1
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
2
|
Slaven JE, Wilkerson M, Soltis AR, Rittase WB, Bradfield DT, Bylicky M, Cary L, Tsioplaya A, Bouten R, Dalgard C, Day RM. Transcriptomic Profiling and Pathway Analysis of Mesenchymal Stem Cells Following Low Dose-Rate Radiation Exposure. Antioxidants (Basel) 2023; 12:antiox12020241. [PMID: 36829800 PMCID: PMC9951969 DOI: 10.3390/antiox12020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Low dose-rate radiation exposure can occur in medical imaging, as background from environmental or industrial radiation, and is a hazard of space travel. In contrast with high dose-rate radiation exposure that can induce acute life-threatening syndromes, chronic low-dose radiation is associated with Chronic Radiation Syndrome (CRS), which can alter environmental sensitivity. Secondary effects of chronic low dose-rate radiation exposure include circulatory, digestive, cardiovascular, and neurological diseases, as well as cancer. Here, we investigated 1-2 Gy, 0.66 cGy/h, 60Co radiation effects on primary human mesenchymal stem cells (hMSC). There was no significant induction of apoptosis or DNA damage, and cells continued to proliferate. Gene ontology (GO) analysis of transcriptome changes revealed alterations in pathways related to cellular metabolism (cholesterol, fatty acid, and glucose metabolism), extracellular matrix modification and cell adhesion/migration, and regulation of vasoconstriction and inflammation. Interestingly, there was increased hypoxia signaling and increased activation of pathways regulated by iron deficiency, but Nrf2 and related genes were reduced. The data were validated in hMSC and human lung microvascular endothelial cells using targeted qPCR and Western blotting. Notably absent in the GO analysis were alteration pathways for DNA damage response, cell cycle inhibition, senescence, and pro-inflammatory response that we previously observed for high dose-rate radiation exposure. Our findings suggest that cellular gene transcription response to low dose-rate ionizing radiation is fundamentally different compared to high-dose-rate exposure. We hypothesize that cellular response to hypoxia and iron deficiency are driving processes, upstream of the other pathway regulation.
Collapse
Affiliation(s)
- John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Matthew Wilkerson
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anthony R. Soltis
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Michelle Bylicky
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Lynnette Cary
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena Tsioplaya
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Clifton Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
3
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
4
|
Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 2021; 7:244. [PMID: 34531376 PMCID: PMC8446062 DOI: 10.1038/s41420-021-00634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Das U, Saha T, Das SK. Antioxidant Properties of Trianthema Portulacastrum and Protection Against Ionizing Radiation-Induced Liver Damage Ex vivo. Indian J Clin Biochem 2021; 37:192-198. [PMID: 35463107 PMCID: PMC8993979 DOI: 10.1007/s12291-021-00964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 11/27/2022]
Abstract
Antioxidants in fruits and vegetables protect cells against radiation induced damage. Trianthema portulacastrum is used as vegetables from ancient time. The effects of T. Portulacastrum ethanolic extracts against γ-radiation induced liver tissue damage ex vivo were evaluated in this study. Antioxidant phytochemicals present in T. Portulacastrum includes flavonoids [3.3 ± 0.15 to 10 ± 0.16 mg catethin equivalent (CE)/g fresh weight (fw)], ascorbic acid (0.15 ± 0.03 to 0.21 ± 0.03 mg/g fw), glutathione s-transferase (GST) (1.57 ± 0.06 to 3.59 ± 0.05 nmole/mg fw/min), superoxide dismutase (SOD) (1.6 ± 0.03 to 1.79 ± 0.04 U/min), peroxidase (3.26 ± 0.18 to 6.38 ± 0.03 U/g fw) and catalase (0.51 ± 0.03 to 2.84 ± 0.15 mg H2O2 decomposed/g fw/min). Total phenolic content varied from 122.9 ± 8.7 to 302.8 ± 15.7 mg gallic acid equivalent/g extract, and flavonoid content varied from 316.7 ± 33.3 to 800.7 ± 28.9 CE mg/g extract. The IC50 value of Nitric oxide (NO•) scavenging activity of extracts varies from 208.7 to 387.4 µg/ ml. Pre-treatment with the T. portulacastrum extracts mitigated the 4-Gy gamma(γ) radiation-induced oxidative stress related parameters in hepatic tissue such as TBARS, catalase, nitrite, Glutathione reductase (GR), SOD and GST in dose dependent manner. The ethanolic extract of the stem from T. Portulacastrum demonstrated highest protection in comparison to leaf and whole plant extracts. This study demonstrated the hepatoprotective efficacy of T. portulacastrum extracts against γ-radiation in ex-vivo condition was possibly due to its potential antioxidant properties of phenolic and flavonoids present in extracts.
Collapse
Affiliation(s)
- Uttam Das
- Department of Biochemistry, College of Medicine and JNM Hospital, WBUHS, Kalyani, Nadia, West Bengal 741235 India
| | - Tanmay Saha
- Department of Biochemistry, College of Medicine and JNM Hospital, WBUHS, Kalyani, Nadia, West Bengal 741235 India
| | - Subir Kumar Das
- Department of Biochemistry, College of Medicine and JNM Hospital, WBUHS, Kalyani, Nadia, West Bengal 741235 India
| |
Collapse
|
6
|
Shahid S, Masood K, Khan AW. Prediction of impacts on liver enzymes from the exposure of low-dose medical radiations through artificial intelligence algorithms. Rev Assoc Med Bras (1992) 2021; 67:248-259. [PMID: 34406249 DOI: 10.1590/1806-9282.67.02.20200653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to develop artificial intelligence and machine learning-based models to predict alterations in liver enzymes from the exposure of low annual average effective doses in radiology and nuclear medicine personnel of Institute of Nuclear Medicine and Oncology Hospital. METHODS Ninety workers from the Radiology and Nuclear Medicine departments were included. A high-capacity thermoluminescent was used for annual average effective radiation dose measurements. The liver function tests were conducted for all subjects and controls. Three supervised learning models (multilayer precentron; logistic regression; and random forest) were applied and cross-validated to predict any alteration in liver enzymes. The t-test was applied to see if subjects and controls were significantly different in liver function tests. RESULTS The annual average effective doses were in the range of 0.07-1.15 mSv. Alanine transaminase was 50% high and aspartate transaminase was 20% high in radiation workers. There existed a significant difference (p=0.0008) in Alanine-aminotransferase between radiation-exposed and radiation-unexposed workers. Random forest model achieved 90-96.6% accuracies in Alanine-aminotransferase and Aspartate-aminotransferase predictions. The second best classifier model was the Multilayer perceptron (65.5-80% accuracies). CONCLUSION As there is a need of regular monitoring of hepatic function in radiation-exposed people, our artificial intelligence-based predicting model random forest is proved accurate in prediagnosing alterations in liver enzymes.
Collapse
Affiliation(s)
- Saman Shahid
- National University of Computer and Emerging Sciences, Foundation for the Advancement of Science and Technology, Department of Sciences & Humanities - Lahore, Pakistan
| | - Khalid Masood
- Institute of Nuclear Medicine and Oncology Lahore, Department of Medical Physics - Lahore, Pakistan
| | - Abdul Waheed Khan
- Institute of Nuclear Medicine and Oncology Lahore, Department of Medical Physics - Lahore, Pakistan
| |
Collapse
|
7
|
Oxidative Stress and Gene Expression Modifications Mediated by Extracellular Vesicles: An In Vivo Study of the Radiation-Induced Bystander Effect. Antioxidants (Basel) 2021; 10:antiox10020156. [PMID: 33494540 PMCID: PMC7911176 DOI: 10.3390/antiox10020156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced bystander effect is a biological response in nonirradiated cells receiving signals from cells exposed to ionising radiation. The aim of this in vivo study was to analyse whether extracellular vesicles (EVs) originating from irradiated mice could induce modifications in the redox status and expression of radiation-response genes in bystander mice. C57BL/6 mice were whole-body irradiated with 0.1-Gy and 2-Gy X-rays, and EVs originating from mice irradiated with the same doses were injected into naïve, bystander mice. Lipid peroxidation in the spleen and plasma reactive oxygen metabolite (ROM) levels increased 24 h after irradiation with 2 Gy. The expression of antioxidant enzyme genes and inducible nitric oxide synthase 2 (iNOS2) decreased, while cell cycle arrest-, senescence- and apoptosis-related genes were upregulated after irradiation with 2 Gy. In bystander mice, no significant alterations were observed in lipid peroxidation or in the expression of genes connected to cell cycle arrest, senescence and apoptosis. However, there was a systemic increase in the circulating ROM level after an intravenous EV injection, and EVs originating from 2-Gy-irradiated mice caused a reduced expression of antioxidant enzyme genes and iNOS2 in bystander mice. In conclusion, we showed that ionising radiation-induced alterations in the cellular antioxidant system can be transmitted in vivo in a bystander manner through EVs originating from directly irradiated animals.
Collapse
|
8
|
Biological Effects of Scattered Versus Scanned Proton Beams on Normal Tissues in Total Body Irradiated Mice: Survival, Genotoxicity, Oxidative Stress and Inflammation. Antioxidants (Basel) 2020; 9:antiox9121170. [PMID: 33255388 PMCID: PMC7761103 DOI: 10.3390/antiox9121170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Side effects of proton therapy are poorly studied. Moreover, the differences in the method of dose delivery on normal tissues are not taken into account when proton beams are scanned instead of being scattered. We proposed here to study the effects of both modalities of proton beam delivery on blood; skin; lung and heart in a murine model. In that purpose; C57BL/6 mice were total body irradiated by 190.6 MeV proton beams either by Double Scattering (DS) or by Pencil Beam Scanning (PBS) in the plateau phase before the Bragg Peak. Mouse survival was evaluated. Blood and organs were removed three months after irradiation. Biomarkers of genotoxicity; oxidative stress and inflammation were measured. Proton irradiation was shown to increase lymphocyte micronucleus frequency; lung superoxide dismutase activity; erythrocyte and skin glutathione peroxidase activity; erythrocyte catalase activity; lung; heart and skin oxidized glutathione level; erythrocyte and lung lipid peroxidation and erythrocyte protein carbonylation even 3 months post-irradiation. When comparing both methods of proton beam delivery; mouse survival was not different. However, PBS significantly increased lymphocyte micronucleus frequency; erythrocyte glutathione peroxidase activity and heart oxidized glutathione level compared to DS. These results point out the necessity to take into account the way of delivering dose in PT as it could influence late side effects.
Collapse
|
9
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
10
|
Wu H, Xu C, Gu Y, Yang S, Wang Y, Wang C. An improved pseudotargeted GC-MS/MS-based metabolomics method and its application in radiation-induced hepatic injury in a rat model. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122250. [PMID: 32619786 DOI: 10.1016/j.jchromb.2020.122250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is the pivotal metabolic organ primarily responsible for metabolic activities, detoxification and regulation of carbohydrate, protein, amino acid, and lipid metabolism. However, very little is known about the complicated pathophysiologic mechanisms of liver injury result from ionizing radiation exposure. Therefore, a pseudotargeted metabolomics approach based on gas chromatography-tandem mass spectrometry with selected reaction monitoring (GC-MS-SRM) was developed to study metabolic alterations of liver tissues in radiation-induced hepatic injury. The pseudotargeted GC-MS-SRM method was validated with satisfactory analytical characteristics in terms of precision, linearity, sensitivity and recovery. Compared to the SIM-based approach, the SRM scanning method had mildly better precision, higher sensitivity, and wider linear ranges. A total of 37 differential metabolites associated with radiation-induced hepatic injury were identified using the GC-MS-SRM metabolomics method. Global metabolic clustering analysis showed that amino acids, carbohydrates, unsaturated fatty acids, organic acids, metabolites associated with pyrimidine metabolism, ubiquinone biosynthesis and oxidative phosphorylation appeared significantly declined after high dose irradiation exposure, whereas metabolites related to lysine catabolism, glycerolipid metabolism and glutathione metabolism presented the opposite behavior. These changes indicate energy deficiency, antioxidant defense damage, accumulation of ammonia and lipid oxidation of liver tissues in response to radiation exposure. It is shown that the developed pseudotargeted method based on GC-MS-SRM is a useful tool for metabolomics study.
Collapse
Affiliation(s)
- Hanxu Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Chao Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Yifeng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Shugao Yang
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou 215123, China
| | - Yarong Wang
- Experimental Center of Medical College, Soochow University, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China.
| |
Collapse
|
11
|
The Role of Sirtuin 3 in Radiation-Induced Long-Term Persistent Liver Injury. Antioxidants (Basel) 2020; 9:antiox9050409. [PMID: 32403251 PMCID: PMC7278565 DOI: 10.3390/antiox9050409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
In patients with abdominal region cancers, ionizing radiation (IR)-induced long-term liver injury is a major limiting factor in the use of radiotherapy. Previously, the major mitochondrial deacetylase, sirtuin 3 (SIRT3), has been implicated to play an important role in the development of acute liver injury after total body irradiation but no studies to date have examined the role of SIRT3 in liver's chronic response to radiation. In the current study, ten-month-old Sirt3-/- and Sirt3+/+ male mice received 24 Gy radiation targeted to liver. Six months after exposure, irradiated Sirt3-/- mice livers demonstrated histopathological elevations in inflammatory infiltration, the loss of mature bile ducts and higher DNA damage (TUNEL) as well as protein oxidation (3-nitrotyrosine). In addition, increased expression of inflammatory chemokines (IL-6, IL-1β, TGF-β) and fibrotic factors (Procollagen 1, α-SMA) were also measured in Sirt3-/- mice following 24 Gy IR. The alterations measured in enzymatic activities of catalase, glutathione peroxidase, and glutathione reductase in the livers of irradiated Sirt3-/- mice also implied that hydrogen peroxide and hydroperoxide sensitive signaling cascades in the absence of SIRT3 might contribute to the IR-induced long-term liver injury.
Collapse
|
12
|
Delayed effects of acute whole body lethal radiation exposure in mice pre-treated with BBT-059. Sci Rep 2020; 10:6825. [PMID: 32321983 PMCID: PMC7176697 DOI: 10.1038/s41598-020-63818-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
The threat of nuclear exposure is heightened and it is imperative to identify potential countermeasures for acute radiation syndrome. Currently no countermeasures have been approved for prophylactic administration. Effective countermeasures should function to increase survival in the short term as well as to increase the overall prognosis of an exposed individual long term. Here we describe the use of a promising radiation countermeasure, BBT-059, and the results of a long term mouse study (up to 12 months) in the male CD2F1 strain using 60Co gamma irradiation (~0.6 Gy/min, 7.5-12.5 Gy). We report the dose reduction factor of 1.28 for BBT-059 (0.3 mg/kg) compared to control administered 24 h prior to irradiation. In the long term study animals showed accelerated recovery in peripheral blood cell counts, bone marrow colony forming units, sternal cellularity and megakaryocyte numbers in drug treated mice compared to formulation buffer. In addition, increased senescence was observed in the kidneys of animals administered control or drug and exposed to the highest doses of radiation. Decreased levels of E-cadherin, LaminB1 and increased levels of Cyc-D and p21 in spleen lysates were observed in animals administered control. Taken together the results indicate a high level of protection following BBT-059 administration in mice exposed to lethal and supralethal doses of total body gamma-radiation.
Collapse
|
13
|
Yan H, Jiang J, Du A, Gao J, Zhang D, Song L. Genistein Enhances Radiosensitivity of Human Hepatocellular Carcinoma Cells by Inducing G2/M Arrest and Apoptosis. Radiat Res 2020; 193:286-300. [PMID: 32017668 DOI: 10.1667/rr15380.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
New radiosensitizers are urgently needed for radiation therapy patients with localized hepatocellular carcinoma (HCC) that is refractory to radical surgery. We previously found that genistein, a major soy isoflavone, exerts radioprotective effects on L-02 normal liver cells at low concentrations. Here, we report that 5 µM genistein shows less harm to L-02 cells than HCC cells and that it significantly enhances the radiosensitivity of HCC cells by enhancing DNA damage, chromosomal aberrations and cell cycle arrest at G2/M phase and by exacerbating apoptosis. Mechanistically, genistein aggravates X-ray-induced decreases in the levels of phospho-Bad (Ser136) but enhances the levels of phospho-Chk2 (Thr68), phospho-ATM (Ser1981) and γ-H2AX. Micro-array analysis indicated that downregulation of POU6F and CCNE2 expression and upregulation of FBXO32 and cyclin B1 expression might play vital roles in genistein-induced radiosensitivity. These findings suggest genistein as an interesting candidate for adjuvant radiotherapy for HCC and indicate that genistein causes less harm to normal cells than HCC cells by inducing G2/M arrest and apoptosis.
Collapse
Affiliation(s)
- Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jing Jiang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Aiying Du
- Department of Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, China
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Daisong Zhang
- Department of Surgery, Penglai People's Hospital, Penglai 265600, Shandong Province, China
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
14
|
Yıldızhan K, Demirtaş ÖC, Uyar A, Huyut Z, Çakir T, Keleş ÖF, Yener Z. Protective effects of Urtica dioica L. seed extract on liver tissue injury and antioxidant capacity in irradiated rats. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Bala S, Chugh NA, Bansal SC, Koul A. Aloe vera modulates X-ray induced hematological and splenic tissue damage in mice. Hum Exp Toxicol 2019; 38:1195-1211. [PMID: 31256688 DOI: 10.1177/0960327119860174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study was premeditated to examine the radioprotective effects of aqueous Aloe vera gel extract against whole-body X-ray irradiation-induced hematological alterations and splenic tissue injury in mice. Healthy male balb/c mice were divided into four groups: group 1, control; group 2, A. vera (50 mg/kg body weight) administered per oral on alternate days for 30 days (15 times); group 3, X-ray exposure of 2 Gy (0.25 Gy twice a day for four consecutive days in the last week of the experimental protocol); and group 4, A. vera + X-ray. X-ray exposure caused alterations in histoarchitecture of spleen along with enhanced clastogenic damage as assessed by micronucleus formation and apoptotic index. Irradiation caused an elevation in proinflammatory cytokines like tumor necrosis factor and interleukin-6, total leucocyte counts, neutrophil counts and decreased platelet counts along with unaltered red blood cell counts and hemoglobin. Irradiation also caused an elevation in reactive oxygen species (ROS), lipid peroxidation (LPO) levels, lactate dehydrogenase activity and alterations in enzymatic and nonenzymatic antioxidant defense mechanism in plasma and spleen. However, administration of A. vera gel extract ameliorated X-ray irradiation-induced elevation in ROS/LPO levels, histopathological and clastogenic damage. It also modulated biochemical indices, inflammatory markers, and hematological parameters. These results collectively indicated that the A. vera gel extract offers protection against whole-body X-ray exposure by virtue of its antioxidant, anti-inflammatory and anti-apoptotic potential.
Collapse
Affiliation(s)
- S Bala
- 1 Department of Biophysics, Basic Medical Sciences, Block-II, Panjab University, Chandigarh, India
| | - N A Chugh
- 1 Department of Biophysics, Basic Medical Sciences, Block-II, Panjab University, Chandigarh, India
| | - S C Bansal
- 2 Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh, India
| | - A Koul
- 1 Department of Biophysics, Basic Medical Sciences, Block-II, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Abdelrazzak AB, El-Missiry MA, Ahmed MT, Elnady BF. Effect of low-dose X-rays on the liver of whole-body irradiated rats. Int J Radiat Biol 2019; 95:264-273. [DOI: 10.1080/09553002.2019.1554925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Moustafa T. Ahmed
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Basma F. Elnady
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Radiomodulatory effects of Aloe vera on hepatic and renal tissues of X-ray irradiated mice. Mutat Res 2018; 811:1-15. [PMID: 30014950 DOI: 10.1016/j.mrfmmm.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
The present study was aimed to explore the protective role of Aloe vera gel extract against hepatic and renal damage caused by X-ray exposure to mice. Male balb/c mice were divided into four groups: control, Aloe vera gel extract [AV] (50 mg/ kg b.w on alternate days for 30 days), X-ray (2 Gy) and AV + X-ray. X-ray irradiation enhanced the serum levels of liver function indices and chromosomal abnormalities in liver. Kidney function markers were found to be deranged and were accompanied by reduced glomerular filtration rate indicating renal dysfunction. Irradiation caused histopathological and biochemical alterations in both tissues which was associated with enhanced reactive oxygen species (ROS), lipid peroxidation (LPO) levels, lactate dehydrogenase (LDH) activity and enhanced apoptosis as revealed by TUNEL assay and DNA fragmentation. The administration of Aloe vera gel extract to X-ray exposed animals significantly improved their hepatic and renal function parameters which were associated with a reduction in ROS/LPO levels, LDH activity and chromosomal abnormalities as compared to their irradiated counterparts. In vitro assays revealed effective radical scavenging ability of Aloe vera gel extract, which may be linked to its potential in exhibiting antioxidant effects in in vivo conditions. This data suggested that Aloe vera may serve to boost the antioxidant system, thus providing protection against hepatic and renal damage caused by X-ray.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Neha Arora Chugh
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | | | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Renal and hepatic effects following neonatal exposure to low doses of Bisphenol-A and 137Cs. Food Chem Toxicol 2018; 114:270-277. [PMID: 29477810 DOI: 10.1016/j.fct.2018.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
137-Cesium (137Cs) is one of the most important distributed radionuclides after a nuclear accident. Humans are usually co-exposed to various environmental toxicants, being Bisphenol-A (BPA) one of them. Exposure to IR and BPA in early life is of major concern, due to the higher vulnerability of developing organs. We evaluate the renal and hepatic effects of low doses of ionizing radiation (IR) and BPA. Sixty male mice (C57BL/6J) were randomly assigned to six experimental groups (n=10) and received a single subcutaneous dose of 0.9% saline solution, 137Cs and/or BPA on postnatal day 10: control, BPA (25 μg/kgbw), Cs4000 (4000 Bq 137Cs/kgbw), Cs8000 (8000 Bq 137Cs/kgbw), BPA/Cs4000 and BPA/Cs8000. At the age of two months, urines (24h) and blood samples were collected from animals of each group to determine biochemical parameters. Finally, kidneys and liver were removed to quantify DNA damage (8-OHdG), as well as to determine CYP1A2 mRNA expression. Data suggest that both BPA and 137Cs induced renal and liver damage evidenced by oxidative stress. However, when there is a co-exposure, it seems that there are compensatory mechanisms that may reverse the damage induced by each toxic itself. Notwithstanding, more studies are necessary to better understand the synergistic mechanisms behind.
Collapse
|
19
|
Assessing liver proteins and enzymes of medical workers exposed to ionizing radiation (IR). Clin Exp Med 2017; 18:89-99. [PMID: 28493150 DOI: 10.1007/s10238-017-0462-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Abstract
The cross-sectional study was conducted to examine hepatic function via liver enzymes/proteins assessments, along with the estimation of an inflammatory response from C-reactive protein (CRP)-which is a liver-synthesized protein. The liver function tests with aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin (BBN), and CRP test were conducted for radiation-exposed workers-REW (n = 32) and radiation-unexposed workers-RUW (n = 21). The annual average effective doses (AAED) were measured from thermoluminescent dosimeter. A t test and bivariate correlation analyses were applied. Only one worker had a high AST value (50 U/L), one worker had a negligible high ALT value (43 U/L) and only one worker had a negligible high bilirubin value (1.3 g/dL). There were normal levels of CRP (up to 6 mg/L) in all individuals. There existed a nonsignificant difference (p < 0.050) between the mean values of liver enzymes and proteins in all exposed and unexposed workers. Nonsignificant weak correlations are reported in liver enzymes/proteins parameters: AST, ALT, ALP, BBN, CRP with the AAED range (whole-body: 0.91-3.39 mSv) during 2011-2015. The normal values of liver enzymes/proteins' (AST, ALT, ALP, BBN, CRP) values may ensure a good hepatic health of radiation-exposed medical workers with AAED range mentioned. We found that low ionizing radiation doses did not alter the liver function test parameters and did not affect the concentration of an inflammatory response protein, i.e., CRP.
Collapse
|
20
|
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Protective role of Aloe vera against X-ray induced testicular dysfunction. Andrologia 2016; 49. [PMID: 27620003 DOI: 10.1111/and.12697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
The present investigation was carried out to evaluate the possible radioprotective potential of an Aloe vera extract against whole-body X-ray irradiation-induced testicular alterations in mice. Male balb/c mice were divided into four groups: control, A. vera, X-ray and A. vera pre-treated + X-ray irradiated. Histopathological examination revealed significant structural alterations in testes after X-ray exposure, which was also associated with the presence of apoptotic cells as assessed by TUNEL assay. X-ray irradiation resulted in elevation in the levels of reactive oxygen species, lipid peroxidation, a reduction in glutathione concentration and enhanced activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, catalase, superoxide dismutase and glutathione-S-transferase. Sperm count/motility and testosterone levels were significantly decreased in the irradiated group. Irradiated animals pre-treated with A. vera extract revealed an improvement in antioxidant status, inhibition of lipid peroxides, apoptotic cell formation and enhanced testicular parameters when compared to the X-ray-exposed group. These findings suggest that A. vera extract could ameliorate X-ray-induced damage due to its free radical scavenging properties and its potential to boost cellular antioxidant defence machinery.
Collapse
Affiliation(s)
- S Bala
- Department of Biophysics, Panjab University, Chandigarh, India
| | - N A Chugh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - S C Bansal
- Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh, India
| | - M L Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | - A Koul
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
21
|
Barshishat-Kupper M, McCart EA, Freedy JG, Tipton AJ, Nagy V, Kim SY, Landauer MR, Mueller GP, Day RM. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation. Proteomes 2015; 3:249-265. [PMID: 28248270 PMCID: PMC5217375 DOI: 10.3390/proteomes3030249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127-189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure.
Collapse
Affiliation(s)
- Michal Barshishat-Kupper
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - James G Freedy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Ashlee J Tipton
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Vitaly Nagy
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Sung-Yop Kim
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Michael R Landauer
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Gregory P Mueller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
22
|
Song L, Ma L, Cong F, Shen X, Jing P, Ying X, Zhou H, Jiang J, Fu Y, Yan H. Radioprotective effects of genistein on HL-7702 cells via the inhibition of apoptosis and DNA damage. Cancer Lett 2015; 366:100-11. [PMID: 26095601 DOI: 10.1016/j.canlet.2015.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/06/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Radiation induced normal tissue damage is the most important limitation for the delivery of a high potentially curative radiation dose. Genistein (GEN), one of the main soy isoflavone components, has drawn wide attention for its bioactivity in alleviating radiation damage. However, the effects and molecular mechanisms underlying the radioprotective effects of GEN remain unclear. In the present study, we showed that low concentration of GEN (1.5 µM) protected L-02 cells against radiation damage via inhibition of apoptosis, alleviation of DNA damage and chromosome aberration, down-regulation of GRP78 and up-regulation of HERP, HUS1 and hHR23A. In contrast, high concentration of GEN (20 µM) demonstrated radiosensitizing characteristics through the promotion of apoptosis and chromosome aberration, impairment of DNA repair, up-regulation of GRP78, and down-regulation of HUS1, SIRT1, RAD17, RAD51 and RNF8. These findings shed light on using low, but not high-concentration GEN, as a potential candidate for adjuvant therapy to alleviate radiation-induced injuries to human recipients of ionizing radiation.
Collapse
Affiliation(s)
- Lihua Song
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, Shanghai 200336, China
| | - Fengsong Cong
- School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200020, China
| | - Xiuhua Shen
- Nutrition Department, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China
| | - Pu Jing
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiong Ying
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyue Zhou
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Jiang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongye Fu
- Department of Laboratory Medicine, Changhai Hosipital, Second Military Medical University, Shanghai 200433, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hosipital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Zhang J, Zhou S, Zhou Y, Feng F, Wang Q, Zhu X, Ai H, Huang X, Zhang X. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model. PLoS One 2014; 9:e114670. [PMID: 25501583 PMCID: PMC4264768 DOI: 10.1371/journal.pone.0114670] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/12/2014] [Indexed: 01/26/2023] Open
Abstract
Liver damage caused by radiotherapy is associated with a high mortality rate, but no established treatment exists. Adipose-derived mesenchymal stem cells (ADSCs) are capable of migration to injured tissue sites, where they aid in the repair of the damage. Hepatocyte growth factor (HGF) is critical for damage repair due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This study was performed to investigate the therapeutic effects of HGF-overexpressing ADSCs on radiation-induced liver damage (RILD). ADSCs were infected with a lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD) rats received 60Gy of irradiation to induce liver injury and were immediately given either saline, ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant reduction in apoptosis was observed in the HGF-overexpressing ADSC group compared with the RILD group, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Scanning electron microscopy showed chromatin condensation after irradiation, which was ameliorated in the group that received ADSCs and was reversed in the group that received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated radiation- induced liver fibrosis through down regulation of α-SMA and fibronectin. Hepatocyte regeneration was significantly improved in rats treated with ADSCs compared with rats from the RILD group), as assessed by Ki-67 immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs completely blocked the radiation-induced increase in the enzymes ALT and AST. The effect of mitigating RILD was compromised in the ADSC + shHGF group compared with the ADSC group. Altogether, these results suggest that HGF-overexpressing ADSCs can significantly improve RILD in a rat model, which may serve as a valuable therapeutic alternative.
Collapse
Affiliation(s)
- Jiamin Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Shiyuan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Yi Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Feier Feng
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Qianming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Huisheng Ai
- Department of Hematology, Affiliated Hospital to the Academy of Military Medicine Science, FengTai District, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
- * E-mail: (X. Zhang); (XH)
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
- * E-mail: (X. Zhang); (XH)
| |
Collapse
|