1
|
Matwiejuk M, Myśliwiec H, Chabowski A, Flisiak I. An Overview of Growth Factors as the Potential Link between Psoriasis and Metabolic Syndrome. J Clin Med 2023; 13:109. [PMID: 38202116 PMCID: PMC10780265 DOI: 10.3390/jcm13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Psoriasis is a chronic, complex, and immunologically mediated systemic disease that not only affects the skin, but also the joints and nails. It may coexist with various other disorders, such as depression, psoriatic arthritis, cardiovascular diseases, diabetes mellitus, and metabolic syndrome. In particular, the potential link between psoriasis and metabolic syndrome is an issue worthy of attention. The dysregulation of growth factors could potentially contribute to the disturbances of keratinocyte proliferation, inflammation, and itch severity. However, the pathophysiology of psoriasis and its comorbidities, such as metabolic syndrome, remains incompletely elucidated. Growth factors and their abnormal metabolism may be a potential link connecting these conditions. Overall, the objective of this review is to analyze the role of growth factor disturbances in both psoriasis and metabolic syndrome.
Collapse
Affiliation(s)
- Mateusz Matwiejuk
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Hanna Myśliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Sun J, Zhou J, Zhou J, Xu W, Du Y, Jia Z, Shen Y, Lin X, Wang X, Bao Y, Rao Z, Dong S, Luo Y, Cong W, Jin L, Li X. FGF4 Promotes Skin Wound Repair through p38 MAPK and GSK3β-Mediated Stabilization of Slug. J Invest Dermatol 2022; 143:1073-1084.e8. [PMID: 36521556 DOI: 10.1016/j.jid.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022]
Abstract
Cutaneous wound healing is an orderly and intricate process that restores the barrier function and integrity of injured skin. Re-epithelialization, which involves the proliferation and migration of keratinocytes to cover the denuded surface, is essential for successful wound closure. There are many members of the FGF family, of which the paracrine-acting FGF1 and FGF7 subfamily members have been identified as positive regulators of wound repair. However, the role and underlying mechanisms of some other paracrine FGFs in wound repair still remain obscure. In this report, we found that paracrine FGF4 localized predominantly to the epidermal keratinocytes and was markedly upregulated at the wound edges in response to re-epithelialization in human and mouse wound models. Blockade of FGF4 resulted in delayed re-epithelialization of human ex vivo skin wounds, whereas recombinant FGF4 treatment promoted re-epithelialization and wound repair. Mechanistically, recombinant FGF4 promotes p38 MAPK‒GSK3β‒mediated stabilization of Slug by reducing its ubiquitination, which triggers epithelial-to-mesenchymal transition and promotes the migration and proliferation of keratinocytes and thus wound re-epithelialization. Our findings uncover FGF4 as an important regulator of wound healing, highlighting a promising therapeutic avenue for skin injury.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianhui Zhou
- Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Jia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Life Sciences, Huzhou University, Huzhou, China
| | - Xiaohua Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies. Int J Biol Macromol 2021; 185:419-433. [PMID: 34166695 DOI: 10.1016/j.ijbiomac.2021.06.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels were prepared by mixing protein and carbohydrate-based biopolymers to increase the mechanical properties and efficient cell adhesion and proliferation for wound healing applications. Microcrystalline cellulose (MCC) and its 6-deoxy-aminocellulose derivatives (6-deoxy-6-hydrazide Cellulose (Cell-Hyd), 6-deoxy-6-diethylamide Cellulose (Cell-DEA), and 6-deoxy-6-diethyltriamide Cellulose (Cell-DETA)) were embedded in methacrylated gelatin (GelMA). GelMA and 6-deoxy-aminocellulose derivatives were synthesized and characterized by spectroscopic techniques. MCC and cellulose derivatives embedded GelMA gels were characterized by FTIR, SEM and Tensile mechanical testing. SEM images revealed that, porosity of the amine MCC incorporated GelMA was decreased compared to GelMA and MCC incorporated GelMA. Tensile strain of GelMA 61.30% at break was increased to 64.3% in case of GelMA/Cell-HYD. In vitro cytocompatibility and cell proliferation using NIH-3T3 cell lines showed cell density trend on scaffold as GelMA/Cell-DETA>GelMA/Cell-Hyd > GelMA. Scratch assay for wound healing revealed that GelMA/Cell-DETA showed complete wound closure, while GelMA/Cell-Hyd and GelMA exhibited 85.7%, and 66.1% wound healing, respectively in 8 h. In vivo tests on rats revealed that GelMA/Cell-DETA exhibited 98% wound closure on day 9, whereas GelMA/Cell-Hyd exhibited 97.7% and GelMA 66.1% wound healing on day 14. Our findings revealed that GelMA embedded amine MCC derivatives hydrogels can be applied for achieving accelerated wound healing.
Collapse
|
4
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
5
|
Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 2017; 49:66-77. [PMID: 27826004 PMCID: PMC5296408 DOI: 10.1016/j.actbio.2016.11.017] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Development of natural protein-based fibrous scaffolds with tunable physical properties and biocompatibility is highly desirable to construct three-dimensional (3D), fully cellularized scaffolds for wound healing. Herein, we demonstrated a simple and effective technique to construct electrospun 3D fibrous scaffolds for accelerated wound healing using a photocrosslinkable hydrogel based on gelatin methacryloyl (GelMA). We found that the physical properties of the photocrosslinkable hydrogel including water retention, stiffness, strength, elasticity and degradation can be tailored by changing the light exposure time. We further observed that the optimized hydrogel fibrous scaffolds which were soft and elastic could support cell adhesion, proliferation and migration into the whole scaffolds, facilitating regeneration and formation of cutaneous tissues within two weeks. Such tunable characteristics of the fibrous GelMA scaffolds distinguished them from other reported substrates developed for reconstruction of wound defects including glutaraldehyde-crosslinked gelatin or poly (lactic-co-glycolic acid) (PLGA), whose physical and chemical properties were difficult to modify to allow cell infiltration into the 3D scaffolds for tissue regeneration. We anticipate that the ability to become fully cellularized will make the engineered GelMA fibrous scaffolds suitable for widespread applications as skin substitutes or wound dressings. STATEMENT OF SIGNIFICANCE In present study, we generate three-dimensional photocrosslinkable gelatin (GelMA)-based fibrous scaffolds with tunable physical and biological properties by using a combined photocrosslinking/electrospinning approach. The developed GelMA fibrous scaffolds can not only support cell viability and cell adhesion, but also facilitate cell migration and proliferation, accelerating regeneration and formation of cutaneous tissues. In addition, the physical properties of the engineered fibrous GelMA hydrogel including water retention capability, mechanical properties and biodegradability can be tuned to accommodate different patients' needs, making it a promising candidate for skin tissue engineering.
Collapse
Affiliation(s)
- Xin Zhao
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai 200011, China
| | - Lara Yildirimer
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Qi Lang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Zhi Yuan William Lin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Reila Zheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai 200011, China
| | - Wenguo Cui
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
6
|
Mogford JE, Tawil B, Jia S, Mustoe TA. Fibrin sealant combined with fibroblasts and platelet-derived growth factor enhance wound healing in excisional wounds. Wound Repair Regen 2009; 17:405-10. [DOI: 10.1111/j.1524-475x.2009.00481.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Harch PG, Kriedt C, Van Meter KW, Sutherland RJ. Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res 2007; 1174:120-9. [PMID: 17869230 DOI: 10.1016/j.brainres.2007.06.105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/19/2007] [Accepted: 06/30/2007] [Indexed: 01/09/2023]
Abstract
In the present experiment we use a rat model of traumatic brain injury to evaluate the ability of low-pressure hyperbaric oxygen therapy (HBOT) to improve behavioral and neurobiological outcomes. The study employed an adaptation of the focal cortical contusion model. 64 Male Long-Evans rats received unilateral cortical contusion and were tested in the Morris Water Task (MWT) 31-33 days post injury. Rats were divided into three groups: an untreated control group (N=22), an HBOT treatment group (N=19) and a sham-treated normobaric air group (N=23). The HBOT group received 80 bid, 7 days/week 1.5 ATA/90-min HBOTs and the sham-treated normobaric air group the identical schedule of air treatments using a sham hyperbaric pressurization. All rats were subsequently retested in the MWT. After testing all rats were euthanized. Blood vessel density was measured bilaterally in hippocampus using a diaminobenzadine stain and was correlated with MWT performance. HBOT caused an increase in vascular density in the injured hippocampus (p<0.001) and an associated improvement in spatial learning (p<0.001) compared to the control groups. The increased vascular density and improved MWT in the HBOT group were highly correlated (p<0.001). In conclusion, a 40-day series of 80 low-pressure HBOTs caused an increase in contused hippocampus vascular density and an associated improvement in cognitive function. These findings reaffirm the clinical experience of HBOT-treated patients with chronic traumatic brain injury.
Collapse
Affiliation(s)
- Paul G Harch
- Department of Medicine, LSU Health Sciences Center in New Orleans, Harvey, Louisiana 70058, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
Peripheral nerves are essential connections between the central nervous system and muscles, autonomic structures and sensory organs. Their injury is one of the major causes for severe and longstanding impairment in limb function. Acute peripheral nerve lesion has an important inflammatory component and is considered as ischemia-reperfusion (IR) injury. Surgical repair has been the standard of care in peripheral nerve lesion. It has reached optimal technical development but the end results still remain unpredictable and complete functional recovery is rare. Nevertheless, nerve repair is not primarily a mechanical problem and microsurgery is not the only key to success. Lately, there have been efforts to develop alternatives to nerve graft. Work has been carried out in basal lamina scaffolds, biologic and non-biologic structures in combination with neurotrophic factors and/or Schwann cells, tissues, immunosuppressive agents, growth factors, cell transplantation, principles of artificial sensory function, gene technology, gangliosides, implantation of microchips, hormones, electromagnetic fields and hyperbaric oxygenation (HBO). HBO appears to be a beneficial adjunctive treatment for surgical repair in the acute peripheral nerve lesion, when used at lower pressures and in a timely fashion (<6 hours).
Collapse
Affiliation(s)
- E Cuauhtemoc Sanchez
- Hyperbaric Medicine Department, Hospital Angeles del Pedregal, Mexico, DF, Mexico.
| |
Collapse
|
9
|
Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J 2005; 19:211-21. [PMID: 15677344 DOI: 10.1096/fj.04-1970com] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Orchestration of the rapid formation and reorganization of new tissue observed in wound healing involves not only cells and polypeptides but also the extracellular matrix (ECM) microenvironment. The ability of heparan sulfate (HS) to interact with major components of the ECM suggests a key role for HS in maintaining the structural integrity of the ECM. Heparanase, an endoglycosidase-degrading HS in the ECM and cell surface, is involved in the enzymatic machinery that enables cellular invasion and release of HS-bound polypeptides residing in the ECM. Bioavailabilty and activation of multitude mediators capable of promoting cell migration, proliferation, and neovascularization are of particular importance in the complex setting of wound healing. We provide evidence that heparanase is normally expressed in skin and in the wound granulation tissue. Heparanase stimulated keratinocyte cell migration and wound closure in vitro. Topical application of recombinant heparanase significantly accelerated wound healing in a flap/punch model and markedly improved flap survival. These heparanase effects were associated with enhanced wound epithelialization and blood vessel maturation. Similarly, a marked elevation in wound angiogenesis, evaluated by MRI analysis and histological analyses, was observed in heparanase-overexpressing transgenic mice. This effect was blocked by a novel, newly developed, heparanase-inhibiting glycol-split fragment of heparin. These results clearly indicate that elevation of heparanase levels in healing wounds markedly accelerates tissue repair and skin survival that are mediated primarily by an enhanced angiogenic response.-Zcharia, E., Zilka, R., Yaar, A., Yacoby-Zeevi, O., Zetser, A., Metzger, S., Sarid, R., Naggi, A., Casu, B., Ilan, N., Vlodavsky, I., Abramovitch, R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models.
Collapse
Affiliation(s)
- Eyal Zcharia
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hom DB, Unger GM, Pernell KJ, Manivel JC. Improving surgical wound healing with basic fibroblast growth factor after radiation. Laryngoscope 2005; 115:412-22. [PMID: 15744149 DOI: 10.1097/01.mlg.0000157852.01402.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES/HYPOTHESIS Delayed wound healing in surgical patients who have received previous irradiation continues to be a significant problem. We investigated whether radiation decreases basic fibroblast growth factor (bFGF) production in skin and whether supplemental bFGF can improve irradiated postsurgical soft tissue healing. STUDY DESIGN Experimental study in the porcine skin flap model. METHODS Pigs were subjected to orthovoltage radiation (1,300 cGy). To test whether radiation alters bFGF production in skin, semiquantitation of bFGF message was compared in irradiated and nonirradiated skin by reverse transcription-polymerase chain reaction (RT-PCR). To determine whether supplemental bFGF can improve postsurgical soft tissue healing after radiation, bFGF was given intravenously or intracuticularly preoperatively. To investigate whether additional oxygen tissue levels would modify the effects of supplemental bFGF, one test group received hyperbaric oxygen. Six weeks later, 108 skin flaps (random and arterial) were created in 27 pigs and monitored over 2 weeks. Tissues were analyzed for flap viability, vascularity, endothelial cell apoptosis by caspase-3 activation, and histologic analysis. RESULTS Radiation statistically increased endothelial cell apoptosis in porcine skin by 650%. Radiation also significantly reduced bFGF message by 75% in porcine skin by RT-PCR analysis. Supplemental intravenous bFGF in irradiated tissue significantly increased skin flap viability by 25% compared with controls (P < .001). Intravenous bFGF also significantly reduced gastrointestinal side effects from irradiation by 50% compared with controls. BFGF treatment induced a trend to decrease endothelial cell apoptosis in irradiated skin, but this was not statistically significant. Histologically, the intravenous bFGF-treated flaps had similar cellularity, fibroblasts, and extracellular acid mucopolysaccharides as controls. When bFGF was administered by intracuticular injection with and without hyperbaric oxygen, skin flap survival and flap vascularity were similar to controls. CONCLUSIONS Decreased local levels of bFGF in skin may play an important role in the delayed healing of irradiated wounds. Radiation appears to decrease bFGF production by significantly reducing bFGF message in irradiated tissue. Supplemental intravenous bFGF reduced irradiated soft tissue injury and improved random skin flap viability in this porcine model. More studies are needed to investigate the effects of bFGF in the surgical healing of irradiated wounds.
Collapse
Affiliation(s)
- David B Hom
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Minnesota School of Medicine and, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
11
|
Oda Y, Kagami H, Ueda M. Accelerating effects of basic fibroblast growth factor on wound healing of rat palatal mucosa. J Oral Maxillofac Surg 2004; 62:73-80. [PMID: 14699553 DOI: 10.1016/j.joms.2003.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE In this study, basic fibroblast growth factor (bFGF) was examined for its ability to accelerate tissue repair in a rat oral mucosal wound. MATERIALS AND METHODS A 4-mm mucosal defect was surgically made to the depth of the periosteum in a rat palate. bFGF was injected along the edge of the mucosal defect immediately after surgery. A control group received only phosphate-buffered saline vehicle. RESULTS bFGF significantly accelerated granular tissue formation and reepithelialization. From the histologic analysis, the bFGF-treated group showed relatively faster collagen maturation. Starting 3 days after surgery, fibroblast growth factor receptor 1 (FGFR1)-positive cells appeared in the granular and spinous cell layers of the reepithelializing mucosa in the bFGF-treated group, whereas almost none was observed in the intact oral mucosa. By day 5, FGFR1-positive cells were seen below the stratum corneum, even in the control group. However, the number and intensity of FGFR1-positive cells in the bFGF-treated group were greater than in the control group. Results of immunostaining against proliferating cell nuclear antigen showed that bFGF stimulated cell proliferation of the basal cell layer in the regenerating epithelium. At a higher dose of bFGF, proliferating cell nuclear antigen-positive cells were also observed in the submucosal connective tissue. CONCLUSION By the induction of its ligand protein concomitant with direct effects such as increased granular tissue formation and reepithelialization, a single topical application of bFGF facilitated wound healing in rat oral mucosa. The results of this study support the consideration for bFGF application for patients with impaired healing of oral mucosal injury.
Collapse
Affiliation(s)
- Yukiko Oda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
12
|
Mogford JE, Roy NK, Cross KJ, Mustoe TA. Use of hypoxia-inducible factor signal transduction pathway to measure O2 levels and modulate growth factor pathways. Wound Repair Regen 2003; 11:496-503. [PMID: 14617292 DOI: 10.1046/j.1524-475x.2003.11620.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue PO2 levels are known to directly modulate numerous processes involved in the reparative response to cutaneous tissue injury, including cell differentiation and migration, extracellular matrix synthesis and maturation, and effectiveness of endogenous and exogenous growth factors. Oxygen is therefore likely the critical variable determining the healing capabilities of any tissue. Significant advances in the understanding of cutaneous wound healing progressed with advances in the measurement of tissue PO2, which has advanced over the past several decades from implantable probes to now include molecular tools such as the transcription factor hypoxia inducible factor-1 (HIF-1). HIF-1 modulates the expression of genes that drive the cellular adaptive response to hypoxia and possess the HIF-1 binding sequence named hypoxia response element within their promoter sequence. Molecular biology techniques are now allowing exploitation of the HIF-1/hypoxia response element pathway to drive the expression of potential vulnerary ectopic genes. Here we show the utility of the hypoxia response element for hypoxia-driven expression of the transforming growth factor-beta-signaling component Smad3 in vitro and the in vivo detection of ischemic hypoxia using luciferase. Smad3 is a positive effector of transforming growth factor-beta superfamily signal transduction. Such approaches are the latest evolution of work championed by Hunt and colleagues over the past 4 decades.
Collapse
Affiliation(s)
- Jon E Mogford
- Division of Plastic & Reconstructive Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
13
|
Hink J, Jansen E. Are superoxide and/or hydrogen peroxide responsible for some of the beneficial effects of hyperbaric oxygen therapy? Med Hypotheses 2001; 57:764-9. [PMID: 11918444 DOI: 10.1054/mehy.2001.1488] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The basic mechanisms behind the pharmacologic effects of hyperbaric oxygen therapy are not clear. Reactive oxygen metabolites are generally associated with the adverse reactions to hyperbaric oxygen exposure but they are also believed to be involved in the antibacterial effects of this therapy. The possibility that reactive oxygen metabolites are responsible for some of the other reported beneficial effects of hyperbaric oxygen therapy has not been investigated. This hypothesis paper briefly reviews the literature suggesting that the pharmacologic actions underlying some of the beneficial effects of hyperbaric oxygen therapy may be caused by superoxide and/or hydrogen peroxide. Elucidation of the pharmacologic mechanisms is fundamental in order to fully exploit the therapeutic potential of hyperbaric oxygen and we incite experimental research to be done within this area.
Collapse
Affiliation(s)
- J Hink
- The Royal Naval Technical School, Nyholm, Copenhagen, Denmark.
| | | |
Collapse
|
14
|
Norfleet AM, Huang Y, Sower LE, Redin WR, Fritz RR, Carney DH. Thrombin peptide TP508 accelerates closure of dermal excisions in animal tissue with surgically induced ischemia. Wound Repair Regen 2000; 8:517-29. [PMID: 11208179 DOI: 10.1046/j.1524-475x.2000.00517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TP508 is a synthetic peptide corresponding to amino acids 508 through 530 of human prothrombin. We previously demonstrated that a single topical application of TP508 stimulates revascularization and healing of acute incisional and excisional wounds in normal, healthy rat skin. To determine if TP508 would enhance wound healing in ischemic skin, we used bipedicle flaps, cranially based flaps, and free grafts to surgically create ischemic regions on the backs of rats. Full-thickness, circular excisions were made within the flaps or grafts and immediately treated with a single application of saline +/- TP508 (0.1 microg/wound). Compared to wound closure in normal skin, ischemic skin wounds exhibited delayed closure, and the length of delay correlated with the degree of surgically induced ischemia. TP508 significantly accelerated closure in both normal and ischemic skin, resulting in closure rates that were increased within the first 7 days of wounding by 30% in normal tissue and bipedicle flaps, 50% in cranially based flaps, and 225% in free grafts. Moreover, in both flap models, TP508 restored the rate of closure to a rate approximating the control rate observed in normal skin. Histological comparisons of wound tissue from normal skin and cranially based flaps showed that ischemia reduced early recruitment of inflammatory cells at day 1 but increased inflammatory cell numbers in wound beds at day 14. TP508 treatment of ischemic flap wounds significantly increased early inflammatory cell recruitment and restored the normal rapid resolution of the inflammatory phase. In addition, at day 7, TP508-treated wounds appeared to have an increased number of large functional blood vessels compared to saline controls. These studies support the potential efficacy of TP508 in treating ischemic wounds in humans.
Collapse
Affiliation(s)
- A M Norfleet
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0645, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hom DB, Simplot TC, Pernell KJ, Manivel JC, Song CW. Vascular and epidermal effects of fibroblast growth factor on irradiated and nonirradiated skin flaps. Ann Otol Rhinol Laryngol 2000; 109:667-75. [PMID: 10903049 DOI: 10.1177/000348940010900710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Head and neck cancer surgeons are often faced with the challenge of managing previously irradiated soft tissue that has poor vascularity and slower epithelialization. This study investigates the effect of supplemental basic fibroblast growth factor (bFGF) on flap vascularity, tissue oxygenation, and epidermal regeneration in nonirradiated (n = 40) and irradiated porcine skin flaps (n = 40). Supplemental bFGF increased vascularity in nonirradiated flaps by 80% (p = .005), with a trend to a higher tissue oxygen level by day 14. The irradiated bFGF-treated flaps did not show increased vascularity or higher tissue oxygen levels 2 weeks after surgery. However, in both irradiated and nonirradiated groups, epidermal regeneration increased by greater than 70% with supplemental bFGF (p < .002). The results of this study suggest that supplemental bFGF can increase tissue vascularity in nonirradiated tissues and epidermal regeneration in both nonirradiated and irradiated conditions.
Collapse
Affiliation(s)
- D B Hom
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota School of Medicine and Hennepin County Medical Center, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
16
|
Contemporary concepts and progress in wound healing. Curr Opin Otolaryngol Head Neck Surg 1999. [DOI: 10.1097/00020840-199908000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Wu L, Mockros NE, Casperson ME, Gruskin EA, Ladin DA, Roth SI, Mustoe TA. Effects of electrically charged particles in enhancement of rat wound healing. J Surg Res 1999; 85:43-50. [PMID: 10383836 DOI: 10.1006/jsre.1999.5354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many studies have show that various growth factors enhance wound healing in animal models. However, growth factors are expensive and complex and their wound pharmacokinetics are unknown. The clinical trials with growth factors in the treatment of chronic wounds have produced unsuccessful results. A viable alternative to growth factors may be certain biomaterials such as hydrophilic, carbohydrate beads. MATERIALS AND METHODS Positively charged, negatively charged, or uncharged beads were applied to paired 6-cm rat incisions. The following key aspects of the wound healing process were examined: wound breaking strength and histological analysis. RESULTS Our data show that wounds treated with positively charged, DEAE Sephadez beads had a 46-50% (P < 0.001) increase in breaking strength over untreated control wounds. A variety of other positively charged, anion exchange materials also elicited a wound healing response, despite the fact that the positively charged chemical moieties as well as the bead matrix were different. In conjunction with the increase in wound breaking strength, an increase in wound macrophage was observed in wounds treated with anion exchangers (P < 0.01). Negatively charged or uncharged beads showed no significant difference from the untreated controls. CONCLUSION We conclude from this study that the enhancement of wound healing seen with positively charged beads is due principally to the positive charge on the beads; we postulate that the anion exchange between the positively charged beads and tissue is responsible for this enhancement.
Collapse
Affiliation(s)
- L Wu
- Division of Plastic Surgery, Northwestern University Medical School, Chicago, Illinois, 60611, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Much has been published in the medical literature concerning adverse events relating to the surgical patient. Among the notable disorders requiring the expertise of the postanesthesia care unit nurse are the diagnosis and management of respiratory dysfunction acutely attributable to the effects of surgery and anesthesia. Inhalational and/or intravenous anesthetic agents contribute to pathophysiological alterations that lend to the development of hypoxemia in the postoperative period. When patients present with preexisting respiratory disease, their care is frequently more complex and challenging. This review session will address the oxygenation component of respiration and the perioperative influences that alter it as well as treatment considerations for normalizing oxygenation.
Collapse
Affiliation(s)
- R A Marley
- Department of Anesthesia, Poudre Valley Hospital, Fort Collins, CO 80524, USA
| |
Collapse
|
19
|
Quirinia A, Viidik A. The effect of recombinant basic fibroblast growth factor (bFGF) in fibrin adhesive vehicle on the healing of ischaemic and normal incisional skin wounds. SCANDINAVIAN JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY AND HAND SURGERY 1998; 32:9-18. [PMID: 9556816 DOI: 10.1080/02844319850158903] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal and ischaemic incisional wounds in rats were treated with recombinant human basic fibroblast growth factor (rbFGF) in fibrin adhesive vehicle. After 10 days of healing the maximum load*S and stress*S (S denotes correction for shrinkage) of ischaemic wounds were increased by 45% and 39%, respectively, after treatment with 20 micrograms rbFGF and by 67% and 56% after treatment with 60 micrograms rbFGF. After 20 days only 20 micrograms rbFGF had any effect and increased maximum load*S by 31% and energy at maximum (load*S, stress*S) by 40%-48%. In normal wounds 0.6-20 micrograms and 60 micrograms rbFGF decreased the strength parameters by 19%-34% and 49%-52%, respectively, after 10 days. After 20 days there was no negative influence but 60 micrograms rbFGF increased the biomechanical properties by 15%-24%. Treatment with the fibrin adhesive vehicle alone decreased the biomechanical properties of ischaemic wounds after 20 days, and of normal wounds after both 10 and 20 days. In conclusion, rbFGF can improve the healing of ischaemic wounds and may be used in the treatment of ischaemic wounds in patients, but it can have negative effects on normal wound healing.
Collapse
Affiliation(s)
- A Quirinia
- Department of Connective Tissue Biology, University of Aarhus, Denmark
| | | |
Collapse
|
20
|
Wu L, Yu YL, Galiano RD, Roth SI, Mustoe TA. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages. J Surg Res 1997; 72:162-9. [PMID: 9356238 DOI: 10.1006/jsre.1997.5178] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level.
Collapse
Affiliation(s)
- L Wu
- Division of Plastic Surgery, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The field of pharmacologic modulation of soft tissue repair is in its infancy. Although the soluble, cellular, and insoluble mediators that govern repair have not been elucidated, the application of pharmacologic concentrations of purified polypeptide growth factors, cytokines, and matrix molecules has nonetheless resulted in the acceleration of normal repair and the reversal of deficient repair in a wide variety of dermal wound models in animals. However, early clinical results using these factors have been less than encouraging, and their potential roles in the armamentarium of chronic wound therapies remain to be established.
Collapse
Affiliation(s)
- G F Pierce
- Department of Preclinical Sciences, PRIZM Pharmaceuticals, San Diego, California 92121, USA
| | | |
Collapse
|