1
|
Deng B, Lei Y, Zhou R, Ruan T, Lu W, Ying J, Yue Y, Mu D. Effect of blueberry intervention on endothelial function: a systematic review and meta-analysis. Front Physiol 2024; 15:1368892. [PMID: 38887319 PMCID: PMC11180891 DOI: 10.3389/fphys.2024.1368892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction: Endothelial dysfunction indicates blood vessel injury and is a risk factor for cardiovascular diseases. Blueberry has been approved for its benefits on human health, especially on cardiovascular function. However, its effect on endothelial function remains unclear. We conducted a systematic review and meta-analysis to explore the impact of blueberries on endothelial function in adults. Methods: We searched PubMed, Web of Science, Embase, and the Cochrane Library, 16 studies were included in the systematic review, and 11 were used for the meta-analysis. Data associated with endothelial function were extracted and pooled as mean differences (MD) with 95% confidence intervals (CI). Results: Blueberry consumption significantly improved flow-mediated dilation (FMD) by 1.50% (95% CI: 0.81, 2.20; I2 = 87%) and reactive hyperemia index (RHI) by 0.26 (95% CI: 0.09, 0.42; I2 = 72%). A significant decrease in diastolic blood pressure (DBP) was also observed (MD: -2.20 mm Hg; 95% CI: -4.13, -0.27; I2 = 11%). Subgroup analysis indicated a significant decrease in blood pressure (Systolic blood pressure [SBP]: -3.92 mmHg; 95% CI: -6.88, -0.97; I2 = 20% and DBP: -2.20 mmHg; 95% CI: -4.13, -0.27; I2 = 11%) in the smoking population. However, SBP levels (MD: -1.43 mm Hg; 95% CI: -3.11, 0.26; I2 = 20%) and lipid status (high-density lipoprotein cholesterol [HDL-C]: 0.06; 95% CI: -0.04, 0.16; I2 = 77%; low-density lipoprotein cholesterol [LDL-C]: 0.05; 95% CI: -0.14, 0.24; I2 = 0%) did not significantly improve. Conclusion: Blueberry intervention improved endothelial function and DBP. Subgroup analysis revealed a notable improvement in blood pressure among the smoking population. However, no significant effects were observed on SBP, HDL-C, and LDL-C levels. Future research should delve into the mechanisms of endothelial improvement and verify blood pressure reduction in specific subpopulations through large-scale trials. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/, Identifier CRD42023491277.
Collapse
Affiliation(s)
- Bixin Deng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yupeng Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenting Lu
- Integrated Care Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Woolf EK, Lee SY, Ghanem N, Vazquez AR, Johnson SA. Protective effects of blueberries on vascular function: A narrative review of preclinical and clinical evidence. Nutr Res 2023; 120:20-57. [PMID: 37913730 DOI: 10.1016/j.nutres.2023.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023]
Abstract
Blueberries are rich in nutrients and (poly)phenols, popular with consumers, and a major agricultural crop with year-round availability supporting their use in food-based strategies to promote human health. Accumulating evidence indicates blueberry consumption has protective effects on cardiovascular health including vascular dysfunction (i.e., endothelial dysfunction and arterial stiffening). This narrative review synthesizes evidence on blueberries and vascular function and provides insight into underlying mechanisms with a focus on oxidative stress, inflammation, and gut microbiota. Evidence from animal studies supports beneficial impacts on vascular function. Human studies indicate acute and chronic blueberry consumption can improve endothelial function in healthy and at-risk populations and may modulate arterial stiffness, but that evidence is less certain. Results from cell, animal, and human studies suggest blueberry consumption improves vascular function through improving nitric oxide bioavailability, oxidative stress, and inflammation. Limited data in animals suggest the gut microbiome mediates beneficial effects of blueberries on vascular function; however, there is a paucity of studies evaluating the gut microbiome in humans. Translational evidence indicates anthocyanin metabolites mediate effects of blueberries on endothelial function, though this does not exclude potential synergistic and/or additive effects of other blueberry components. Further research is needed to establish the clinical efficacy of blueberries to improve vascular function in diverse human populations in a manner that provides mechanistic information. Translation of clinical research to the community/public should consider feasibility, social determinants of health, culture, community needs, assets, and desires, barriers, and drivers to consumption, among other factors to establish real-world impacts of blueberry consumption.
Collapse
Affiliation(s)
- Emily K Woolf
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Sylvia Y Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Nancy Ghanem
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Allegra R Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Marino M, Venturi S, Rendine M, Porrini M, Gardana C, Klimis-Zacas D, Del Bo' C, Riso P. Wild blueberry ( V. angustifolium) improves TNFα-induced cell barrier permeability through claudin-1 and oxidative stress modulation in Caco-2 cells. Food Funct 2023; 14:7387-7399. [PMID: 37486007 DOI: 10.1039/d3fo00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Increasing evidence links the impairment of intestinal permeability (IP), a feature of the intestinal barrier, to numerous dysmetabolic and dysfunctional conditions. Several host and environmental factors, including dietary factors, can negatively and/or positively affect IP. In this regard, polyphenol-rich foods including berries have been proposed as potential IP modulators. However, the exact mechanisms involved are not yet fully elucidated. The aim of the present study was to evaluate the effect of a wild blueberry (WB; V. angustifolium) powder, naturally rich in polyphenols, to affect Caco-2 cell monolayer permeability and to identify the potential mechanisms in modulating the IP process. Caco-2 cells were incubated with TNF-α (10 ng mL-1), as a pro-inflammatory stimulus, and supplemented for 24 hours with different concentrations (1 and 5 mg mL-1) of WB powder. The integrity of the intestinal cell monolayer was evaluated by measuring the transepithelial electrical resistance (TEER) and the paracellular transport of FITC-dextran. In addition, the production of the tight junction proteins, such as claudin-1 and occludin, as well as protein carbonyl and 8-hydroxy 2 deoxyguanosine, as oxidative stress markers, were quantified in the supernatant by ELISA kits. Overall, the treatment with WB powder (5 mg mL-1) mitigated the loss of Caco-2 cell barrier integrity, as documented by an increase in TEER and a reduction in FITC values. This modulation was accompanied by an upregulation of claudin-1 and a reduction of 8-OHdG. Conversely, no effect was documented for the lower concentration (1 mg mL-1) and the other IP markers, as well as oxidative stress markers analysed. In conclusion, our findings suggest a potential role of WB in the modulation of cell barrier integrity. This modulation process could be attributed to an increase in claudin-1 expression and a reduction in 8-OHdG. Further studies should be performed to corroborate the results obtained. In addition, since the effects were observed at doses of WB achievable with the diet, these findings should be substantiated also through in vivo approaches.
Collapse
Affiliation(s)
- Mirko Marino
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Samuele Venturi
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Rendine
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Claudio Gardana
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | | | - Cristian Del Bo'
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Patrizia Riso
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
4
|
Anand Ganapathy A, Hari Priya VM, Kumaran A. Medicinal plants as a potential source of Phosphodiesterase-5 inhibitors: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113536. [PMID: 33137431 DOI: 10.1016/j.jep.2020.113536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence and distress caused by erectile dysfunction (ED) to both male and female partners are increasing at a steady rate. ED has now become the most treated sexual disorder for men among young and old age groups due to varying physical and psychological factors. The treatment with synthetic Phosphodiesterase-5 (PDE5) inhibitors are cost-effective but due to adverse effects such as priapism, loss of vision, heart attack and syncope, the daily life patterns of these patients are distressed and hence the need for alternative medicaments or sources are of utmost important. Therefore, the exploration of medicinal plants as PDE5 inhibitors will be worthwhile in tackling the problems as many plant extracts and fractions have been long used as aphrodisiacs and sexual stimulants which may be found to be active against PDE5 enzyme. AIM OF THE STUDY To provide a review on the different medicinal herbs traditionally used as natural aphrodisiacs, libido or sexual enhancers which are proven for their PDE5 inhibitory effect. MATERIALS AND METHODS Ethnobotanical and scientific information was procured, reviewed and compiled from the literature search of electronic databases and search engines. RESULTS A total of 97 medicinal plants exhibiting PDE5 inhibitory effect are reviewed in this paper which is supported by preclinical experimental evidence. Among them, 77 plants have been selected according to their traditional and ethnobotanical uses as aphrodisiacs and the rest are screened according to their effectiveness against predisposing factors responsible for ED and sexual dysfunction such as diabetes and hypertension or due to the presence of phytochemicals having structural similarity towards the identified natural PDE5 inhibitors. In addition, sixteen alkaloids, sixty-one phenolics and eight polycyclic aromatic hydrocarbons have been isolated or identified from active extracts or fractions that are exhibiting PDE5 inhibitory activity. Among them, isoflavones and biflavones are the major active constituents responsible for action, where the presence of prenyl group for isoflavones; and the methoxy group at C-5 position of flavones are considered essential for the inhibitory effect. However, the prenylated flavonol glycoside, Icariin and Icariside II isolated from Epimedium brevicornum Maxim (hory goat weed) are the most effective inhibitor, till date from natural sources. Traditional medicines or formulations containing extracts of Ginkgo biloba L., Kaempferia parviflora Wall. ex Baker, Clerodendrum colebrookianum Walp., Eurycoma longifolia Jack and Vitis vinifera L. are also found to be inhibitors of PDE5 enzyme. CONCLUSION The review suggests and supports the rational use of traditional medicines that can be further studied for the development of potential PDE5 inhibitors. Many traditional medicines are still used in various regions of Africa, Asia and South America that are poorly characterized and experimented. Despite the availability of a vast majority of traditional formulations as aphrodisiacs or sexual stimulants, there exists a need for systemic evaluation on the efficacy as well as the mechanism of action of the herbal constituents for the identification of novel chemical moieties that can be further developed for maximum efficacy.
Collapse
Affiliation(s)
- A Anand Ganapathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - V M Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India.
| |
Collapse
|
5
|
Wu X, Wang TTY, Prior RL, Pehrsson PR. Prevention of Atherosclerosis by Berries: The Case of Blueberries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9172-9188. [PMID: 30092632 DOI: 10.1021/acs.jafc.8b03201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Berry consumption has been associated with cardiovascular disease prevention in recent years. Atherosclerosis is one of the major causes of cardiovascular diseases. However, research on the prevention of atherosclerosis through consuming individual whole berries, specifically direct evidence, remains scarce. Therefore, further elucidating the role that berries play in the prevention of atherosclerosis is warranted. In this perspective, blueberries were selected to articulate research strategies for studying atheroprotective effects of berries. Studies from human subjects and various animal models are summarized. The mechanisms by which blueberries may act, through reducing oxidative stress, decreasing inflammation, improving endothelial dysfunction, regulating cholesterol accumulation and trafficking, along with potentially influencing gut microbiota, are also discussed. Blueberries contain high levels of polyphenolic compounds, which were widely indicated as major bioactive compounds. Nonetheless, the metabolites/catabolites after blueberry consumption, such as simple phenolic acids, rather than original compounds in berries, may be the actual in vivo bioactive compounds. Future research should focus on obtaining more direct evidence, preferably in humans, understanding of the mechanisms of action at the molecular level, and identifying bioactive compounds as well as which compounds act synergistically to convey health benefits. The research strategy discussed here may also be applied to the studies of other fruits and berries.
Collapse
Affiliation(s)
| | | | - Ronald L Prior
- Department of Food Science , University of Arkansas , Fayetteville , Arkansas 72704 , United States
| | | |
Collapse
|
6
|
Wang Z, Pang W, He C, Li Y, Jiang Y, Guo C. Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM 2.5)-Induced Cardiovascular Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:87-94. [PMID: 27996266 DOI: 10.1021/acs.jafc.6b04603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Blueberry anthocyanin-enriched extracts (BAE) at three doses (0.5, 1.0, and 2.0 g/kg) were administered by oral gavage to rats exposed to 10 mg/kg fine particulate matter (PM2.5) three times a week. A positive control group was exposed to PM2.5 without BAE treatment. We analyzed heart rate (HR), electrocardiogram (ECG), and histopathology, and biomarkers of cardiovascular system injuries, systemic inflammation, oxidative stress, endothelial function, and apoptosis. Results indicated that BAE, particularly at 1.0 g/kg, improved ECG and decreased cytokine levels in PM2.5-exposed rats. These changes were accompanied by an increase in interleukin 10 levels and superoxide dismutase activity in heart tissue and Bcl-2 protein expression, as well as a decrease in interleukin 6, malondialdehyde, endothelin 1, and angiotensin II levels and a reduction in Bax protein expression. This study demonstrates that BAE at certain doses can protect the cardiovascular system from PM2.5-induced damage.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Public Health, Guangxi Medical University , Nanning 530021, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Wei Pang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Congcong He
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Yibo Li
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Yugang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| | - Changjiang Guo
- School of Public Health, Guangxi Medical University , Nanning 530021, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, China
| |
Collapse
|
7
|
Cutler BR, Petersen C, Anandh Babu PV. Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies. Mol Nutr Food Res 2016; 61. [PMID: 27558887 DOI: 10.1002/mnfr.201600271] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease is the leading cause of death in the United States. Dietary habits influence a variety of cardiovascular complications such as peripheral artery disease, heart failure, and kidney disease. We along with others have previously reported the cardiovascular beneficial effects of dietary flavonoids. Anthocyanins, one class of flavonoids widely available in berries, have recently drawn wide scientific attention because of their diverse health benefits. Epidemiological, clinical, and animal studies indicate that blueberry anthocyanins exert protection against cardiovascular complications by acting on multiple targets in the vascular system. These include activating endothelial nitric oxide synthase signaling, reducing oxidative stress, improving inflammatory pathways, and ameliorating dyslipidemia. Anthocyanins are extensively metabolized in humans suggesting that their vascular benefits are likely mediated by their circulating metabolites. However, the bioactivities of blueberry metabolites are unknown. Evaluating the bioactivities of metabolites, analyzing their structure-activity relationship, and well-designed human trials are needed to understand the potential vascular effects of blueberries and their metabolites. Understanding the vascular effects will provide a solid scientific foundation to recommend blueberries to improve vascular health. This review highlights the recent developments in the understanding of the vascular effects of blueberries with special emphasis on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Brett Ronald Cutler
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Vendrame S, Tsakiroglou P, Kristo AS, Schuschke DA, Klimis-Zacas D. Wild blueberry consumption attenuates local inflammation in the perivascular adipose tissue of obese Zucker rats. Appl Physiol Nutr Metab 2016; 41:1045-1051. [PMID: 27669020 DOI: 10.1139/apnm-2016-0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Perivascular adipose tissue (PVAT) has been shown to play important roles in regulating vascular tone and linking local and systemic vascular inflammation. We examined the impact of PVAT on phenylephrine-mediated vasoconstriction in the aorta of obese Zucker rats (OZR) and their lean littermates (LZR) by comparing aortic rings with or without PVAT. Subsequently we placed OZR and LZR on a control (C) or an 8% wild blueberry (WB) diet and evaluated the effect of WB consumption on such response. PVAT-released adipokine concentrations were also measured as a function of WB diet. Maximal constrictor force (Fmax) in aortic rings without PVAT was significantly lower in OZR-C compared with LZR-C (0.41 ± 0.05 and 0.71 ± 0.06 g, respectively). Following WB diet, Fmax significantly increased in OZR (0.54 ± 0.06 g). In aortas with intact PVAT, Fmax was significantly lower in all groups (0.31 ± 0.06 OZR-C, 0.30 ± 0.05 OZR-WB, 0.29 ± 0.03 LZR-C, and 0.30 ± 0.04 g LZR-WB), but no difference was observed between treatments. PVAT concentrations of monocyte chemoactractant protein 1 (MCP-1), tumor necrosis factor alpha, and adiponectin were significantly higher in OZR compared with LZR (+102%, +108%, and +45%, respectively). Following WB diet, PVAT concentrations of interleukin-8 were significantly lower in both OZR (-37%) and LZR (-30%), while adiponectin concentrations significantly increased in both OZR (+11%) and LZR (+16%). MCP-1 concentrations significantly decreased (-31%) in the PVAT of OZR with the WB diet. WB consumption appears to attenuate local inflammation in PVAT, which may impact systemic vascular inflammation and endothelial function.
Collapse
Affiliation(s)
- Stefano Vendrame
- a School of Food and Agriculture, Department of Food Science and Human Nutrition, University of Maine, 232 Hitchner Hall, Orono, ME 04469, USA
| | - Panagiotis Tsakiroglou
- a School of Food and Agriculture, Department of Food Science and Human Nutrition, University of Maine, 232 Hitchner Hall, Orono, ME 04469, USA
| | - Aleksandra S Kristo
- b Department of Nutrition and Dietetics, Istanbul Yeni Yuzyil University, 26 Yilanli Ayazma Cad., 34010 Cevizlibag Istanbul, Turkey
| | - Dale A Schuschke
- c Applied Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Dorothy Klimis-Zacas
- a School of Food and Agriculture, Department of Food Science and Human Nutrition, University of Maine, 232 Hitchner Hall, Orono, ME 04469, USA
| |
Collapse
|
9
|
Taverniti V, Fracassetti D, Del Bo' C, Lanti C, Minuzzo M, Klimis-Zacas D, Riso P, Guglielmetti S. Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human Caco-2 intestinal cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8346-8351. [PMID: 25075866 DOI: 10.1021/jf502180j] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Intestinal inflammation is a natural process crucial for the maintenance of gut functioning. However, abnormal or prolonged inflammatory responses may lead to the onset of chronic degenerative diseases, typically treated by means of pharmacological interventions. Dietary strategies for the prevention of inflammation are a safer alternative to pharmacotherapy. Anthocyanins and other polyphenols have been documented to display anti-inflammatory activity. In the present study, three bioactive fractions (anthocyanin, phenolic, and water-soluble fractions) were extracted from a wild blueberry powder. The Caco-2 intestinal model was used to test the immunomodulatory effect of the above fractions. Only the anthocyanin-rich fraction reduced the activation of NF-κB, induced by IL-1β in intestinal epithelial Caco-2 cells. Specifically, concentrations of 50 and 100 μg mL(-1) decreased NF-κB activation by 68.9 and 85.2%, respectively (p ≤ 0.05). These preliminary results provide further support for the role of food bioactives as potential dietary anti-inflammatory agents.
Collapse
Affiliation(s)
- Valentina Taverniti
- Division of Food Microbiology and Bioprocessing and ‡Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano , via Celoria 2, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dietary anthocyanins as nutritional therapy for nonalcoholic fatty liver disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:145421. [PMID: 24282628 PMCID: PMC3824564 DOI: 10.1155/2013/145421] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid accumulation in the liver, is the hepatic manifestation of insulin resistance and the metabolic syndrome. Due to the epidemics of obesity, NAFLD is rapidly becoming the leading cause of altered liver enzymes in Western countries. NAFLD encompasses a wide spectrum of liver disease ranging from simple uncomplicated steatosis, to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Diet may affect the development of NAFLD either by increasing risk or by providing protective factors. Therefore, it is important to investigate the role of foods and/or food bioactives on the metabolic processes involved in steatohepatitis for preventive strategies. It has been reported that anthocyanins (ACNs) decrease hepatic lipid accumulation and may counteract oxidative stress and hepatic inflammation, but their impact on NAFLD has yet to be fully determined. ACNs are water-soluble bioactive compounds of the polyphenol class present in many vegetable products. Here, we summarize the evidence evaluating the mechanisms of action of ACNs on hepatic lipid metabolism in different experimental setting: in vitro, in vivo, and in human trials. Finally, a working model depicting the possible mechanisms underpinning the beneficial effects of ACNs in NAFLD is proposed, based on the available literature.
Collapse
|