biological processes including nerve regeneration, blastocyst implantation, and bone formation. Amphiregulin also plays an important role in mammary duct formation as well as the outgrowth and branching of several other human tissues such as the lung, kidney and prostate. This effect is most likely due to the induction of genes involved in invasion and migration such as cytokines and matrix metalloproteases. Clinical studies have suggested that amphiregulin also plays a role in human breast cancer progression and its expression has been associated with aggressive disease. Therefore, amphiregulin may be a novel and effective target for the treatment of breast cancer and could represent an alternative to targeting the EGFR.
Collapse
Affiliation(s)
- Nicole E Willmarth
- Cancer Biology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA, USA
| | | |
Collapse
|
8
|
Berasain C, Castillo J, Perugorría MJ, Prieto J, Avila MA. Amphiregulin: A new growth factor in hepatocarcinogenesis. Cancer Lett 2007; 254:30-41. [PMID: 17321672 DOI: 10.1016/j.canlet.2007.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/22/2022]
Abstract
Amphiregulin (AR) is a member of the epidermal growth factor family and a ligand of the epidermal growth factor receptor (EGFR). As other ligands of the EGFR, AR is synthesized as a precursor that is shed from the plasma membrane by metalloproteases. Hyperactive autocrine loops involving AR production have been described in a variety of tumors, and this growth factor is thought to play a non-redundant role in cancer development. AR expression is not detected in the normal liver, however it is readily induced during acute liver injury and behaves as a potent pro-regenerative and survival factor. Increased AR expression is also detected in human chronic liver injury (liver cirrhosis), which is considered a pre-neoplastic condition. Recent evidences suggest that AR can play a unique role in liver tumorigenesis and in the maintenance of the neoplastic phenotype of hepatocarcinoma cells. In this review, we summarize some aspects of AR patho-biology and the rationale behind its definition as a novel target in hepatocarcinoma therapy.
Collapse
Affiliation(s)
- C Berasain
- Division of Hepatology and Gene Therapy, CIMA, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
9
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
10
|
Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2004; 376:553-69. [PMID: 14531731 PMCID: PMC1223824 DOI: 10.1042/bj20031169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/08/2003] [Indexed: 02/02/2023]
Abstract
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Collapse
Affiliation(s)
- Anthony K L Leung
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
11
|
Epidermal Growth Factor-Related Peptides and Their Cognate Receptors in Breast Cancer. Breast Cancer 1999. [DOI: 10.1007/978-1-59259-456-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Piepkorn M, Pittelkow MR, Cook PW. Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol 1998; 111:715-21. [PMID: 9804327 DOI: 10.1046/j.1523-1747.1998.00390.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although originally conceived as a basis for malignant cell growth, autocrine signaling networks are currently known to be activated during tissue repair and with in vitro cultivation. In human epidermal keratinocytes, activation of the epidermal growth factor receptor by cognate ligands mediates the majority of the autonomous replicative capacity of these cells and is necessary to inhibit differentiation and apoptosis. The importance of heparin-binding growth factors in activation of this receptor was first suggested by the strong anti-proliferative effects of soluble heparin-like molecules on keratinocyte growth. This and related evidence led to the identification of amphiregulin as a major autocrine factor for keratinocytes. The binding of amphiregulin and its homolog, heparin-binding epidermal growth factor-like growth factor, to the receptor is potentially amplified by autoinduction and cross-signaling through epidermal growth factor-related polypeptides and by transmodulation of other ErbB-family receptors (HER-2, -3, -4) in cells expressing these receptors. Heparan sulfate proteoglycans and the tetraspanin family of membrane-associated proteins appear to act as cofactors in amphiregulin-driven mitogenesis mediated by the epidermal growth factor receptor, but amphiregulin's immunolocalization to keratinocyte nuclei and to filopodia may indicate other potentially novel effects. Following from the observation that amphiregulin is overexpressed in lesional psoriatic epidermis, the importance of amphiregulin in hyperproliferative skin diseases has been further supported by recent studies of the targeted expression of a transgene encoding keratin 14 promoter-driven human amphiregulin to the basal epidermis of mice. Founder transgenic mice displayed a morphologic and microscopic cutaneous phenotype that shares characteristics with psoriasis. Pharmacologic regulation of amphiregulin's expression and receptor signaling may eventually prove to be an effective strategy in the treatment of hyperproliferative skin diseases.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | | | | |
Collapse
|
13
|
Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ. Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 1998; 273:17258-68. [PMID: 9642297 DOI: 10.1074/jbc.273.27.17258] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis and processing of amphiregulin (AR) have been investigated in human colorectal (HCA-7, Caco-2) and mammary (MCF-7) cancer cell lines, as well as in Madin-Darby canine kidney cells stably expressing various human AR precursor (pro-AR) forms. Both cells expressing endogenous and transfected AR produce multiple cellular and soluble forms of AR with an N-glycosylated 50-kDa pro-AR form being predominant. Our results demonstrate that sequential proteolytic cleavage within the ectodomain of the 50-kDa pro-AR form leads to release of a predominant N-glycosylated 43-kDa soluble AR, as well as the appearance of other cellular and soluble AR forms. Cell surface biotinylation studies using a C-terminal epitope-tagged pro-AR indicate that all cell surface forms are membrane-anchored and support that AR is released by ectodomain cleavage of pro-AR at the plasma membrane. We also show that pro-AR ectodomain cleavage is a regulated process, which can be stimulated by phorbol 12-myristate 13-acetate and inhibited by the metalloprotease inhibitor, batimastat. In addition, we provide evidence that high molecular mass AR forms may retain the full-length N-terminal pro-region, which may influence the biological activities of these forms.
Collapse
Affiliation(s)
- C L Brown
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279, USA
| | | | | | | | | |
Collapse
|
14
|
Nylander N, Smith LT, Underwood RA, Piepkorn M. Topography of amphiregulin expression in cultured human keratinocytes: colocalization with the epidermal growth factor receptor and CD44. In Vitro Cell Dev Biol Anim 1998; 34:182-8. [PMID: 9542658 DOI: 10.1007/s11626-998-0103-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Much of the autonomous growth of cultured keratinocytes is attributable to the signaling of amphiregulin, a heparin-binding autocrine growth factor, through the epidermal growth factor receptor. Emerging evidence suggests, moreover, that the membrane proteoglycan, CD44, is a cofactor for the interaction of heparin-binding ligands with their receptors. This model was evaluated by characterizing the patterns of the immunolabeled molecules in cultured human neonatal keratinocytes, to test the hypothesis that involvement in a common function results in coordinate segregation within or on the cell. The molecules were localized by double immunofluorescence labeling to detect amphiregulin and either the epidermal growth factor receptor or CD44, and the immunostained products were imaged by scanning laser confocal microscopy. Both amphiregulin and the epidermal growth factor receptor segregated to a perinuclear distribution and to intercellular contacts. In addition, amphiregulin localized to the outer leading edge of colonies and focally to intranuclear sites. Metabolic blockade of proteoglycan sulfation with sodium chlorate inhibited growth of the cells and concurrently enhanced the nuclear, but decreased the outer leading edge, labeling for amphiregulin. There was no nuclear or perimeter labeling for the epidermal growth factor receptor. Cultures co-immunolabeled for CD44 and amphiregulin exhibited variable perinuclear staining for both, but otherwise CD44 was distributed to intercellular contacts. The intercellular localizations of CD44 with amphiregulin and of amphiregulin with the epidermal growth factor receptor were strongly concordant. These data are consistent with a concerted function at intercellular contacts, where cytokine signaling is mediated via receptor binding and possibly regulated by the CD44 proteoglycan as cofactor. The intranuclear and perimeter labeling of amphiregulin, however, suggests that this cytokine has additional functions, both in the nucleus and as a matrix receptor.
Collapse
Affiliation(s)
- N Nylander
- Department of Medicine, University of Washington School of Medicine, Seattle 98195-6524, USA
| | | | | | | |
Collapse
|
15
|
Luo Z, Itkonen A, Mäenpää PH. Active nuclear transport of chicken lipovitellin-2. Biochem Biophys Res Commun 1997; 234:760-3. [PMID: 9175789 DOI: 10.1006/bbrc.1997.6675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chicken lipovitellin-2 is a small, approximately 30 kDa yolk protein, derived from the intracellular breakdown of the precursor protein vitellogenin. In principle, lipovitellin-2 is small enough to directly diffuse into the nucleus. Our results, however, demonstrate that its nuclear transport is an active process which can be inhibited by wheat germ agglutinin, chilling, and energy depletion. The N-terminal sequence analysis identifies chicken lipovitellin-2 beginning at Ala1544 in the C-terminal region of vitellogenin yielding of protein of 30,982 Da.
Collapse
Affiliation(s)
- Z Luo
- Department of Biochemistry and Biotechnology, University of Kuopio, Finland
| | | | | |
Collapse
|
16
|
Abstract
The reverse transcription-polymerase chain reaction (RT-PCR) was used to amplify, from sheep mammary gland total RNA, a 280 bp sequence of amphiregulin cDNA. Cloned and sequenced, it corresponded to the 78 amino acids of the major secreted form of amphiregulin, showing 81, 70 and 69% identity with human, rat and mouse amphiregulin, respectively. Expression of amphiregulin was detected by RT-PCR in the mammary gland at several developmental stages (fetal, lamb, early and late pregnant and lactating ewes) and in isolated myoepithelial cells. By Western blotting with an antiserum to human amphiregulin, two molecular weight forms, 27 and 51 kDa were detected in sheep mammary gland microsomal preparations, in a mammary gland extract after heparin affinity chromatography and in a medium conditioned by mammary epithelial cells. By immunocytochemistry, amphiregulin was detected in the cytoplasm and nuclei of luminal epithelial cells, myoepithelial cells and in intralobular stroma. An autocrine/paracrine role in sheep mammary growth is indicated.
Collapse
Affiliation(s)
- I A Forsyth
- Department of Cellular Physiology, Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
17
|
Martinez-Lacaci I, Johnson GR, Salomon DS, Dickson RB. Characterization of a novel amphiregulin-related molecule in 12-O-tetradecanoylphorbol-13-acetate-treated breast cancer cells. J Cell Physiol 1996; 169:497-508. [PMID: 8952699 DOI: 10.1002/(sici)1097-4652(199612)169:3<497::aid-jcp10>3.0.co;2-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amphiregulin (AR) can be induced at the mRNA level by 17-beta-estradiol (E2) or the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). This study compares the effects of TPA and E2 on the regulation of processing of AR isoforms and on subcellular localization in human MCF-7 breast cancer cells. AR was localized in the nucleus of MCF-7 cells after E2 treatment, whereas it was predominantly secreted after TPA treatment. AR isoforms of 28, 18, and 10 kDa and an additional species of approximately 55-60 kDa were detected in the cellular conditioned media after TPA stimulation. Expression of this unusual AR isoform was inhibited by protein kinase C (PKC) inhibitors such as bryostatin or H-7. The biochemical properties of this isoform are consistent with it being an N-linked glycosylated form of the AR precursor that contains unprocessed mannose residues. The size of this large isoform is reduced to approximately 40 kDa after treating the TPA-induced MCF-7 cells with tunicamycin or treating the conditioned media of such cells with N-glycosidase F or with endoglycosidase H. Moreover, this isoform is able to blind several lectins with specificity for mannose residues. The 55-60 kDa glycosylated AR isoform, like lower Mr AR isoforms, is able to bind to heparin and to stimulate the growth of MCF-10A cells by interacting with the EGF receptor. These data suggest that TPA activation of PKC may be involved in post-translational modifications of AR, such as glycosylation, and in alteration of its subcellular routing to predominantly a secretory pathway.
Collapse
|
18
|
Piepkorn M. Overexpression of amphiregulin, a major autocrine growth factor for cultured human keratinocytes, in hyperproliferative skin diseases. Am J Dermatopathol 1996; 18:165-71. [PMID: 8739992 DOI: 10.1097/00000372-199604000-00010] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies have indicated that amphiregulin is a major autocrine growth factor for cultured human keratinocytes. Its overexpression could therefore be important in hyperproliferative skin diseases. The purpose of this preliminary study was to determine if there is upregulation of amphiregulin protein in those disorders. A variety of lesions was surveyed for qualitative alterations in its immunostaining with an anti-amphiregulin monoclonal antibody. Amphiregulin was barely detectable in the epidermis of normal controls, although there was random nuclear staining of keratinocytes, and the epidermal appendages, especially sebaceous glands, were usually reactive. In contrast, psoriatic lesions exhibited prominent cytoplasmic staining of basal and spinous keratinocytes. Somewhat increased reactivity was also evident in actinic keratoses, in nests of squamous carcinoma cells, and in verrucae. Adnexal tumors were often strongly stained. Whereas basal cell carcinomas were nonreactive, staining was present in adjacent epidermis. Similarly, the melanocytes of nevi and melanoma were nonreactive but there was increased staining in contiguous keratinocytes. The pattern of amphiregulin immunostaining suggests a role for the protein in the aberrant keratinocyte growth of hyperproliferative disorders.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine (Dermatology), University of Washington School of Medicine, Seattle 98195, USA
| |
Collapse
|
19
|
Abstract
We have previously shown that the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AR) exhibits low potency as a result of its C-terminal truncation. This led us to investigate whether its inability to promote anchorage-independent growth (AIG) of normal cells arose because of its compromised interaction with EGFR. Wild type AR(1-84) was tested in AIG and mitogenesis assays using NRK-49F or NR6/HER fibroblasts. In contrast to NR6/HER cells, the response of NRK-49F fibroblasts to AR was much lower than expected. As the effect of AR was heparin-insensitive, contributions from heparan sulphate proteoglycan interactions could not explain the differing sensitivities of the cells. Comparison of the effects of AR on two additional cell lines indicated that low EGFR number correlated with AR insensitivity: this suggested that the low potency of AR precluded activation of sufficient receptors to elicit a response. Consistent with this proposal, a modified form of AR (AR[1-90(leu86)]) with enhanced potency was able to induce AIG of NRK-49F fibroblasts. Thus, the ability of AR to promote AIG is determined both by ligand potency and the EGFR complement of cells.
Collapse
|
20
|
Martinez-Lacaci I, Dickson RB. Dual regulation of the epidermal growth factor family of growth factors in breast cancer by sex steroids and protein kinase C. J Steroid Biochem Mol Biol 1996; 57:1-11. [PMID: 8645607 DOI: 10.1016/0960-0760(95)00245-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There has been increased interest in the last few years in seeking a better understanding of the local regulation of polypeptide growth factors by systemic hormones, such as sex steroids and by polypeptide hormones. Growth factors and systemic hormones play pivotal roles in hormone-regulated cancers such as breast cancer. In this review, we discuss the regulation of members of the epidermal growth factor (EGF) family by sex steroids and by regulators of the polypeptide hormone signal transduction enzyme termed protein kinase C (PKC). Regulation of the EGF family of genes will be discussed as a model system to evaluate interactions between these two important types of regulatory pathways in breast cancer.
Collapse
Affiliation(s)
- I Martinez-Lacaci
- Vincent T. Lombardi Cancer Center, Georgetown University, Washingotn, DC 20007, USA
| | | |
Collapse
|
21
|
Piepkorn M, Underwood RA, Henneman C, Smith LT. Expression of amphiregulin is regulated in cultured human keratinocytes and in developing fetal skin. J Invest Dermatol 1995; 105:802-9. [PMID: 7490475 DOI: 10.1111/1523-1747.ep12326567] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have indicated that amphiregulin is a major autocrine factor for human keratinocytes. To evaluate the possibilities that amphiregulin could function in fetal skin morphogenesis and contribute to the growth regulation of epidermis, immunostaining with a specific anti-amphiregulin monoclonal antibody was observed at different stages of fetal skin development, and the results were compared with neonatal and adult skin specimens and cultured neonatal keratinocytes. Immunoreactive amphiregulin was readily detected in the periderm and basal epidermal layers of embryonic epidermis but became gradually less detectable in the periderm concurrent with an increase in staining of the spinous layer as it developed during the fetal period. Basal and spinous keratinocyte expression of amphiregulin was predominantly cytoplasmic, but with punctate nuclear foci, and this pattern persisted into the neonatal period. At all developmental stages, epithelial and mesenchymal cells of the follicle were reactive, often in a nuclear pattern. Dermal mesenchymal cells were increasingly reactive in late fetal skin, but the staining decreased postnatally. In adult skin only randomly scattered nuclei of spinous keratinocytes and follicular structures such as the inner root sheath were stained. Examination by scanning laser confocal microscopy of cultured neonatal keratinocytes showed a nonrandom distribution of amphiregulin to the peripheral cytoplasm and plasma membranes at the outer perimeter of cell colonies, with much less reactivity of apposed keratinocyte membranes at interior sites. Nuclei were heterogeneously stained. Amphiregulin reactivity declined at higher cell densities. These data indicate that expression of amphiregulin is regulated in vitro and developmentally during cutaneous morphogenesis.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine (Dermatology), University of Washington School of Medicine, Seattle, USA
| | | | | | | |
Collapse
|
22
|
Rubartelli A, Sitia R. Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations. Trends Cell Biol 1995; 5:409-12. [PMID: 14732039 DOI: 10.1016/s0962-8924(00)89093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although the plasma membrane acts as an impermeable barrier to most macromolecules, some exogenous proteins (for example fibroblast growth factor, HIV-1 Tat and lactoferrin) can gain access into the cytosol and reach the nucleus of living cells. How are these exogenous polypeptides selected over and above other extracellular proteins? How and where do they cross the cell membrane? Why do cells need to take up exogenous transcription factors when sophisticated signal-transduction pathways are available? Here, we review the current knowledge on these issues and discuss some mechanistic and physiological implications of this unconventional and direct way of taking messages to the nucleus.
Collapse
Affiliation(s)
- A Rubartelli
- Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | |
Collapse
|
23
|
Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19:183-232. [PMID: 7612182 DOI: 10.1016/1040-8428(94)00144-i] [Citation(s) in RCA: 1918] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- D S Salomon
- Tumor Growth Factor Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
24
|
Akagi M, Yokozaki H, Kitadai Y, Ito R, Yasui W, Haruma K, Kajiyama G, Tahara E. Expression of amphiregulin in human gastric cancer cell lines. Cancer 1995. [DOI: 10.1002/1097-0142(19950315)75:6+<1460::aid-cncr2820751513>3.0.co;2-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Abstract
BACKGROUND Amphiregulin (AR) is a novel gene of the epidermal growth factor (EGF) family. The authors have already reported that AR mRNA was expressed by human gastric carcinoma cells at various degrees, and its expression was induced by the treatment with EGF or transforming growth factor-alpha (TGF-alpha). METHODS To elucidate the biologic role of AR in the stomach carcinogenesis, the effect of AR on the cell growth and the expression of growth factor/receptor genes in TMK-1 and MKN-28 gastric carcinoma cell lines was examined. Furthermore, to determine whether AR acts as an autocrine growth factor for gastric carcinoma cells, the authors introduced an antisense phosphorothioate oligodeoxynucleotide (S-oligo) against AR mRNA to these two cell lines. RESULTS AR stimulated the growth of TMK-1 and MKN-28 cells in a dose dependent manner. The growth-promoting effect of AR was as potent as that of EGF or TGF-alpha. AR antisense S-oligo induced significant growth inhibition of both TMK-1 and MKN-28 cells compared with the control random S-oligo. Moreover, AR induced mRNA expression for AR itself, TGF-alpha, and EGF receptor in both cell lines. CONCLUSIONS These results overall suggest that AR acts as an autocrine growth factor for these two gastric carcinoma cell lines and evokes the cascade induction of EGF and the TGF-alpha/receptor system.
Collapse
Affiliation(s)
- M Akagi
- First Department of Pathology, Hiroshima University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Salomon DS, Normanno N, Ciardiello F, Brandt R, Shoyab M, Todaro GJ. The role of amphiregulin in breast cancer. Breast Cancer Res Treat 1995; 33:103-14. [PMID: 7749138 DOI: 10.1007/bf00682718] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Amphiregulin (AR) is an epidermal growth factor (EGF)-related peptide that operates exclusively through the EGF receptor and that can bind to heparin. AR also possesses nuclear localization sequences in the extended NH2-terminal region suggesting an additional intracellular site of action. AR mRNA and protein expression have been detected in primary human mammary epithelial cell strains, nontransformed human mammary epithelial cell lines, several human breast cancer cell lines, and primary human breast carcinomas. The frequency and levels of AR protein expression are generally higher in invasive breast carcinomas than in ductal carcinomas in situ or in normal, noninvolved mammary epithelium. In addition, AR can function as an autocrine and/or juxtacrine growth factor in human mammary epithelial cells that have been transformed by an activated c-Ha-ras proto-oncogene or by overexpression of c-erb B-2. AR expression is also enhanced by mammotrophic hormones such as estrogens and other growth factors such as EGF.
Collapse
Affiliation(s)
- D S Salomon
- Tumor Growth Factor Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
27
|
Johnson GR, Wong L. Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47137-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
Mesri EA, Ono M, Kreitman RJ, Klagsbrun M, Pastan I. The heparin-binding domain of heparin-binding EGF-like growth factor can target Pseudomonas exotoxin to kill cells exclusively through heparan sulfate proteoglycans. J Cell Sci 1994; 107 ( Pt 9):2599-608. [PMID: 7844173 DOI: 10.1242/jcs.107.9.2599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is a smooth muscle cell mitogen composed of both EGF receptor and heparin-binding domains. To better understand the function of its domains, intact HB-EGF or its heparin-binding (HB) domain (amino acids 1-45) were fused to a mutant Pseudomonas exotoxin with an inactivated cell-binding domain. The resulting chimeric toxins, HB-EGF-PE* and HB-PE*, were tested on tumor cells, proliferating smooth muscle cells and a mutant Chinese hamster ovary cell line deficient in heparan sulfate proteoglycans (HSPGs). Two targets were found for HB-EGF-PE*. Cells were killed mainly through EGF receptors, but the HB domain was responsible for killing via HSPGs. HB-PE* did not bind to the EGF receptor and thus was cytotoxic by interacting exclusively with HSPGs. We conclude that the HB domain of HB-EGF is able to mediate internalization through HSPGs, without requiring the EGF receptor.
Collapse
Affiliation(s)
- E A Mesri
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
29
|
Bano M, Sabol M, Paik S, Barker E, Bartow S, Kidwell W, Dickson R. Production and localization of mammary-derived growth factor 1 in the normal and malignant mammary gland. Breast 1994. [DOI: 10.1016/0960-9776(94)90068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
30
|
Qi CF, Liscia DS, Normanno N, Merlo G, Johnson GR, Gullick WJ, Ciardiello F, Saeki T, Brandt R, Kim N. Expression of transforming growth factor alpha, amphiregulin and cripto-1 in human breast carcinomas. Br J Cancer 1994; 69:903-10. [PMID: 8180021 PMCID: PMC1968887 DOI: 10.1038/bjc.1994.174] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of three epidermal growth factor (EGF)-related peptides, transforming growth factor alpha (TGF-alpha), amphiregulin (AR) and cripto-1 (CR-1), was examined by immunocytochemistry (ICC) in 68 primary infiltrating ductal (IDCs) and infiltrating lobular breast carcinomas (ILCs), and in 23 adjacent non-involved human mammary tissue samples. Within the 68 IDC and ILC specimens, 54 (79%) expressed immunoreactive TGF-alpha, 52 (77%) expressed AR and 56 (82%) expressed CR-1. Cytoplasmic staining was observed with all of the antibodies, and this staining could be eliminated by preabsorption of the antibodies with the appropriate peptide immunogen. Cytoplasmic staining with all of the antibodies was confined to the carcinoma cells, since no specific immunoreactivity could be detected in the surrounding stromal or endothelial cells. In addition to cytoplasmic reactivity, the AR antibody also exhibited nuclear staining in a number of the carcinoma specimens. No significant correlations were found between the percentage of carcinoma cells that were positive for TGF-alpha, AR or CR-1 and oestrogen receptor status, axillary lymph node involvement, histological grade, tumour size, proliferative index, loss of heterozygosity on chromosome 17p or overall patient survival. However, a highly significant inverse correlation was observed between the average percentage of carcinoma cells that expressed AR in individual tumours and the presence of a point-mutated p53 gene. Likewise, a significantly higher percentage of tumour cells in the ILC group expressed AR as compared with the average percentage of tumour cells that expressed AR in the IDC group. Of the 23 adjacent, non-involved breast tissue samples, CR-1 could be detected by ICC in only three (13%), while TGF-alpha was found in six (26%) and AR in ten (43%) of the non-involved breast tissues. These data demonstrate that breast carcinomas express multiple EGF-related peptides and show that the differential expression of CR-1 in malignant breast epithelial cells may serve as a potential tumour marker for breast cancer.
Collapse
Affiliation(s)
- C F Qi
- Tumor Growth Factor Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Normanno N, Selvam MP, Qi CF, Saeki T, Johnson G, Kim N, Ciardiello F, Shoyab M, Plowman G, Brandt R. Amphiregulin as an autocrine growth factor for c-Ha-ras- and c-erbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci U S A 1994; 91:2790-4. [PMID: 7908443 PMCID: PMC43456 DOI: 10.1073/pnas.91.7.2790] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amphiregulin (AR), a member of the epidermal growth factor (EGF) family, was found to be as potent as EGF in stimulating the anchorage-dependent growth (ADG) of immortalized, nontransformed human mammary epithelial MCF-10A cells. MCF-10A cells transformed by either an activated human c-Ha-ras protooncogene (MCF-10A ras) or by overexpression of a nonactivated rat c-neu gene (MCF-10A neu) exhibited a 35% reduction in the response to AR in ADG when compared to MCF-10A cells, but AR was still as potent as EGF in these transformants. Exogenous AR exhibited only 15-20% of the activity of EGF in stimulating the anchorage-independent growth, a response that is normally dependent upon exogenous EGF, of the oncogene-transformed MCF-10A cells. MCF-10A cells express low levels of a 1.4-kb AR mRNA transcript, while MCF-10A ras and MCF-10A neu cells display a 15- to 30-fold increase in the levels of AR mRNA and endogenous AR protein as determined by Western blot analysis. Exogenous EGF was found to induced both the AR mRNA and protein in the MCF-10A parental and transformed cells. A 20-mer phosphorothioate antisense deoxyoligonucleotide complementary to the 5' sequence of AR mRNA was able to significantly reduce the levels of endogenous AR protein and to inhibit the EGF-stimulated ADG and anchorage-independent growth of MCF-10A ras and MCF-10A neu cells. These data suggest that AR may function as an EGF-dependent autocrine growth factor in mammary epithelial cells that have been transformed by either a point-mutated c-Ha-ras or c-neu.
Collapse
Affiliation(s)
- N Normanno
- Tumor Growth Factor Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Holt SJ, Alexander P, Inman CB, Davies DE. Epidermal growth factor induced tyrosine phosphorylation of nuclear proteins associated with translocation of epidermal growth factor receptor into the nucleus. Biochem Pharmacol 1994; 47:117-26. [PMID: 7508718 DOI: 10.1016/0006-2952(94)90444-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Treatment of human squamous carcinoma cells (HN5 cells) with epidermal growth factor (EGF) caused a time-dependent increase in tyrosine phosphorylation of six nuclear proteins of molecular mass 166, 140, 117, 95, 86 and 79 kDa. The major tyrosine phosphorylated protein was indistinguishable from the plasma membrane form of the epidermal growth factor receptor and was shown by enzyme linked immunosorbent assay (ELISA) to be translocated into the nucleus from extra-nuclear sites upon ligand stimulation. Using immunoelectron microscopy of both isolated nuclei and whole cells, epidermal growth factor receptor (EGF-R) was found to be associated with the chromatin and, to a lesser extent, with the inner surface of the nuclear membrane. Tyrosine phosphorylation of proteins other than EGF-R was particularly notable in the nucleoli. These observations suggest that EGF-R may exert some of its physiological functions by directly inducing tyrosine phosphorylation of specific nuclear proteins. Translocation of EGF-R to the nucleus may provide a vital link between plasma membrane signalling and gene activation.
Collapse
Affiliation(s)
- S J Holt
- CRC Medical Oncology Unit, Southampton General Hospital, U.K
| | | | | | | |
Collapse
|
33
|
Normanno N, Ciardiello F, Brandt R, Salomon DS. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res Treat 1994; 29:11-27. [PMID: 7912564 DOI: 10.1007/bf00666178] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of different epidermal growth factor (EGF)-related peptides such as EGF, transforming growth factor alpha (TGF alpha), amphiregulin (AR), heregulin (HRG), and cripto-1 (CR-1), are coexpressed to varying degrees in both normal and malignant mammary epithelial cells. However, in general the frequency and level of expression of TGF alpha, AR, and CR-1 are higher in malignant breast epithelial cells than in normal mammary epithelium. In addition, several of these peptides such as TGF alpha and AR can function as autocrine and/or juxtacrine growth factors in mammary epithelial cells, and their expression is stringently regulated by mammotrophic hormones such as estrogens, activated proto-oncogenes that have been implicated in the pathogenesis of breast cancer, and other growth factors. The redundancy of expression that is observed for a number of these structurally related peptides in both normal and malignant mammary epithelial cells suggests that some of these peptides may be involved in regulating other aspects of cellular behavior such as differentiation in addition to proliferation.
Collapse
Affiliation(s)
- N Normanno
- Tumor Growth Factor Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
34
|
Characterization of high and low molecular weight forms of amphiregulin that differ in glycosylation and peptide core length. Evidence that the NH2-terminal region is not critical for bioactivity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46703-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|