1
|
Franceschelli S, De Cecco F, Benedetti S, Panella V, Speranza L, Grilli A, D'Andrea P. Anti-inflammatory activity of magnetic fields emitted by graphene devices on cultured human cells. J Biol Eng 2025; 19:36. [PMID: 40259390 PMCID: PMC12013070 DOI: 10.1186/s13036-025-00507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Inflammation plays a key role in various diseases such as pancreatitis, cancer, and rheumatoid arthritis. Acute inflammation involves processes like vasodilation, increased vascular permeability, and leukocyte accumulation, which lead to cellular damage due to reactive oxygen species (ROS). Low-frequency electromagnetic fields (ELF-EMFs) have shown potential in reducing oxidative stress and inflammation. This study assesses the effectiveness of a new wearable device containing graphene quantum dots in reducing inflammation and oxidative stress in Jurkat T cells stimulated by lipopolysaccharide (LPS). The device is evaluated for its impact on ROS production and inflammation. RESULTS The results show that the device significantly lowers ROS levels and reduces the inflammatory response by decreasing pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β. Additionally, the device inhibits LPS-induced iNOS and COX-2 activity and modulates NF-κB signaling, indicating its potential as a therapeutic tool for managing inflammation and oxidative stress. CONCLUSION These findings highlight the device's ability to combat inflammation, offering a non-invasive and effective approach for inflammatory diseases.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Via dei Vestini 31, Chieti, 66100, Italy.
- Uda-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy.
| | - Federica De Cecco
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Via dei Vestini 31, Chieti, 66100, Italy
| | - Stefano Benedetti
- School of Medicine - University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Valeria Panella
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Via dei Vestini 31, Chieti, 66100, Italy
| | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Via dei Vestini 31, Chieti, 66100, Italy
- Uda-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Alfredo Grilli
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Via dei Vestini 31, Chieti, 66100, Italy.
| | | |
Collapse
|
2
|
López de Mingo I, Rivera González MX, Maestú Unturbe C. The Cellular Response Is Determined by a Combination of Different ELF-EMF Exposure Parameters: A Scope Review. Int J Mol Sci 2024; 25:5074. [PMID: 38791113 PMCID: PMC11121623 DOI: 10.3390/ijms25105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Since the establishment of regulations for exposure to extremely low-frequency (0-300) Hz electromagnetic fields, scientific opinion has prioritised the hypothesis that the most important parameter determining cellular behaviour has been intensity, ignoring the other exposure parameters (frequency, time, mode, waveform). This has been reflected in the methodologies of the in vitro articles published and the reviews in which they are included. A scope review was carried out, grouping a total of 79 articles that met the proposed inclusion criteria and studying the effects of the different experiments on viability, proliferation, apoptosis, oxidative stress and the cell cycle. These results have been divided and classified by frequency, intensity, exposure time and exposure mode (continuous/intermittent). The results obtained for each of the processes according to the exposure parameter used are shown graphically to highlight the importance of a good methodology in experimental development and the search for mechanisms of action that explain the experimental results, considering not only the criterion of intensity. The consequence of this is a more than necessary revision of current exposure protection regulations for the general population based on the reductionist criterion of intensity.
Collapse
Affiliation(s)
- Isabel López de Mingo
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Marco-Xavier Rivera González
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Ceferino Maestú Unturbe
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (I.L.d.M.); (M.-X.R.G.)
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Centro de Investigación en Red—Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
3
|
Hambarde S, Manalo JM, Baskin DS, Sharpe MA, Helekar SA. Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells. Sci Rep 2023; 13:19264. [PMID: 37935811 PMCID: PMC10630398 DOI: 10.1038/s41598-023-46758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Raising reactive oxygen species (ROS) levels in cancer cells to cause macromolecular damage and cell death is a promising anticancer treatment strategy. Observations that electromagnetic fields (EMF) elevate intracellular ROS and cause cancer cell death, have led us to develop a new portable wearable EMF device that generates spinning oscillating magnetic fields (sOMF) to selectively kill cancer cells while sparing normal cells in vitro and to shrink GBM tumors in vivo through a novel mechanism. Here, we characterized the precise configurations and timings of sOMF stimulation that produce cytotoxicity due to a critical rise in superoxide in two types of human glioma cells. We also found that the antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect. Our findings clarify the link between the physics of magnetic stimulation and its mechanism of anticancer action, facilitating the development of a potential new safe noninvasive device-based treatment for GBM and other gliomas.
Collapse
Affiliation(s)
- Shashank Hambarde
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jeanne M Manalo
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - David S Baskin
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Martyn A Sharpe
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Santosh A Helekar
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA.
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Askaripour K, Żak A. A mechanistically approached review upon assorted cell lines stimulated by athermal electromagnetic irradiation. Cell Cycle 2023; 22:1319-1342. [PMID: 37144743 PMCID: PMC10228405 DOI: 10.1080/15384101.2023.2206682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 05/06/2023] Open
Abstract
The probable influence of electromagnetic irradiation on cancer treatment has been deduced from the interaction of artificial electromagnetic emissions with biological organisms. Nonetheless, the suspected health effects induced by electromagnetic-based technology imply that such a treatment may contaminate the adjacent healthy cells. Thus, gaining mechanistic insights into the problem is required to avoid athermal health hazards. To tackle that, the current review, based upon in vitro studies into assorted cell lines, depicts the alterations in physiological processes triggered by electromagnetic irradiation via addressing gene regulatory cascades. Furthermore, decisive factors in the hypothesized cause-effect linkage in terms of the cell line-associated, exposure-associated, or endpoint-associated parameters are highlighted. As a result, subcellular structures such as aberrant Ca2+ channels, rich glycocalyx charge, or high water content in cancerous cells, which have attracted a great deal of attention, can explain their higher susceptibility compared with healthy cells under irradiation. Affected by cell components or geometry, the cellular biological window correlates with the metabolic or cell cycle status and determines the irradiation that causes the maximum influence. For instance, correlations between the frequency (or intensity) of irradiation and cell excitability or between the duration of irradiation and cell doubling time are observed. There are unspecified signaling pathways such as the pathway of PPAR-γ or MAPKs, and also proteins devoid of any investigation such as p14, or S phase-related and G2 phase-related proteins. Other chains, such as the cAMP connection with mitochondrial ATP or ERK signaling, the association of Hsps releases with signaling pathways of MAPKs, or the role of different ion channels in regulating various cell processes, require further investigation.
Collapse
Affiliation(s)
- Khadijeh Askaripour
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Poland
| | - Arkadiusz Żak
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
5
|
Ponzetti M, Ucci A, Puri C, Giacchi L, Flati I, Capece D, Zazzeroni F, Cappariello A, Rucci N, Falone S. Effects of osteoblast-derived extracellular vesicles on aggressiveness, redox status and mitochondrial bioenergetics of MNNG/HOS osteosarcoma cells. Front Oncol 2022; 12:983254. [PMID: 36544705 PMCID: PMC9762506 DOI: 10.3389/fonc.2022.983254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy. The crosstalk between osteosarcoma and the surrounding tumour microenvironment (TME) drives key events that lead to metastasization, one of the main obstacles for definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer nanoparticles used by cells for intercellular communication, are emerging as critical biological mediators that permit the interplay between neoplasms and the tumour microenvironment, modulating re-wiring of energy metabolism and redox homeostatic processes. We previously showed that EVs derived from the human osteosarcoma cells influence bone cells, including osteoblasts. We here investigated whether the opposite could also be true, studying how osteoblast-derived EVs (OB-EVs) could alter tumour phenotype, mitochondrial energy metabolism, redox status and oxidative damage in MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from mouse primary osteoblasts, and the following endpoints were investigated: i) cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity; iv) stemness features; v) mitochondrial function and energy metabolism; vi) redox status, antioxidant capacity and oxidative molecular damage. OB-EVs decreased MNNG/HOS metabolic activity and viability, which however was not accompanied by impaired proliferation nor by increased apoptosis, with respect to control. In addition, OB-EV-treated cells exhibited a significant reduction of motility and in vitro invasion as compared to untreated cells. Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of OB-EVs, no evidence of oxidative stress was observed in treated cells. However, the redox balance of glutathione was significantly shifted towards a pro-oxidant state, even though the major antioxidant enzymatic protection did not respond to the pro-oxidant challenge. We did not find strong evidence of mitochondrial involvement or major energy metabolic switches induced by OB-EVs, but a trend of reduction in seahorse assay basal respiration was observed, suggesting that OB-EVs could represent a mild metabolic challenge for osteosarcoma cells. In summary, our findings suggest that OB-EVs could serve as important means through which TME and osteosarcoma core cross-communicate. For the first time, we proved that OB-EVs reduced osteosarcoma cells' aggressiveness and viability through redox-dependent signalling pathways, even though mitochondrial dynamics and energy metabolism did not appear as processes critically needed to respond to OB-EVs.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Chiara Puri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luca Giacchi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Nadia Rucci,
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
6
|
Ronniger M, Aguida B, Stacke C, Chen Y, Ehnert S, Erdmann N, Eschenburg G, Falldorf K, Pooam M, Wing A, Ahmad M. A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering (Basel) 2022; 9:bioengineering9100595. [PMID: 36290562 PMCID: PMC9598188 DOI: 10.3390/bioengineering9100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of extremely low-frequency electromagnetic field (ELF-MF) exposure on living systems have been widely studied at the fundamental level and also claimed as beneficial for the treatment of diseases for over 50 years. However, the underlying mechanisms and cellular targets of ELF-MF exposure remain poorly understood and the field has been plagued with controversy stemming from an endemic lack of reproducibility of published findings. To address this problem, we here demonstrate a technically simple and reproducible EMF exposure protocol to achieve a standardized experimental approach which can be readily adopted in any lab. As an assay system, we chose a commercially available inflammatory model human cell line; its response to magnetic fields involves changes in gene expression which can be monitored by a simple colorimetric reporter gene assay. The cells were seeded and cultured in microplates and inserted into a custom-built, semi-automated incubation and exposure system which accurately controls the incubation (temperature, humidity, CO2) and magnetic-field exposure conditions. A specific alternating magnetic field (<1.0% spatial variance) including far-field reduction provided defined exposure conditions at the position of each well of the microplate. To avoid artifacts, all environmental and magnetic-field exposure parameters were logged in real time throughout the duration of the experiment. Under these extensively controlled conditions, the effect of the magnetic field on the cell cultures as assayed by the standardized operating procedure was highly reproducible between experiments. As we could fully define the characteristics (frequency, intensity, duration) of the pulsed magnetic field signals at the position of the sample well, we were, for the first time, able to accurately determine the effect of changing single ELF-MF parameters such as signal shape, frequency, intensity and duty cycle on the biological response. One signal in particular (10 Hz, 50% duty cycle, rectangular, bipolar, 39.6μT) provided a significant reduction in cytokine reporter gene expression by 37% in our model cell culture line. In sum, the accuracy, environmental control and data-logging capacity of the semi-automated exposure system should greatly facilitate research into fundamental cellular response mechanisms and achieve the consistency necessary to bring ELF-MF/PEMF research results into the scientific mainstream.
Collapse
Affiliation(s)
- Michael Ronniger
- Sachtleben GmbH, 20251 Hamburg, Germany
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| | - Blanche Aguida
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| | | | - Yangmengfan Chen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sabrina Ehnert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | | | | | - Marootpong Pooam
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | | | - Margaret Ahmad
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| |
Collapse
|
7
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
8
|
Sołek P, Mytych J, Łannik E, Majchrowicz L, Koszła O, Koziorowska A, Koziorowski M. Cancer on-target: Selective enhancement of 3-bromopyruvate action by an electromagnetic field in vitro. Free Radic Biol Med 2022; 180:153-164. [PMID: 35063649 DOI: 10.1016/j.freeradbiomed.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the leading causes of death in the modern world. Nowadays, most often treatment methods used in clinical oncology are drug therapies applied as monotherapy or combined therapy. Additionally, recent studies focus on developing approaches with the use of a drug in combination with other factors, not only chemical, to improve the probability and magnitude of therapeutic responses and reduce the possibility of chemoresistance. Such a promising factor seems to be an electromagnetic field (EMF) application. Here, we tested the effect of continuous or pulsed EMF on human cancer cells of different origin treated or not with 3-bromopyruvate, a small and powerful alkylating agent with a broad spectrum of anticancer activities. We provide strong evidence suggesting that ELF-EMF potentiates the anti-cancer activity of 3BP in human cancer cells through inhibition of TNFα secretion leading to irreversible p21/p27-dependent G2/M cell cycle arrest and finally cancer cell death. Our findings suggest a novel approach combining pharmacotherapy with ELF-EMF. In conclusion, electromagnetic field seems to be a potential modulator of anti-cancer efficacy of 3BP while combined therapy offers off-target activity. These features contribute to the development of innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 20-093, Lublin, Poland; Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland.
| | - Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland
| | - Ewelina Łannik
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland
| | - Lena Majchrowicz
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 20-093, Lublin, Poland
| | - Anna Koziorowska
- College of Natural Sciences, University of Rzeszow, 35-310, Rzeszow, Poland
| | - Marek Koziorowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310, Rzeszow, Poland
| |
Collapse
|
9
|
Pooam M, Jourdan N, Aguida B, Dahon C, Baouz S, Terry C, Raad H, Ahmad M. Exposure to 1.8 GHz radiofrequency field modulates ROS in human HEK293 cells as a function of signal amplitude. Commun Integr Biol 2022; 15:54-66. [PMID: 35126804 PMCID: PMC8816398 DOI: 10.1080/19420889.2022.2027698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The modern telecommunications industry is ubiquitous throughout the world, with a significant percentage of the population using cellular phones on a daily basis. The possible physiological consequences of wireless emissions in the GHz range are therefore of major interest, but remain poorly understood. Here, we show that exposure to a 1.8 GHz carrier frequency in the amplitude range of household telecommunications induces the formation of ROS (Reactive Oxygen Species) in human HEK293 cultured cells. The ROS concentrations detected by fluorescent imaging techniques increased significantly after 15 minutes of RF field exposure, and were localized to both nuclear and cytosolic cellular compartments. qPCR analysis showed altered gene expression of both anti-oxidative (SOD, GPX, GPX, and CAT) and oxidative (Nox-2) enzymes. In addition, multiple genes previously identified as responsive to static magnetic fields were found to also be regulated by RF, suggesting common features in response mechanisms. By contrast, many RF effects showed evidence of hormesis, whereby biological responsivity does not occur linearly as a function of signal amplitude. Instead, biphasic dose response curves occur with ‘blind’ spots at certain signal amplitudes where no measureable response occurs. We conclude that modulation of intracellular ROS can be a direct consequence of RF exposure dependent on signal frequency and amplitude. Since changes in intracellular ROS may have both harmful and beneficial effects, these could provide the basis for many reported physiological effects of RF exposure.
Collapse
Affiliation(s)
- Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | - Colin Terry
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Haider Raad
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Margaret Ahmad
- Sorbonne Université - CNRS, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Sharma AK, Sah S, Singla SK, Chauhan MS, Manik RS, Palta P. Exposure to Pulsed Electromagnetic Fields Improves the Developmental Competence and Quality of Somatic Cell Nuclear Transfer Buffalo ( Bubalus bubalis) Embryos Produced Using Fibroblast Cells and Alters Their Epigenetic Status and Gene Expression. Cell Reprogram 2021; 23:304-315. [PMID: 34597162 DOI: 10.1089/cell.2021.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We examined the effects of treatment with pulsed electromagnetic fields (PEMFs) on cumulus cells and buffalo somatic cell nuclear transfer (SCNT) embryos. PEMF treatment (30 μT for 3 hours) of cumulus cells increased (p < 0.05) the relative cell viability and cell proliferation and the expression level of OCT4, NANOG, SOX2, P53, CCNB1, and GPX, but decreased (p < 0.05) that of DNMT1, DNMT3a, GSK3b, and BAX, whereas the expression level of DNMT3b, GLUT1, BCL2, CASPASE3, SOD1, and CATALASE was not affected. PEMF treatment of SCNT embryos at the beginning of in vitro culture increased (p < 0.05) the blastocyst rate (51.4% ± 1.36% vs. 42.8% ± 1.29%) and decreased (p < 0.01) the apoptotic index to the level in in vitro fertilization blastocysts, but did not significantly alter the total cell number and the inner cell mass:trophectoderm cell number ratio of blastocysts compared to the controls. PEMF treatment increased the expression level of NANOG, SOX2, CDX2, GLUT1, P53, and BCL2 and decreased that of BAX, CASPASE3, GSK3b, and HSP70, but not OCT4, DNMT1, DNMT3a, DNMT3b, HDAC1, and CCNB1 in blastocysts. It increased (p < 0.001) the global level of H3K27me3 but not H3K18ac. These results suggest that PEMF treatment of SCNT embryos improves their developmental competence, reduces the level of apoptosis, and alters the expression level of several important genes related to pluripotency, apoptosis, metabolism, and stress.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Shrutika Sah
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Radhey Shyam Manik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.,Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
11
|
Klimek A, Rogalska J. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci 2021; 11:174. [PMID: 33572550 PMCID: PMC7912337 DOI: 10.3390/brainsci11020174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a stress factor. Exposure to ELF-MF "turns on" different intracellular mechanisms into both directions: compensatory or deleterious ones. ELF-MF can provoke morphological and physiological changes in stress-related systems, mainly nervous, hormonal, and immunological ones. This review summarizes the ELF-MF-mediated changes at various levels of the organism organization. Special attention is placed on the review of literature from the last decade. Most studies on ELF-MF effects concentrate on its negative influence, e.g., impairment of behavior towards depressive and anxiety disorders; however, in the last decade there was an increase in the number of research studies showing stimulating impact of ELF-MF on neuroplasticity and neurorehabilitation. In the face of numerous studies on the ELF-MF action, it is necessary to systematize the knowledge for a better understanding of the phenomenon, in order to reduce the risk associated with the exposure to this factor and to recognize the possibility of using it as a therapeutic agent.
Collapse
Affiliation(s)
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| |
Collapse
|
12
|
Rahmani S, Ansarihadipour H, Bayatiani MR, Khosrowbeygi A, Babaei S, Rasmi Y. Conformational changes of β-thalassemia major hemoglobin and oxidative status of plasma after in vitro exposure to extremely low-frequency electromagnetic fields: An artificial neural network analysis. Electromagn Biol Med 2021; 40:117-130. [PMID: 33092422 DOI: 10.1080/15368378.2020.1830289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Electromagnetic fields (EMF) can generate reactive oxygen species and induce oxidative modifications. We investigated the effects of extremely low-frequency electromagnetic fields (ELF-EMF) on oxidative status of plasma and erythrocytes in β-thalassemia major patients and design artificial neural networks (ANN) for evaluating the oxyHb concentration. Blood samples were obtained from age and sex-matched healthy donors (n = 12) and major β-thalassemia patients (n = 12) and subjected to 0.5 and 1 mT and 50 Hz of EMF. Plasma oxidative status was estimated after 1 and 2 h exposure to ELE-EMF. Structural changes of plasma proteins were investigated by Native PAGE and SDS-PAGE. Moreover; multilayer perceptron (MLP) method was applied for designing a feed forward ANN model to predict the impact of these oxidative and antioxidative parameters on oxyHb concentration. Two hour exposure to ELF-EMF induced significant oxidative changes on major β-thalassemia samplesElectrophoretic profiles showed two high molecular weight (HMW) protein aggregates in plasma samples from healthy donors and major β-thalassemia patients. According to our ANN design, the main predictors of oxyHb concentration were optical density of Hb at 542, 340, 569, 630, 577, and 420 nm and metHb and hemichrome (HC) concentration. Accuracy of the proposed ANN model was shown by predicted by observed chart (y = 1.3 + 0.96x, R2 = 0.942), sum of squares errors (SSR), and relative errors (RE). Our results showed the detailed effects of ELF-EMF on Hb structure and oxidative balance of plasma in major β-thalassemia patients and significance of ANN analysis during normal and pathologic conditions.
Collapse
Affiliation(s)
- Saeideh Rahmani
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Hadi Ansarihadipour
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Mohamad Reza Bayatiani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences and Khansari Hospital , Arak, Iran
| | - Ali Khosrowbeygi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Saeid Babaei
- Department of Anatomical Sciences, School of Medicine, Arak University of Medical Sciences , Arak, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
13
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
14
|
Mercado-Sáenz S, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019; 95:1588-1596. [DOI: 10.1080/09553002.2019.1643050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Silvia Mercado-Sáenz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Antonio M. Burgos-Molina
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Beatriz López-Díaz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Miguel J. Ruiz-Gómez
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
15
|
Pi Y, Liang H, Yu Q, Yin Y, Xu H, Lei Y, Han Z, Tian J. Low‑frequency pulsed electromagnetic field inhibits RANKL‑induced osteoclastic differentiation in RAW264.7 cells by scavenging reactive oxygen species. Mol Med Rep 2019; 19:4129-4136. [PMID: 30942408 PMCID: PMC6470919 DOI: 10.3892/mmr.2019.10079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Bone homeostasis is a dynamic balance maintained by bone formation and resorption. An increase in the number and activity of osteoclasts leads to excessive bone resorption, which in turn results in bone disease, including osteoporosis. Therefore, inhibiting the differentiation and activity of osteoclasts is important for maintaining bone mass. Several studies have revealed that the use of a low-frequency pulsed electromagnetic field (PEMF) is an effective method to treat osteoporosis. However, its exact mechanism remains to be fully clarified. Therefore, the present study was designed to examine the effects that PEMF exerts on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and intracellular reactive oxygen species (ROS) production in RAW264.7 cells. The viability of cells was determined using a Cell Counting Kit-8 assay, and gene and protein expression were investigated via reverse transcription-quantitative polymerase chain reaction and western blot analyses. Furthermore, microscopy was performed to detect the levels of intracellular ROS and tartrate-resistant acid phosphatase (TRAP). Following the culture of RAW264.7 cells with RANKL (50 ng/ml) for 4 days (3 h/day) under PEMF (75 Hz, 1 mt) exposure, it was observed that PEMF had an inhibitory effect on RANKL-induced osteoclastic differentiation. Multinucleated osteoclast formation, the activity of TRAP and the expression of osteoclastogenesis-associated genes, including cathepsin K, nuclear factor of activated T cells cytoplasmic 1 and TRAP, were significantly reduced by PEMF. Furthermore, PEMF effectively decreased the generation of intracellular ROS during osteoclastic differentiation. In addition, the results demonstrated that ROS are the key factor in osteoclast differentiation and formation. Reducing intracellular ROS with diphenylene-iodonium chloride significantly inhibited RANKL-induced osteoclast differentiation. Taken together, the results of the present study demonstrated that PEMF may inhibit RANKL-induced osteoclastogenesis by scavenging intracellular ROS. These results may provide the groundwork for future PEMF clinical applications in osteoclast-associated bone disease.
Collapse
Affiliation(s)
- Ying Pi
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Haifeng Liang
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Yu
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yukun Yin
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Xu
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yutian Lei
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongyu Han
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
16
|
Consales C, Panatta M, Butera A, Filomeni G, Merla C, Carrì MT, Marino C, Benassi B. 50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1 G93A model of amyotrophic lateral sclerosis. Int J Radiat Biol 2019; 95:368-377. [PMID: 30513241 DOI: 10.1080/09553002.2019.1552378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE We characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 h. Analysis of (i) viability, proliferation and apoptosis, (ii) reactive oxygen species generation, and (iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS We report that 50-Hz MF exposure induces: (i) no change in proliferation and viability; (ii) no modulation of the intracellular superoxide and H2O2 levels; (iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (p = .0512) difference in the total iron content. CONCLUSIONS 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model.
Collapse
Affiliation(s)
- Claudia Consales
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Martina Panatta
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy.,b Department of Chemistry and Biochemistry , University of Bern , Bern , Switzerland
| | - Alessio Butera
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Giuseppe Filomeni
- c Department of Biology , University of Rome Tor Vergata , Rome , Italy.,d Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD) , Danish Cancer Society Research Center , Copenhagen , Denmark
| | - Caterina Merla
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | | | - Carmela Marino
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Barbara Benassi
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| |
Collapse
|
17
|
Cichon N, Bijak M, Synowiec E, Miller E, Sliwinski T, Saluk-Bijak J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 78:626-631. [DOI: 10.1080/00365513.2018.1542540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Cichon
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Elzbieta Miller
- Department of Physical Medicine, Medical University of Lodz, Lodz, Poland
- Neurorehabilitation Ward III General Hospital in Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Department of Molecular Genetics, Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5076271. [PMID: 30533171 PMCID: PMC6250044 DOI: 10.1155/2018/5076271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: “extremely low frequency electromagnetic fields (ELF-EMFs),” “radiofrequency (RF),” “microwaves,” “Wi-Fi,” “mobile phone,” “oxidative stress,” “mitochondria,” “fertility,” “sperm,” “testis,” “oocyte,” “ovarian follicle,” and “embryo.” These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.
Collapse
|
19
|
Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. ENVIRONMENTAL RESEARCH 2018; 163:71-79. [PMID: 29427953 DOI: 10.1016/j.envres.2018.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/14/2018] [Accepted: 01/23/2018] [Indexed: 05/06/2023]
Abstract
New technologies in electronics and communications are continually emerging. An increasing use of these electronic devices such as mobile phone, computer, wireless fidelity connectors or cellular towers is raising questions concerning whether they have an adverse effect on the body. Exposure to electromagnetic fields (EMF) is frequently suggested to have adverse health effects on humans and other organisms. This idea has been reported in many studies. In contrast, the therapeutic effects of EMF on different organs have also been reported. Research findings are inconsistent. This has given rise to very profound discrepancies. The duration and frequency of mobile phone calls and the association observed with various health effects has raised serious concerns due to the frequency with which these devices are used and the way they are held close to the head. The present review assesses the results of in vitro, in vivo, experimental, and epidemiological studies. The purpose of the study is to assess data concerning the carcinogenic and genotoxic effects of non-ionizing EMF. The major genotoxic and carcinogenic effects of EMF, divided into subsections as low frequency effects and radiofrequency effects, were reviewed. The inconsistent results between similar studies and the same research groups have made it very difficult to make any comprehensive interpretation. However, evaluation of current studies suggests that EMF may represent a serious source of concern and may be hazardous to living organisms.
Collapse
Affiliation(s)
- Adem Kocaman
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey.
| | - Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
20
|
Falone S, Santini S, Cordone V, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies. Front Public Health 2018. [PMID: 29527520 PMCID: PMC5829633 DOI: 10.3389/fpubh.2018.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as “possible carcinogenic.” Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-National Research Council (CNR), L'Aquila, Italy
| |
Collapse
|
21
|
Ehnert S, Fentz AK, Schreiner A, Birk J, Wilbrand B, Ziegler P, Reumann MK, Wang H, Falldorf K, Nussler AK. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O 2- and H 2O 2. Sci Rep 2017; 7:14544. [PMID: 29109418 PMCID: PMC5673962 DOI: 10.1038/s41598-017-14983-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
Recently, we identified a specific extremely low-frequency pulsed electromagnetic field (ELF-PEMF) that supports human osteoblast (hOBs) function in an ERK1/2-dependent manner, suggesting reactive oxygen species (ROS) being key regulators in this process. Thus, this study aimed at investigating how ELF-PEMF exposure can modulate hOBs function via ROS. Our results show that single exposure to ELF-PEMF induced ROS production in hOBs, without reducing intracellular glutathione. Repetitive exposure (>3) to ELF-PEMF however reduced ROS-levels, suggesting alterations in the cells antioxidative stress response. The main ROS induced by ELF-PEMF were •O2- and H2O2, therefore expression/activity of antioxidative enzymes related to these ROS were further investigated. ELF-PEMF exposure induced expression of GPX3, SOD2, CAT and GSR on mRNA, protein and enzyme activity level. Scavenging •O2- and H2O2 diminished the ELF-PEMF effect on hOBs function (AP activity and mineralization). Challenging the hOBs with low amounts of H2O2 on the other hand improved hOBs function. In summary, our data show that ELF-PEMF treatment favors differentiation of hOBs by producing non-toxic amounts of ROS, which induces antioxidative defense mechanisms in these cells. Thus, ELF-PEMF treatment might represent an interesting adjunct to conventional therapy supporting bone formation under oxidative stress conditions, e.g. during fracture healing.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Anne-Kristin Fentz
- Sachtleben GmbH, Hamburg, Spectrum UKE, Martinistraße 64, D-20251, Hamburg, Germany
| | - Anna Schreiner
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Johannes Birk
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Benjamin Wilbrand
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Patrick Ziegler
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Marie K Reumann
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Hongbo Wang
- Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1277#, 430022, Wuhan, China
| | - Karsten Falldorf
- Sachtleben GmbH, Hamburg, Spectrum UKE, Martinistraße 64, D-20251, Hamburg, Germany
| | - Andreas K Nussler
- Siegfried Weller Institute for Trauma Research, Eberhard-Karls-Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| |
Collapse
|
22
|
Model of Murine Ventricular Cardiac Tissue for In Vitro Kinematic-Dynamic Studies of Electromagnetic and β-Adrenergic Stimulation. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:4204085. [PMID: 29065600 PMCID: PMC5591919 DOI: 10.1155/2017/4204085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022]
Abstract
In a model of murine ventricular cardiac tissue in vitro, we have studied the inotropic effects of electromagnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and their combination. In particular, we have performed an image processing analysis to evaluate the kinematics and the dynamics of beating cardiac syncytia starting from the video registration of their contraction movement. We have found that the electromagnetic stimulation is able to counteract the β-adrenergic effect of isoproterenol and to elicit an antihypertrophic response.
Collapse
|
23
|
Magnetic Fields and Reactive Oxygen Species. Int J Mol Sci 2017; 18:ijms18102175. [PMID: 29057846 PMCID: PMC5666856 DOI: 10.3390/ijms18102175] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Collapse
|
24
|
Miliša M, Đikić D, Mandić T, Grozić D, Čolić I, Ostojić A. Response of aquatic protists to electric field exposure. Int J Radiat Biol 2017; 93:818-830. [DOI: 10.1080/09553002.2017.1321809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marko Miliša
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Domagoj Đikić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Tvrtko Mandić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Dino Grozić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivan Čolić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ana Ostojić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
25
|
Tian JN, Shi XD, Wang XK, Wang S, Xu JX, Yang CX. Astemizole protects against human umbilical vein endothelial cell injury induced by hydrogen peroxide via the p53 signaling pathway. Mol Med Rep 2017; 15:4286-4290. [DOI: 10.3892/mmr.2017.6497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
|
26
|
Zou J, Chen Y, Qian J, Yang H. Effect of a low-frequency pulsed electromagnetic field on expression and secretion of IL-1β and TNF-α in nucleus pulposus cells. J Int Med Res 2017; 45:462-470. [PMID: 28173722 PMCID: PMC5536647 DOI: 10.1177/0300060516683077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate changes in nucleus pulposus cell expression and secretion of interleukin (IL)-1β and tumour necrosis factor (TNF)-α following stimulation with a low-frequency (LF) pulsed electromagnetic field (PEMF). Methods Primary rat nucleus pulposus cells were isolated and cultured in vitro, followed by stimulation with LF-PEMFs at a frequency of 2 Hz and different intensities, ranging from 0.5–3.0 A/m. Cells were observed for morphological changes, and proliferation rates were measured by cell viability counts. Expression of IL-1β and TNF-α within the nucleus pulposus cells was measured using western blotting, and levels of IL-1β and TNF-α secreted in the culture media were measured using enzyme-linked immunosorbent assay. Results Stimulation of nucleus pulposus cells with LF-PEMFs did not appear to affect cell morphology or nucleus pulposus cell IL-1β and TNF-α expression levels. LF-PEMFs did not significantly affect cell proliferation, however, levels of IL-1β and TNF-α secreted into the culture media were found to be significantly reduced in an intensity-dependent manner. Conclusion Low-frequency PEMF stimulation may inhibit secretion of IL-1β and TNF-α in cultured nucleus pulposus cells.
Collapse
Affiliation(s)
- Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiale Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|