1
|
Rinne GR, Guardino CM, Soriano M, Dunkel Schetter C. Chronic stress and hair cortisol concentration in mothers: A two-study investigation. Stress Health 2024; 40:e3493. [PMID: 39579359 PMCID: PMC11636436 DOI: 10.1002/smi.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is one mechanism through which chronic stress during pregnancy and parenthood may affect parental, child, and family health. Hair cortisol concentration (HCC) may be well-suited to elucidate associations between chronic stress and HPA axis regulation because HCC reflects cortisol output over several months. However, most previous studies that examine chronic stress in conjunction with cortisol in pregnant individuals or mothers use measures that reflect HPA axis output over a relatively limited time. We report findings from two longitudinal studies that tested associations between chronic stress and HCC in women during the perinatal period (Study 1; n = 144) and mothers of young children (Study 2; n = 102). Both studies measured chronic stress with a measure developed to comprehensively assess chronic stressors in community samples. Hair samples were collected three times in Study 1 (mid-pregnancy, one month postpartum, and 12 months postpartum) and twice in Study 2, approximately one year apart. Chronic stress was associated with higher HCC in both studies. Exploratory analyses indicated that the strength of associations between chronic stress and HCC differed as a function of the life domain of chronic stress. Chronic work and family demands were associated with higher postpartum HCC in Study 1 whereas neighbourhood/housing and discrimination chronic stress were associated with higher HCC in Study 2. These findings provide evidence of a biological pathway through which chronic stress may influence health in mothers and support the utility of hair cortisol as a neuroendocrine measure of chronic stress during pregnancy and parenthood.
Collapse
Affiliation(s)
- Gabrielle R. Rinne
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Metzy Soriano
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
2
|
Campbell HM, Guo JD, Kuhn CM. Applying the Research Domain Criteria to Rodent Studies of Sex Differences in Chronic Stress Susceptibility. Biol Psychiatry 2024; 96:848-857. [PMID: 38821193 DOI: 10.1016/j.biopsych.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Women have a 2-fold increased rate of stress-associated psychiatric disorders such as depression and anxiety, but the mechanisms that underlie this increased susceptibility remain incompletely understood. Historically, female subjects were excluded from preclinical studies and clinical trials. Additionally, chronic stress paradigms used to study psychiatric pathology in animal models were developed for use in males. However, recent changes in National Institutes of Health policy encourage inclusion of female subjects, and considerable work has been performed in recent years to understand biological sex differences that may underlie differences in susceptibility to chronic stress-associated psychiatric conditions. Here, we review the utility as well as current challenges of using the framework of the National Institute of Mental Health's Research Domain Criteria as a transdiagnostic approach to study sex differences in rodent models of chronic stress including recent progress in the study of sex differences in the neurobehavioral domains of negative valence, positive valence, cognition, social processes, and arousal.
Collapse
Affiliation(s)
- Hannah M Campbell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jessica D Guo
- Duke University School of Medicine, Durham, North Carolina
| | - Cynthia M Kuhn
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
3
|
Krolick KN, Cao J, Gulla EM, Bhardwaj M, Marshall SJ, Zhou EY, Kiss AJ, Choueiry F, Zhu J, Shi H. Subregion-specific transcriptomic profiling of rat brain reveals sex-distinct gene expression impacted by adolescent stress. Neuroscience 2024; 553:19-39. [PMID: 38977070 PMCID: PMC11444371 DOI: 10.1016/j.neuroscience.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear. In this study, female and male adolescent Sprague Dawley rats received one-hour restraint stress daily from postnatal day (PD) 32 to PD44. Corticosterone levels, body weights, food intake, body composition, and circulating adiposity and sex hormones were measured. On PD44, brain and blood samples were collected. Using RNA-sequencing, sex-specific differences in stress-induced differentially expressed (DE) genes were identified in subregions of the hypothalamus, limbic system, and prefrontal cortex. Canonical pathways reflected well-known sex-distinct maladies and diseases, substantiating the therapeutic potential of the DE genes found in the current study. Thus, we proposed specific sex distinct, adolescent stress-induced transcriptional changes found in the current study as examples of the molecular bases for sex differences witnessed in stress induced or exacerbated emotional and metabolic disorders. Future behavioral studies and single-cell studies are warranted to test the implications of the DE genes identified in this study in sex-distinct stress-induced susceptibilities.
Collapse
Affiliation(s)
| | - Jingyi Cao
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Evelyn M Gulla
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Meeta Bhardwaj
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | | | - Ethan Y Zhou
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Andor J Kiss
- Center for Bioinformatics & Functional Genomics, Miami University, Oxford, OH 45056, USA.
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
4
|
Bodemeier Loayza Careaga M, Wu TJ. Chronically stressed male and female mice show a similar peripheral and central pro-inflammatory profile after an immune challenge. PLoS One 2024; 19:e0297776. [PMID: 38381770 PMCID: PMC10880960 DOI: 10.1371/journal.pone.0297776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Although acute stressors are known for stimulating the production of glucocorticoids and pro-inflammatory cytokines in rodents, the effects of chronic stressors on cytokine levels and the activation of the hypothalamic-pituitary-adrenal (HPA) axis, especially in response to a subsequent challenge, are less clear. In this study, male and female mice were exposed to 6 weeks of chronic variable stress (CVS) and the peripheral and central levels of IL-1β, IL-6, and TNF-α, as well as the HPA axis reactivity, were measured after an acute injection of LPS. The findings indicate that the pro-inflammatory profile in the plasma, regardless of stress exposure, was similar between male and female animals, whereas there was a region-, sex-, and stress-dependent pattern in the brain. Exposure to chronic stressors blunted the HPA reactivity to the LPS challenge, indicating a modulatory effect on the stress axis responsiveness.
Collapse
Affiliation(s)
- Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - T. John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Wongsaengchan C, McCafferty DJ, Evans NP, McKeegan DEF, Nager RG. Body surface temperature of rats reveals both magnitude and sex differences in the acute stress response. Physiol Behav 2023; 264:114138. [PMID: 36871696 DOI: 10.1016/j.physbeh.2023.114138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Understanding how biological markers of stress relate to stressor magnitude is much needed and can be used in welfare assessment. Changes in body surface temperature can be measured using infrared thermography (IRT) as a marker of a physiological response to acute stress. While an avian study has shown that changes in body surface temperature can reflect the intensity of acute stress, little is known about surface temperature responses to stressors of different magnitudes and its sex-specificity in mammals, and how they correlate with hormonal and behavioural responses. We used IRT to collect continuous surface temperature measurements of tail and eye of adult male and female rats (Rattus norvegicus), for 30 minutes after exposure to one of three stressors (small cage, encircling handling or rodent restraint cone) for one minute, and cross-validated the thermal response with plasma corticosterone (CORT) and behavioural assessment. To obtain individual baseline temperatures and thermal responses to stress, rats were imaged in a test arena (to which they were habituated) for 30 seconds before and 30 minutes after being exposed to the stressor. In response to the three stressors, tail temperature initially decreased and then recovered to, or overshot the baseline temperature. Tail temperature dynamics differed between stressors; being restrained in the small cage was associated with the smallest drop in temperature, in male rats, and the fastest thermal recovery, in both sexes. Increases in eye temperature only distinguished between stressors early in the response and only in females. The post stressor increase in eye temperature was greater in the right eye of males and the left eye of females. In both sexes encircling may have been associated with the fastest increase in CORT. These results were in line with observed behavioural changes, with greater movement in rats exposed to the small cage and higher immobility after encircling. The female tail and eye temperature, as well as the CORT concentrations did not return to pre-stressor levels in the observation period, in conjunction with the greater occurrence of escape-related behaviours in female rats. These results suggest that female rats are more vulnerable to acute restraint stress compared to male rats and emphasise the importance of using both sexes in future investigations of stressor magnitude. This study demonstrates that acute stress induced changes in mammalian surface temperature measured with IRT relate to the magnitude of restraint stress, indicate sex differences and correlate with hormonal and behavioural responses. Thus, IRT has the potential to become a non-invasive method of continuous welfare assessment in unrestrained mammals.
Collapse
Affiliation(s)
- Chanakarn Wongsaengchan
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| | - Dominic J McCafferty
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Scottish Centre for Ecology and the Natural Environment, Rowardennan, G63 0AW, United Kingdom
| | - Neil P Evans
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Ruedi G Nager
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
6
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
8
|
Hokenson RE, Alam YH, Short AK, Jung S, Jang C, Baram TZ. Sex-dependent effects of multiple acute concurrent stresses on memory: a role for hippocampal estrogens. Front Behav Neurosci 2022; 16:984494. [PMID: 36160685 PMCID: PMC9492881 DOI: 10.3389/fnbeh.2022.984494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Memory disruption commonly follows chronic stress, whereas acute stressors are generally benign. However, acute traumas such as mass shootings or natural disasters—lasting minutes to hours and consisting of simultaneous physical, social, and emotional stresses—are increasingly recognized as significant risk factors for memory problems and PTSD. Our prior work has revealed that these complex stresses (concurrent multiple acute stresses: MAS) disrupt hippocampus-dependent memory in male rodents. In females, the impacts of MAS are estrous cycle-dependent: MAS impairs memory during early proestrus (high estrogens phase), whereas the memory of female mice stressed during estrus (low estrogens phase) is protected. Female memory impairments limited to high estrogens phases suggest that higher levels of estrogens are necessary for MAS to disrupt memory, supported by evidence that males have higher hippocampal estradiol than estrous females. To test the role of estrogens in stress-induced memory deficits, we blocked estrogen production using aromatase inhibitors. A week of blockade protected male and female mice from MAS-induced memory disturbances, suggesting that high levels of estrogens are required for stress-provoked memory impairments in both males and females. To directly quantify 17β-estradiol in murine hippocampus we employed both ELISA and mass spectrometry and identified significant confounders in both procedures. Taken together, the cross-cycle and aromatase studies in males and females support the role for high hippocampal estrogens in mediating the effect of complex acute stress on memory. Future studies focus on the receptors involved, the longevity of these effects, and their relation to PTSD-like behaviors in experimental models.
Collapse
Affiliation(s)
- Rachael E. Hokenson
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Rachael E. Hokenson
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Annabel K. Short
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Philippe TJ, Bao L, Koblanski ME, Viau V. Sex Differences in Serotonin 5-HT 1A Receptor Responses to Repeated Restraint Stress in Adult Male and Female Rats. Int J Neuropsychopharmacol 2022; 25:863-876. [PMID: 35904324 PMCID: PMC9593217 DOI: 10.1093/ijnp/pyac046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Male and female rats were exposed to repeated restraint to determine how changes in serotonin (5-hydroxytryptamine; 5-HT) 1A receptors associate with stress hypothalamic-pituitary-adrenal (HPA) axis habituation. METHODS In response to 2-hour episodes of restraint, repeated daily for 5 consecutive days, males and females displayed reliable declines in HPA output, indicated by diminished adrenocorticotropin and corticosterone secretory responses. Using the 5-HT 1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) as a pharmacological challenge for inducing hypothermia and elevations in plasma corticosterone, males displayed sensitized hypothermal responses after repeated restraint, whereas corticosterone responses to 8-OH-DPAT were enhanced in both sexes following single or repeated exposure. RESULTS Only males showed elevations in 5-HT 1A receptor G-protein coupling responses in the dorsal raphe after repeated restraint, whereas only females showed an increase in 5-HT 1A receptor responses in the hippocampus following single or repeated exposure. G-protein coupling responses within both regions correlated positively with 5-HT 1A receptor binding capacity. Thus, despite expressing similar capacities for stress HPA axis habituation, males and females emerged from repeated restraint to show region-specific changes in 5-HT 1A receptor function that may be explained, at least in part, by changes in receptor availability. CONCLUSIONS Based on the hypothermal and corticosteroid responses to 8-OH-DPAT, the present data suggest that stress habituation is met by an increase in the sensitivity of presynaptic 5-HT 1A receptors in males and by an increase in the sensitivity of a population of postsynaptic receptors in both sexes.
Collapse
Affiliation(s)
- Tristan J Philippe
- Department of Cellular and Physiological Sciences, Neuroscience Program, University of British Columbia, Vancouver, Canada
| | - Lexia Bao
- Department of Cellular and Physiological Sciences, Neuroscience Program, University of British Columbia, Vancouver, Canada
| | - Maya E Koblanski
- Department of Cellular and Physiological Sciences, Neuroscience Program, University of British Columbia, Vancouver, Canada
| | - Victor Viau
- Correspondence: Victor Viau, PhD, Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada ()
| |
Collapse
|
10
|
Miller L, Bodemeier Loayza Careaga M, Handa RJ, Wu TJ. The Effects of Chronic Variable Stress and Photoperiod Alteration on the Hypothalamic-Pituitary-Adrenal Axis Response and Behavior of Mice. Neuroscience 2022; 496:105-118. [PMID: 35700818 DOI: 10.1016/j.neuroscience.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological response to stressors and also synchronizes different physiological systems to environmental cues. Changes in day length (i.e., photoperiod) as well as chronic exposure to stressors are known to impact the HPA axis activity regulating the levels of glucocorticoid hormones. Over-exposure to inappropriate levels of glucocorticoids has been implicated in increased disease risk. In the present study, we examined the impact of chronic stress, using a chronic variable stress (CVS) paradigm, in combination with changes in photoperiod on physiological and behavioral measures, as well as on the reactivity and regulation of the HPA axis, in male and female mice. Six weeks of CVS, regardless of the photoperiod condition, decreased the body weight and attenuated the HPA axis reactivity to an acute stressor in both sexes. The attenuated HPA axis reactivity observed in stressed animals was related to reduced Pro-opiomelanocortin (POMC) mRNA levels in the pituitary of females. The gene expression analyses of key regulators of the HPA axis also indicated a sex-dependent effect with opposite patterns in the pituitary and adrenal glands. CVS effects on behavior were limited and related to an anxiety-like phenotype in both sexes, regardless of photoperiod condition. Our findings highlight sex-specific differences in the HPA axis and also sex-dependent effects of CVS on physiological parameters.
Collapse
Affiliation(s)
- Lauren Miller
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
11
|
Goel N, Philippe TJ, Chang J, Koblanski ME, Viau V. Cellular and serotonergic correlates of habituated neuroendocrine responses in male and female rats. Psychoneuroendocrinology 2022; 136:105599. [PMID: 34891046 DOI: 10.1016/j.psyneuen.2021.105599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Male and females appear equally capable of showing habituated hypothalamic-pituitary-adrenal (HPA) axis output responses to repeated exposures of the same challenge. Whether this reflects, within males and females, common mechanisms of decreased neuronal activity within stress responding, afferents to the paraventricular hypothalamic nucleus (PVH), the final common pathway to the HPA axis, has not been examined. Here we compared in adult male and female rats the extent to which declines in HPA axis responses to repeated restraint are met by habituated cellular (Fos) responses, in addition to changes in serotonin (5-hydroxytryptamine; 5-HT) expression and signaling, which normally stimulates the HPA axis. Thus, alterations in this component of HPA axis drive could provide an underlying basis for sex differences in adaptive responses. Males and females showed reliable declines in ACTH and corticosterone responses after 10 daily episodes of repeated restraint, recapitulated, in largest part, by similar regional patterns of Fos habituation, including within the PVH, several stress sensitive cell groups of the limbic forebrain, as well as within the raphe nucleus. Serotonin staining in the dorsal raphe and terminal profiles in the forebrain continued to reflect a higher pre-synaptic capacity for the 5-HT system in females. The sexual dimorphism encountered within the lateral septum and medial preoptic area of control animals was less distinguished in the repeat condition, however, whereas 5-HT varicosities in the PVH increased after repeated restraint only in females. Relative to their singly restrained counterparts, males displayed an increase in 5-HT 1 A receptor expression in the raphe nucleus after repeated restraint, whereas females showed a decrease in 5-HT 1 A mRNA levels in the hippocampus and in the zona incerta, representing the most proximal of cell groups expressing the 5-HT 1 A receptor in the vicinity of the PVH. In conclusion, similar regional profiles of cellular habituation in males and females suggest common CNS substrates of neuroendocrine adaptation. However, this process may be met by underlying sex differences in serotonergic control, given the respective roles for pre- and postsynaptic 5-HT 1 A receptors in mediating serotonin availability and signal transfer.
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Judy Chang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maya E Koblanski
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
12
|
Manigault AW, Shorey RC, Appelmann H, Hamilton KR, Scanlin MC, Juster RP, Zoccola PM. Gender roles are related to cortisol habituation to repeated social evaluative stressors in adults: secondary analyses from a randomized controlled trial. Stress 2021; 24:723-733. [PMID: 33797306 DOI: 10.1080/10253890.2021.1892069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Masculine and feminine gender roles influence stressor appraisals and coping in everyday life, but their effect on stress response systems like the hypothalamic-pituitary-adrenocortical axis is unclear. Accordingly, the present study tested the association between gender roles and cortisol responses to repeated stress as part of secondary analyses of data from a randomized controlled trial examining the effects of stress management interventions on cortisol habituation. Participants (Nfinal = 86; 72% female) completed a baseline survey assessing gender role endorsement using the Bem Sex Role Inventory, from which 4 groups were derived: masculine (n = 20), feminine (n = 20), androgynous (high masculinity, high femininity; n = 22), and undifferentiated (low masculinity, low femininity; n = 24). Following the stress management intervention (mindfulness-based stress reduction or cognitive-behavioral skills training) or waitlist period control, participants completed the Trier Social Stress Test on two laboratory visits (48 h apart). Salivary cortisol was assessed 0, 25, 35, and 60 min post-stressor during both laboratory visits. Androgynous and undifferentiated individuals both exhibited a significant decrease in total cortisol from visit 1 to visit 2 (i.e. habituation) whereas feminine and masculine individuals did not. Undifferentiated individuals exhibited greater habituation than feminine and masculine individuals, whereas androgynous individuals only exhibited greater habituation than the feminine group. Controlling for study condition assignment did not alter these results. Results imply that gender roles may be implicated in stress-related disease because of their association with HPA axis functioning during episodes of acute stress.
Collapse
Affiliation(s)
| | - Ryan C Shorey
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Katrina R Hamilton
- Department of Psychological Science, Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, Irvine, CA, USA
| | - Matt C Scanlin
- School of Medicine and Public Health, University of Wisconsin-Madison- Population Health Institute, Madison, WI, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Canada
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, Montreal, Canada
| | | |
Collapse
|
13
|
Romeo RD, Sciortino RK. Age-dependent changes in hormonal stress reactivity following repeated restraint stress throughout adolescence in male rats. Stress 2021; 24:496-503. [PMID: 33587012 DOI: 10.1080/10253890.2021.1873945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stress-related psychological dysfunctions show a marked increase during adolescence, yet the mechanisms that mediate these vulnerabilities are unknown. Notably, however, adolescence is associated with changes in hormonal stress reactivity mediated by the hypothalamic-pituitary-adrenal (HPA) axis, which might contribute to these dysfunctions. Specifically, pre-adolescent animals display prolonged stress-induced HPA responses compared to adults. Previous experience with stressors further modify these changes in stress reactivity, such that repeated exposure to the same stressor results in an augmented HPA response prior to adolescence, but a habituated response in adulthood. It is unclear when during adolescence the habituated, adult-like response develops to a repeated stressor. Using male rats at various ages that span adolescence (30-70 days of age), we show that by mid-adolescence (i.e. 42 days of age), animals show neither a facilitated nor a habituated HPA hormonal response following four days of repeated restraint stress (4RS) compared to a single restraint session (1RS). We also show that the habituated HPA response to 4RS develops between late-adolescence and young adulthood (i.e. between 56 and 70 days of age, respectively). Further, we find age- and experience-dependent changes in progesterone and testosterone secretion, indicating that the interaction between development and experience affects stress-induced hormonal responses outside of canonical HPA-related hormones. Despite these hormonal differences mediated by age and experience, repeated restraint stress resulted in decreased fecal boli production at all four ages, suggesting dissociation between hormonal and autonomic reactivity during adolescence. These data indicate that HPA plasticity is significantly affected by adolescence and that a habituated hormonal response to homotypic stress does not occur until young adulthood. A greater appreciation of these changes in stress reactivity will contribute to our understanding of the psychological vulnerabilities often associated with stressful adolescence.
Collapse
Affiliation(s)
- Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Rose K Sciortino
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Staurengo-Ferrari L, Green PG, Araldi D, Ferrari LF, Miaskowski C, Levine JD. Sexual dimorphism in the contribution of neuroendocrine stress axes to oxaliplatin-induced painful peripheral neuropathy. Pain 2021; 162:907-918. [PMID: 32947545 PMCID: PMC7886966 DOI: 10.1097/j.pain.0000000000002073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
ABSTRACT Although clinical studies support the suggestion that stress is a risk factor for painful chemotherapy-induced peripheral neuropathy (CIPN), there is little scientific validation to support this link. Here, we evaluated the impact of stress on CIPN induced by oxaliplatin, and its underlying mechanisms, in male and female rats. A single dose of oxaliplatin produced mechanical hyperalgesia of similar magnitude in both sexes, still present at similar magnitude in both sexes, on day 28. Adrenalectomy mitigated oxaliplatin-induced hyperalgesia, in both sexes. To confirm the role of neuroendocrine stress axes in CIPN, intrathecal administration of antisense oligodeoxynucleotide targeting β₂-adrenergic receptor mRNA both prevented and reversed oxaliplatin-induced hyperalgesia, only in males. By contrast, glucocorticoid receptor antisense oligodeoxynucleotide prevented and reversed oxaliplatin-induced hyperalgesia in both sexes. Unpredictable sound stress enhanced CIPN, in both sexes. The administration of stress hormones, epinephrine, corticosterone, and their combination, at stress levels, mimicked the effects of sound stress on CIPN, in males. In females, only corticosterone mimicked the effect of sound stress. Also, a risk factor for CIPN, early-life stress, was evaluated by producing both stress-sensitive (produced by neonatal limited bedding) and stress-resilient (produced by neonatal handling) phenotypes in adults. Although neonatal limited bedding significantly enhanced CIPN only in female adults, neonatal handling significantly attenuated CIPN, in both sexes. Our study demonstrates a sexually dimorphic role of the 2 major neuroendocrine stress axes in oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departments of Medicine and Oral & Maxillofacial Surgery, Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Departments of Medicine and Oral & Maxillofacial Surgery, Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Luiz F. Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA. Current address: Department of Anesthesiology, University of Utah, 30 N Medical Dr. RM 3C4444, Salt Lake City, UT 84132
| | - Christine Miaskowski
- Departments of Physiological Nursing and Anesthesia, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Hokenson RE, Short AK, Chen Y, Pham AL, Adams ET, Bolton JL, Swarup V, Gall CM, Baram TZ. Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. J Neurosci 2021; 41:648-662. [PMID: 33262247 PMCID: PMC7842761 DOI: 10.1523/jneurosci.2146-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior
| | - Tallie Z Baram
- Departments of Anatomy and Neurobiology
- Pediatrics
- Neurology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
16
|
Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2020; 117:110-128. [DOI: 10.1016/j.neubiorev.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
|
17
|
Newsom RJ, Stafford J, Garcia RJ, Campeau S. Endocannabinoid signaling as an intrinsic component of the circuits mediating adaptive responses to repeated stress exposure in adult male sprague dawley rats. Stress 2020; 23:174-189. [PMID: 31506004 PMCID: PMC7054150 DOI: 10.1080/10253890.2019.1655538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence implicates the endocannabinoid (eCB) system as a negative modulator of neural and endocrine responses to acute stressors. Recently, eCB signaling was also reported to contribute to habituation of hypothalamo-pituitary-adrenal (HPA) axis responses to repeated homotypic stress. The present studies were initiated to distinguish a potential role of eCB signaling in the expression vs. the acquisition of habituation of the HPA axis response to repeated stress. In each of three experiments, adult male Sprague Dawley rats were exposed to daily, 30-minute sessions of loud white noise (95 dB), which resulted in a progressive decrease in HPA axis response over successive days. Cannabinoid receptor 1 (CB1) antagonist AM251 (0.5, 1.0 or 2.0 mg/kg, i.p.) was used to examine the role of eCB signaling in homotypic stressor habituation and heterotypic (novel) stressor cross-sensitization of neuroendocrine activity. Pretreatment with high dose (2.0 mg/kg) AM251 before each of 7 consecutive, daily loud noise exposures (acquisition of habituation) resulted in potentiation of stress-induced HPA axis activation and disruption of habituation. After an 8th loud noise exposure without AM251 pretreatment, the same group of rats displayed a habituated plasma corticosterone (CORT) level similar to that of controls, indicating that CB1 receptor antagonist pretreatments did not disrupt the acquisition of habituation. In two additional experiments, rats acquired habituation to loud noise drug free, then lower doses of AM251 (0.5 and 1.0 mg.kg) were administered before a final exposure (expression of habituation) to the homotypic stressor and/or a novel heterotypic stressor. CB1 receptor antagonism disrupted the expression of CORT response habituation and some of the c-fos mRNA reduction associated with it and facilitated novel stressor sensitization in doses that did not potentiate acute responses to these stressors. Collectively, these data suggest a progressive intensification of neural eCB signaling at CB1 receptors with repeated stress exposures.
Collapse
Affiliation(s)
- Ryan J. Newsom
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Jacob Stafford
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Robert J. Garcia
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| | - Serge Campeau
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309 USA
| |
Collapse
|
18
|
Chronic unpredictable intermittent restraint stress disrupts spatial memory in male, but not female rats. Behav Brain Res 2020; 383:112519. [PMID: 32006567 DOI: 10.1016/j.bbr.2020.112519] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic stress leads to sex-dependent outcomes on spatial memory by producing deficits in males, but not in females. Recently it was reported that compared to daily restraint, intermittent restraint (IR) produced more robust stress and anxiety responses in male rats. Whether IR would be sufficiently robust to impair hippocampal-dependent spatial memory in both male and female rats was investigated. IR involved mixing restraint with non-restraint days over weeks before assessing spatial memory and anxiety profile on the radial arm water maze, object placement, novel object recognition, Y-maze, open field and novelty suppressed feeding. Experiments 1 and 2 used Sprague-Dawley male rats only and determined that IR for 6 h/d (IR6), but not 2 h/d, impaired spatial memory and that task order was important. In experiment 3, IR6 was extended for 6wks before spatial memory testing commenced using both sexes. Unexpectedly, an extended IR6 paradigm failed to impair spatial memory in either sex, suggesting that by 6wks IR6 may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not in females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not in females. We interpret these findings to show that females are more resilient to chronic stress than are males as it pertains to spatial ability.
Collapse
|
19
|
Desbonnet L, O'Tuathaigh CM, O'Leary C, Cox R, Tighe O, Petit EI, Wilson S, Waddington JL. Acute stress in adolescence vs early adulthood following selective deletion of dysbindin-1A: Effects on anxiety, cognition and other schizophrenia-related phenotypes. J Psychopharmacol 2019; 33:1610-1619. [PMID: 31556815 DOI: 10.1177/0269881119875465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND As exposure to stress has been linked to the onset and maintenance of psychotic illness, its pathogenesis may involve environmental stressors interacting with genetic vulnerability. AIM To establish whether acute stress interacts with a targeted mutation of the gene encoding the neurodevelopmental factor dystrobrevin-binding protein 1 (DTNBP1), resulting in a specific loss of the isoform dysbindin-1A, to influence schizophrenia-relevant phenotypes in mice during adolescence and adulthood. METHODS Male and female mice with a heterozygous or homozygous deletion of DTNBP1 were assessed in the open field test following acute restraint stress in adolescence (Day 35) and young adulthood (Day 60-70). Effects of acute restraint stress on memory retention in the novel object recognition test was also assessed in adulthood. Baseline corticosterone was measured in serum samples and, brain-derived neurotrophic factor (BDNF), glucocorticoid and mineralocorticoid receptor gene expression levels were measured in the hippocampus of adult mice. RESULTS In the open field, deletion of dysbindin-1A induced hyperactivity and attenuated the action of stress to reduce hyperactivity in adolescence but not in adulthood; in females deletion of dysbindin-1A attenuated the effect of acute stress to increase anxiety-related behaviour in adolescence but not in adulthood. In the novel object recognition test, deletion of dysbindin-1A impaired memory and also revealed an increase in anxiety-related behaviour and a decrease in hippocampal BDNF gene expression in males. CONCLUSIONS These data suggest that deletion of dysbindin-1A influences behaviours related to schizophrenia and anxiety more robustly in adolescence than in adulthood and that dysbindin-1A influences stress-related responses in a sex-dependent manner.
Collapse
Affiliation(s)
- Lieve Desbonnet
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Psychology, National University of Ireland, Galway, Ireland
| | - Colm Mp O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| | - Clare O'Leary
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
20
|
De Miguel Z, Haditsch U, Palmer TD, Azpiroz A, Sapolsky RM. Adult-generated neurons born during chronic social stress are uniquely adapted to respond to subsequent chronic social stress. Mol Psychiatry 2019; 24:1178-1188. [PMID: 29311652 DOI: 10.1038/s41380-017-0013-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/19/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Chronic stress is a recognized risk factor for psychiatric and psychological disorders and a potent modulator of adult neurogenesis. Numerous studies have shown that during stress, neurogenesis decreases; however, during the recovery from the stress, neurogenesis increases. Despite the increased number of neurons born after stress, it is unknown if the function and morphology of those neurons are altered. Here we asked whether neurons in adult mice, born during the final 5 days of chronic social stress and matured during recovery from chronic social stress, are similar to neurons born with no stress conditions from a quantitative, functional and morphological perspective, and whether those neurons are uniquely adapted to respond to a subsequent stressful challenge. We observed an increased number of newborn neurons incorporated in the dentate gyrus of the hippocampus during the 10-week post-stress recovery phase. Interestingly, those new neurons were more responsive to subsequent chronic stress, as they showed more of a stress-induced decrease in spine density and branching nodes than in neurons born during a non-stress period. Our results replicate findings that the neuronal survival and incorporation of neurons in the adult dentate gyrus increases after chronic stress and suggest that such neurons are uniquely adapted in the response to future social stressors. This finding provides a potential mechanism for some of the long-term hippocampal effects of stress.
Collapse
Affiliation(s)
- Zurine De Miguel
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA. .,Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, 20018, Spain.
| | - Ursula Haditsch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Theo D Palmer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arantza Azpiroz
- Department of Basic Psychological Processes and their Development, Basque Country University, San Sebastián, 20018, Spain
| | - Robert M Sapolsky
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Bellesi M, Haswell JD, de Vivo L, Marshall W, Roseboom PH, Tononi G, Cirelli C. Myelin modifications after chronic sleep loss in adolescent mice. Sleep 2019; 41:4850494. [PMID: 29741724 DOI: 10.1093/sleep/zsy034] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 01/28/2023] Open
Abstract
Study Objectives Previous studies found that sleep loss can suppress the expression of genes implicated in myelination and can have adverse effects on oligodendrocyte precursor cells. On the other hand, sleep may favor myelination by promoting the expression of genes involved in its formation and maintenance. Albeit limited, these results suggest that sleep loss can have detrimental effects on the formation and maintenance of myelin. Methods Here, we tested this hypothesis by evaluating ultrastructural modifications of myelin in two brain regions (corpus callosum and lateral olfactory tract) of mice exposed to different periods of sleep loss, from a few hours of sleep deprivation to ~5 days of chronic sleep restriction. In addition, we measured the internodal length-the distance between consecutive nodes of Ranvier along the axon-and plasma corticosterone levels. Results We find that g-ratio-the ratio of the diameter of the axon itself to the outer diameter of the myelinated fiber-increases after chronic sleep loss. This effect is mediated by a reduction in myelin thickness and is not associated with changes in the internodal length. Relative to sleep, plasma corticosterone levels increase after acute sleep deprivation, but show only a trend to increase after chronic sleep loss. Conclusions Chronic sleep loss may negatively affect myelin.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
22
|
Huang L, Su J, Bu L, Tong J, Wang J, Yang Y, Wang Z, Wang H, Li H, Ma Y, Yu M, Fei J, Huang F. The pretreatment of chronic restraint stress exerts little impact on the progression of heart failure in mice. Acta Biochim Biophys Sin (Shanghai) 2019; 51:204-215. [PMID: 30649153 DOI: 10.1093/abbs/gmy168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/13/2022] Open
Abstract
Stress is a potent risk factor for depression. Chronic stress can exacerbate and induce symptoms of depression. Clinical studies suggested that depressive patients are more likely to develop coronary artery diseases. However, the causal relationship between depression and heart failure progression remains unclear. In this study, we aimed to explore the relevance between stress and heart failure (HF) in a mouse model subjected to chronic restraint stress and left anterior descending coronary artery (LAD) ligation. Mice were restrained for 3 h daily for 21 days and the processes were repeated once 3 months later. After the repeated chronic restraint stress, mice showed dramatically increased immobility time in the forced swim test, indicating a state of despair. Restrained and control mice were further subjected to LAD ligation surgery. Echocardiography was conducted 1 week, 2 weeks, and 1 month afterward. LAD-operated mice showed a significant decrease in the values of left ventricular ejection fraction (LVEF), and there was no difference in the LVEF values between the restrained and control mice. Relevant gene expression, neurotransmitter system, glial activation, and morphology of the heart-brain axis were comprehensively evaluated. We found no overall differences between the restrained and control mice with HF. Our results revealed that the repeated chronic restraint stress may have little effects on the progression of heart failure.
Collapse
Affiliation(s)
- Li Huang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Su
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Liping Bu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiabin Tong
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yufang Yang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zishan Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Haoyue Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Heng Li
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis' response to stress: an important role for gonadal hormones. Neuropsychopharmacology 2019; 44:45-58. [PMID: 30111811 PMCID: PMC6235871 DOI: 10.1038/s41386-018-0167-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine network that controls hormonal responses to internal and external challenges in an organism's environment, exhibits strikingly sex-biased activity. In adult female rodents, acute HPA function following a stressor is markedly greater than it is in males, and this difference has largely been attributed to modulation by the gonadal hormones testosterone and estradiol. These gonadal hormones are produced by the hypothalamic-pituitary-gonadal (HPG) axis and have been shown to determine sex differences in adult HPA function after acute stress via their activational and organizational effects. Although these actions of gonadal hormones are well supported, the possibility that sex chromosomes similarly influence HPA activity is unexplored. Moreover, questions remain regarding sex differences in the activity of the HPA axis following chronic stress and the underlying contributions of gonadal hormones and sex chromosomes. The present review examines what is currently known about sex differences in the neuroendocrine response to stress, as well as outstanding questions regarding this sex bias. Although it primarily focuses on the rodent literature, a brief discussion of sex differences in the human HPA axis is also included.
Collapse
Affiliation(s)
- Ashley L. Heck
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Robert J. Handa
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
24
|
Marchette RCN, Bicca MA, Santos ECDS, de Lima TCM. Distinctive stress sensitivity and anxiety-like behavior in female mice: Strain differences matter. Neurobiol Stress 2018; 9:55-63. [PMID: 30450373 PMCID: PMC6234269 DOI: 10.1016/j.ynstr.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic studies have shown that the prevalence of stress-related mood disorders is higher in women, which suggests a different response of neuroendocrine circuits involved in the response to stressful events, as well as a genetic background influence. The aim of this study was to investigate the baseline differences in anxiety-like behaviors of females of two commonly used mice strains. Secondly, we have also aimed to study their behavioral and biochemical alterations following stress. Naïve 3-4 months-old Swiss and C57BL/6 female mice were evaluated in the elevated plus maze (EPM) and in the acoustic startle response (ASR) for anxiety-like behaviors. Besides, an independent group of animals from each strain was exposed to cold-restraint stress (30 min/4 °C, daily) for 21 consecutive days and then evaluated in EPM and in the sucrose consumption tests. Twenty-four hours following behavioral experimentation mice were decapitated and their hippocampi (HP) and cortex (CT) dissected for further Western blotting analysis of glucocorticoid receptor (GR) and glial fibrillary acid protein (GFAP). Subsequent to each behavioral protocol, animal blood samples were collected for further plasma corticosterone analysis. C57BL/6 presented a lower anxiety profile than Swiss female mice in both behavioral tests, EPM and ASR. These phenomena could be correlated with the fact that both strains have distinct corticosterone levels and GR expression in the HP at the baseline level. Moreover, C57BL/6 female mice were more vulnerable to the stress protocol, which was able to induce an anhedonic state characterized by lower preference for a sucrose solution. Behavioral anhedonic-like alterations in these animals coincide with reduced plasma corticosterone accompanied with increased GR and GFAP levels, both in the HP. Our data suggest that in C57BL/6 female mice a dysregulation of the hypothalamus-pituitary-adrenal axis (HPA-axis) occurs, in which corticosterone acting on GRs would possibly exert its pro-inflammatory role, ultimately leading to astrocyte activation in response to stress.
Collapse
Affiliation(s)
| | | | | | - Thereza Christina Monteiro de Lima
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88049-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Sobolewski M, Singh G, Schneider JS, Cory-Slechta DA. Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels. Front Integr Neurosci 2018; 12:29. [PMID: 30072878 PMCID: PMC6060276 DOI: 10.3389/fnint.2018.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
While it is clear that behavioral experience modulates epigenetic profiles, it is less evident how the nature of that experience influences outcomes and whether epigenetic/genetic "biomarkers" could be extracted to classify different types of behavioral experience. To begin to address this question, male and female mice were subjected to either a Fixed Interval (FI) schedule of food reward, or a single episode of forced swim followed by restraint stress, or no explicit behavioral experience after which global expression levels of two activating (H3K9ac and H3K4me3) and two repressive (H3K9me2 and H3k27me3) post-translational histone modifications (PTHMs), were measured in hippocampus (HIPP) and frontal cortex (FC). The specific nature of the behavioral experience differentiated profiles of PTHMs in a sex- and brain region-dependent manner, with all 4 PTHMs changing in parallel in response to different behavioral experiences. These different behavioral experiences also modified the pattern of correlations of PTHMs both within and across FC and HIPP. Unexpectedly, highly robust correlations were found between global PTHM levels and behavioral performances, suggesting that global PTHMs may provide a higher-order pattern recognition function. Further efforts are needed to determine the generality of such findings and what characteristics of behavioral experience are critical for modulating PTHM responses.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
26
|
Mooney SM, Varlinskaya EI. Enhanced sensitivity to socially facilitating and anxiolytic effects of ethanol in adolescent Sprague Dawley rats following acute prenatal ethanol exposure. Alcohol 2018; 69:25-32. [PMID: 29571047 DOI: 10.1016/j.alcohol.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
Emerging evidence suggests that deficits in social functioning and social anxiety are associated with adolescent alcohol use. Our previous research has shown that acute exposure to a high dose of ethanol on gestational day (G) 12 produces social alterations in adolescent Sprague Dawley rats. The present study assessed whether these social alterations can affect sensitivity to acute ethanol challenge during adolescence. Pregnant females were exposed intraperitoneally (i.p.) to ethanol (2.5 g/kg followed by 1.25 g/kg in 2 h) or saline on G12, and their male and female offspring were tested on postnatal day (P) 42. Rats were challenged i.p. with one of four ethanol doses (0, 0.5, 0.75, and 1.0 g/kg), and their social behavior was assessed in a modified social interaction test. Social alterations associated with prenatal ethanol exposure and indexed via decreases of social investigation, social preference, and play fighting were evident in males and females challenged with the 0 g/kg ethanol dose. Acute ethanol increased social investigation, social preference, and play fighting in animals prenatally exposed to ethanol. In contrast, rats prenatally exposed to saline, showing no social facilitation, demonstrated significant ethanol-induced (0.75 and 1.0 g/kg) decreases in social behavior. Given that late adolescents demonstrating social alterations induced by prenatal ethanol exposure become sensitive to the socially anxiolytic as well as socially facilitating effects of acute ethanol, it is possible that the attractiveness of ethanol to these adolescents may be based on its ability to alleviate anxiety under social circumstances and facilitate interactions with peers.
Collapse
Affiliation(s)
- Sandra M Mooney
- Developmental Exposure Alcohol Research Center, Baltimore, MD 21201, United States; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States.
| |
Collapse
|
27
|
Repeated Neck Restraint Stress Bidirectionally Modulates Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus-dependent Memory Task. Neuroscience 2018; 379:32-44. [DOI: 10.1016/j.neuroscience.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
|
28
|
Holubová A, Mikulecká A, Pometlová M, Nohejlová K, Šlamberová R. Long-term early life adverse experience impairs responsiveness to exteroceptive stimuli in adult rats. Behav Processes 2018; 149:59-64. [PMID: 29438728 DOI: 10.1016/j.beproc.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/13/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
It has been shown that early life traumatic events strongly alter the physiology and behavior in adult rats. In the present study, the effect of postnatal stressor on the spontaneous behavior of adult male rats was evaluated. A method of positive habituation based on a detailed analysis of behavioral patterns and attention of animals to a stimulus object was used. Twenty-four dams and twenty-four of their male progeny were used. Pups were divided into three groups (n = 8): controls (C); maternal social stressor (S); maternal social and physical stressors (SW). Animals (postnatal day 70-80) were individually placed in the open field arena in two habituation sessions with a 24-h delay between them (Test day 1 and Test day 2). Before the start of third session (Test day 3) a solid object was fixed in the center of the arena. Each test lasted 10 min. Our results showed the habituation effect in both stressed-groups. Although there were no significant differences in the number of investigations of the novel object among all tested groups, stress-exposed rats spent less time investigating the object. In conclusion, our findings indicate that long-term neonatal stress may impair an animal's ability to sustain attention to stimuli.
Collapse
Affiliation(s)
- Anna Holubová
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Ke Karlovu 4, 12000 Prague, Czech Republic
| | - Anna Mikulecká
- Academy of Sciences of the Czech Republic, Institute of Physiology, Department of Developmental Epileptology, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Pometlová
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Ke Karlovu 4, 12000 Prague, Czech Republic
| | - Kateryna Nohejlová
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Ke Karlovu 4, 12000 Prague, Czech Republic
| | - Romana Šlamberová
- Charles University, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Ke Karlovu 4, 12000 Prague, Czech Republic.
| |
Collapse
|
29
|
Chun LE, Christensen J, Woodruff ER, Morton SJ, Hinds LR, Spencer RL. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats. Stress 2018; 21:69-83. [PMID: 29165002 DOI: 10.1080/10253890.2017.1404571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.
Collapse
Affiliation(s)
- Lauren E Chun
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Jenny Christensen
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Elizabeth R Woodruff
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Sarah J Morton
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Laura R Hinds
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| | - Robert L Spencer
- a Department of Psychology and Neuroscience , Center for Neuroscience, University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
30
|
Lovelock DF, Deak T. Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukin-1β responses habituate independently. J Neuroendocrinol 2017; 29:10.1111/jne.12514. [PMID: 28803453 PMCID: PMC5617797 DOI: 10.1111/jne.12514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023]
Abstract
A wide range of stress-related pathologies such as post-traumatic stress disorder are considered to arise from aberrant or maladaptive forms of stress adaptation. The hypothalamic-pituitary-adrenal (HPA) axis readily adapts to repeated stressor exposure, yet little is known about adaptation in neuroimmune responses to repeated or sequential stress challenges. In Experiment 1, rats were exposed to 10 days of restraint alone (60 minutes daily), forced swim alone (30 minutes daily) or daily sequential exposure to restraint (60 minutes) followed immediately by forced swim (30 minutes), termed sequential stress exposure. Habituation of the corticosterone (CORT) response occurred to restraint by 5 days and swim at 10 days, whereas rats exposed to sequential stress exposure failed to display habituation to the combined challenge. Experiment 2 compared 1 or 5 days of forced swim with sequential stress exposure and examined how each affected expression of several neuroimmune and cellular activation genes in the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC) and hippocampus (HPC). Sequential exposure to restraint and swim increased interleukin (IL)-1β in the PVN, an effect that was attenuated after 5 days. Sequential stress exposure also elicited IL-6 and tumour necrosis factor-α responses in the HPC and PFC, respectively, which did not habituate after 5 days. Experiment 3 tested whether prior habituation to restraint (5 days) would alter the IL-1β response evoked by swim exposure imposed immediately after the sixth day of restraint. Surprisingly, a history of repeated exposure to restraint attenuated the PVN IL-1β response after swim in comparison to acutely-exposed subjects despite an equivalent CORT response. Overall, these findings suggest that habituation of neuroimmune responses to stress proceeds: (i) independent of HPA axis habituation; (ii) likely requires more daily sessions of stress to develop; and (iii) IL-1β displays a greater tendency to habituate after repeated stress challenges compared to other stress-reactive cytokines.
Collapse
Affiliation(s)
- Dennis F. Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| |
Collapse
|
31
|
Gong Y, Yang Y, Chen X, Yang M, Huang D, Yang R, Zhou L, Li C, Xiong Q, Xiong Z. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomed Pharmacother 2017; 91:831-840. [PMID: 28501772 DOI: 10.1016/j.biopha.2017.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperoside (quercetin-3-O-b-d-galactosidepyranose) is a plant-derived flavonoid mainly found in fruits, fruit juices (most notably flavanols, flavanones, and anthocyanins) and Chinese traditional medicines. It has been applied to relieve pain and improve cardiovascular functions in clinic. However, the effects of hyperoside on cognitive impairment induced by chronic stress and the underlying molecular mechanisms remain unclear. In the current study, we used chronic mild stress (CMS) rats to investigate the effects of hyperoside on learning and memory and further explore the possible mechanisms. Our results demonstrated that hyperoside reduced the escape latency and the swimming distance of CMS rats in Morris water maze test and reversed depressive symptoms in forced swim test (FST) and sucrose preference test. In addition, hyperoside increased the expression of brain-derived neurotrophic factor (BDNF) in hippocampus of CMS rats without influencing the corticosterone (CORT) level in blood plasma. Furthermore, K252a, an inhibitor of the BDNF receptor TrkB, prevented the protective effects of hyperoside on learning and memory in CMS rats. Taken together, these results indicate that hyperoside reverses the cognitive impairment induced by CMS, which is associated with the regulation of BDNF signaling pathway.
Collapse
Affiliation(s)
- Yeli Gong
- Department of Immunology, Medical College, Jianghan University, Wuhan 430056, China
| | - Youhua Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Xiaoqing Chen
- Experimental Centre, Medical College, Jianghan University, Wuhan 430056, China
| | - Min Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Dan Huang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Lianying Zhou
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China
| | - Changlei Li
- Experimental Centre, Medical College, Jianghan University, Wuhan 430056, China
| | - Qiuju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Zhe Xiong
- Department of Physiology, Medical College, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
32
|
Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S. Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility. Biol Psychiatry 2017; 81:683-692. [PMID: 27955897 PMCID: PMC5359079 DOI: 10.1016/j.biopsych.2016.10.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Women are twice as likely as men to experience stress-related psychiatric disorders. The biological basis of these sex differences is poorly understood. Orexins are altered in anxious and depressed patients. Using a rat model of repeated stress, we examined whether orexins contribute to sex differences in outcomes relevant to stress-related psychiatric diseases. METHODS Behavioral, neural, and endocrine habituation to repeated restraint stress and subsequent cognitive flexibility was examined in adult male and female rats. In parallel, orexin expression and activation were determined in both sexes, and chromatin immunoprecipitation was used to determine transcription factors acting at the orexin promoter. Designer receptors exclusively activated by designer drugs were used to inhibit orexin activation throughout repeated restraint to determine if the stress-related impairments in female rats could be reduced. RESULTS Female rats exhibited impaired habituation to repeated restraint with subsequent deficits in cognitive flexibility compared with male rats. Increased orexin expression and activation were observed in female rats compared with male rats. The higher expression of orexin messenger RNA in female rats was due to actions of glucocorticoid receptors on the orexin promoter, as determined by chromatin immunoprecipitation. Inhibition of orexins using designer receptors exclusively activated by designer drugs in female rats throughout repeated restraint abolished their heightened hypothalamic-pituitary-adrenal responsivity and reduced stress-induced cognitive impairments. CONCLUSIONS Orexins mediate the impairments in adaptations to repeated stress and in subsequent cognitive flexibility exhibited by female rats and provide evidence for a broader role for orexins in mediating functions relevant to stress-related psychiatric diseases.
Collapse
Affiliation(s)
- Laura A. Grafe
- Department of Anesthesiology and Critical Care, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104
| | - Amanda Cornfeld
- University of Pennsylvania Perelman School of Medicine,
Philadelphia, Pennsylvania, USA 19104
| | - Sandra Luz
- Department of Anesthesiology and Critical Care, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104
| | - Rita Valentino
- Department of Anesthesiology and Critical Care, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104,University of Pennsylvania Perelman School of Medicine,
Philadelphia, Pennsylvania, USA 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
HOLUBOVÁ A, ŠTOFKOVÁ A, JURČOVIČOVÁ J, ŠLAMBEROVÁ R. The Effect of Neonatal Maternal Stress on Plasma Levels of Adrenocorticotropic Hormone, Corticosterone, Leptin, and Ghrelin in Adult Male Rats Exposed to Acute Heterotypic Stressor. Physiol Res 2016; 65:S557-S566. [PMID: 28006938 DOI: 10.33549/physiolres.933530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is important for maintenance of homeostasis during stress. Recent studies have shown a connection between the HPA axis and adipose tissue. The present study investigated the effect of acute heterotypic stress on plasma levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), leptin, and ghrelin in adult male rats with respect to neonatal maternal social and physical stressors. Thirty rat mothers and sixty of their male progeny were used. Pups were divided into three groups: unstressed control (C), stressed by maternal social stressor (S), stressed by maternal social and physical stressors (SW). Levels of hormones were measured in adult male progeny following an acute swimming stress (10 min) or no stress. ELISA immunoassay was used to measured hormones. The ACTH and CORT levels were significantly increased in all groups of adult progeny after acute stress; however, CORT levels were significantly lower in both neonatally stressed groups compared to controls. After acute stress, plasma leptin levels were decreased in the C and SW groups but increased in the S group. The data suggest that long-term neonatal stressors lead to lower sensitivity of ACTH receptors in the adrenal cortex, which could be a sign of stress adaptation in adulthood. Acute stress in adult male rats changes plasma levels of leptin differently relative to social or physical neonatal stressors.
Collapse
Affiliation(s)
| | | | | | - R. ŠLAMBEROVÁ
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
34
|
Campeau S. Apparatus and General Methods for Exposing Rats to Audiogenic Stress. Bio Protoc 2016; 6:e1994. [PMID: 28573165 DOI: 10.21769/bioprotoc.1994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Most organisms react innately to the sudden onset of environmental stimulation. Audiogenic or loud noise in rodents provides an effective threatening signal to study the central nervous circuits responsible for the elaboration of various responses typically elicited by threatening/stressful environmental stimulation. Audiogenic stress offers many advantages over other environmental stimulation, including exquisite control over timing, intensity, and frequency, using off-the-shelf components that produce easily reproducible results. This protocol provides blueprints for the construction of sound attenuation chambers, the associated sound generation, amplification, and delivery equipment, and general procedures sufficient to elicit multimodal responses to loud noises in rodents.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
35
|
Packard AEB, Egan AE, Ulrich-Lai YM. HPA Axis Interactions with Behavioral Systems. Compr Physiol 2016; 6:1897-1934. [PMID: 27783863 DOI: 10.1002/cphy.c150042] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perhaps the most salient behaviors that individuals engage in involve the avoidance of aversive experiences and the pursuit of pleasurable experiences. Engagement in these behaviors is regulated to a significant extent by an individual's hormonal milieu. For example, glucocorticoid hormones are produced by the hypothalamic-pituitary-adrenocortical (HPA) axis, and influence most aspects of behavior. In turn, many behaviors can influence HPA axis activity. These bidirectional interactions not only coordinate an individual's physiological and behavioral states to each other, but can also tune them to environmental conditions thereby optimizing survival. The present review details the influence of the HPA axis on many types of behavior, including appetitively-motivated behaviors (e.g., food intake and drug use), aversively-motivated behaviors (e.g., anxiety-related and depressive-like) and cognitive behaviors (e.g., learning and memory). Conversely, the manuscript also describes how engaging in various behaviors influences HPA axis activity. Our current understanding of the neuronal and/or hormonal mechanisms that underlie these interactions is also summarized. © 2016 American Physiological Society. Compr Physiol 6:1897-1934, 2016.
Collapse
Affiliation(s)
- Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
37
|
Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output. Sci Rep 2016; 6:31244. [PMID: 27511270 PMCID: PMC4980629 DOI: 10.1038/srep31244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/15/2016] [Indexed: 11/08/2022] Open
Abstract
Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.
Collapse
|
38
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
39
|
Panagiotakopoulos L, Kelly S, Neigh GN. HIV-1 proteins accelerate HPA axis habituation in female rats. Physiol Behav 2015; 150:8-15. [PMID: 25666308 PMCID: PMC4529393 DOI: 10.1016/j.physbeh.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/22/2023]
Abstract
Congenital infection by the Human Immunodeficiency Virus (HIV) has been shown to lead to multiple co-morbidities, and people living with HIV have a higher incidence of affective and anxiety disorders. A marked increase in mood disorders is evident during the sensitive phase of adolescence and this is further pronounced in females. Depression has been linked to dysfunction of the intracellular response system to corticosteroids at the level of the hippocampus (HC) and prefrontal cortex (PFC) with a notable role of the glucocorticoid receptor (GR) and its co-chaperones (FKBP5 and FKBP4). The current study examined the extent to which HIV protein expression in adolescent female rats altered the stress response at both the level of corticosterone output and molecular regulation of the glucocorticoid receptor in the brain. WT and HIV-1 genotype female rats were randomly allocated in control, acute stress and repeat stress groups. Corticosterone plasma levels and expression of GR, FKBP4, and FKBP5 in the HC and PFC were measured. The presence of HIV-1 proteins facilitates habituation of the corticosterone response to repeated stressors, such that HIV-1 TG rats habituated to repeated restraint and WT rats did not. This was reflected by interactions between stress exposure and HIV-1 protein expression at the level of GR co-chaperones. Although expression of the GR was similarly reduced after acute and repeat stress in both genotypes, expression of FKBP5 and FKBP4 was altered in a brain-region specific manner depending on the duration of the stress exposure and the presence or absence of HIV-1 proteins. Collectively, the data presented demonstrate that HIV-1 proteins accelerate habituation to repeated stressors and modify the influence of acute and repeat stressors on GR co-chaperones in a brain region-specific manner.
Collapse
Affiliation(s)
| | - Sean Kelly
- Department of Physiology, Emory University, United States
| | - Gretchen N Neigh
- Department of Physiology, Emory University, United States; Department of Psychiatry & Behavioral Sciences, Emory University, United States.
| |
Collapse
|
40
|
Luo YW, Xu Y, Cao WY, Zhong XL, Duan J, Wang XQ, Hu ZL, Li F, Zhang JY, Zhou M, Dai RP, Li CQ. Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress. Neuropharmacology 2015; 89:318-24. [PMID: 25446675 DOI: 10.1016/j.neuropharm.2014.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
Abstract
Depression is a common psychiatric disorder associated with chronic stress. Insulin-like growth factor 2 (IGF2) is a growth factor that serves important roles in the brain during development and at adulthood. Here, the role of IGF2 expression in the hippocampus was investigated in a rat model of depression. A chronic restraint stress (CRS) model of depression was established in rats, exhibiting depression-like behavior as assessed with the sucrose preference test (SPT) and forced swimming test (FST), and with evaluation of the corticosterone levels. Hippocampal IGF2 levels were significantly lower in rats suffering CRS than in controls, as were levels of pERK1/2 and GluR1. Lentivirus-mediated hippocampal IGF2 overexpression alleviated depressive behavior in restrained rats, elevated the levels of pERK1/2 and GluR1 proteins, but it did not affect the expression of pGSK3β, GluR2, NMDAR1, and NMDAR2A. These results suggest the chronic restraint stress induces depressive behavior, which may be mediated by ERK-dependent IGF2 signaling, pointing to an antidepressant role for this molecular pathway.
Collapse
Affiliation(s)
- Yan-Wei Luo
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Belda X, Fuentes S, Daviu N, Nadal R, Armario A. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 2015; 18:269-79. [PMID: 26300109 DOI: 10.3109/10253890.2015.1067678] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.
Collapse
Affiliation(s)
- Xavier Belda
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| | - Silvia Fuentes
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
- d Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
| | - Nuria Daviu
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| | - Roser Nadal
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
- d Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
| | - Antonio Armario
- a Institut de Neurociències, Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- b Unitat de Fisiologia Animal (Facultat de Biociències), Universitat Autònoma de Barcelona , Bellaterra , Barcelona , Spain
- c Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III , Bellaterra , Barcelona , Spain , and
| |
Collapse
|
42
|
Li J, Wang J, Shao JQ, Du H, Wang YT, Peng L. Effect of Schisandra chinensis on interleukins, glucose metabolism, and pituitary-adrenal and gonadal axis in rats under strenuous swimming exercise. Chin J Integr Med 2015; 21:43-48. [PMID: 25141817 DOI: 10.1007/s11655-014-1765-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effect of Chinese medicine (CM) Schisandra chinensis on interleukin (IL), glucose metabolism, and pituitary-adrenal and gonadal axis of rats after strenuous navigation and exercise. METHODS A total of 45 Sprague-Dawley rats were randomized into the quiet control group, the stress group, and the CM group (15 in each group). The CM group received 2.5 g/kg of Schisandra chinensis twice per day for one week before modeling. Except the quiet controls, rats were trained using the Bedford mode for 10 days. On the 11th day, they performed 3 h of stressful experimental navigation and 3 h of strenuous treadmill exercise. The levels of serum testosterone (T), cortisol (CORT), luteinizing hormone (LH), IL-1, IL-2, and IL-6 were tested by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The adrenal cortex ultrastructure was observed using electron microscopy. RESULTS Compared with the quiet control group, after navigation and strenuous exercise, blood glucose was increased, and T level was decreased in the stress group (both P<0.01). The blood glucose, CORT, IL-1 and IL-2 levels were significantly reduced in the CM group (P<0.05 or P<0.01) as compared with the stress group. Electron microscopy revealed that the rats in the CM group had a smaller decrease in adrenal intracellular lipid droplets and higher levels of apoptosis than those in the stress group. CONCLUSIONS Schisandra chinensis can reduce serum CORT and blood glucose levels in stressed rats. It appears to protect the cell structure of the adrenal cortex, and offset the negative effects of psychological stress and strenuous exercise related to immune dysfunction. Schisandra chinensis plays a regulatory role in immune function, and can decrease the influence of stress in rats.
Collapse
Affiliation(s)
- Jie Li
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | | | | | | | | | | |
Collapse
|
43
|
McDermott CM, Liu D, Ade C, Schrader LA. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice. Neurobiol Learn Mem 2014; 118:167-77. [PMID: 25555360 DOI: 10.1016/j.nlm.2014.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders.
Collapse
Affiliation(s)
- Carmel M McDermott
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Dan Liu
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Catherine Ade
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Laura A Schrader
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
44
|
Gagliano H, Nadal R, Armario A. Sex differences in the long-lasting effects of a single exposure to immobilization stress in rats. Horm Behav 2014; 66:793-801. [PMID: 25461973 DOI: 10.1016/j.yhbeh.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/21/2014] [Accepted: 11/08/2014] [Indexed: 12/28/2022]
Abstract
In male rats, a single exposure to a severe stressor such as immobilization (IMO) results in marked activation of the HPA axis and reduction of body weight gain. In addition, the HPA response to the same (homotypic) stressor is reduced, whereas the response to a different (heterotypic) stressor is enhanced for days. Although sex differences in the responsiveness of the HPA axis have been described, there are few studies about the influence of sex on long-lasting effects of stress. Thus, we have compared the consequences of a single exposure to IMO in male and female rats. Females showed a similar ACTH response to the first IMO associated with higher corticosterone, but they were more resistant than males to stress-induced loss of body weight. Unstressed females showed higher resting levels of ACTH and corticosterone, but they did not show the increase in the resting levels of HPA hormones observed in males on the day after IMO. During exposure to a different stressor (open-field) two days after IMO, enhanced corticosterone response and hypoactivity was observed in males, but not in females. Finally, a second exposure to IMO 8 days after the first one resulted in a reduction of the HPA response and of the negative impact on body weight as compared to the first exposure, and this protective effect was greater in females. In sum, IMO-exposed females showed a greater reduction of the response to a second IMO and appear to be more resistant than males to some of the negative impacts of IMO.
Collapse
Affiliation(s)
- Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Faculty of Biosciences), Universitat Autònoma de Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit (Faculty of Psychology), Universitat Autònoma de Barcelona, Spain.
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit (Faculty of Biosciences), Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
45
|
Al-Safadi S, Al-Safadi A, Branchaud M, Rutherford S, Dayanandan A, Robinson B, Amir S. Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability. PLoS One 2014; 9:e111166. [PMID: 25338089 PMCID: PMC4206498 DOI: 10.1371/journal.pone.0111166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022] Open
Abstract
Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl) and oval nucleus of the bed nucleus of the stria terminalis (BNSTov). Conversely, systemic stressors, interleukin-1β and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN), the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.
Collapse
Affiliation(s)
- Sherin Al-Safadi
- Department of Biology, Concordia University, Montréal, Quebéc, Canada
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
| | - Aya Al-Safadi
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
| | - Marie Branchaud
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
| | - Spencer Rutherford
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
| | - Arun Dayanandan
- Department of Biology, Concordia University, Montréal, Quebéc, Canada
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
| | - Barry Robinson
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
| | - Shimon Amir
- Department of Biology, Concordia University, Montréal, Quebéc, Canada
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebéc, Canada
- * E-mail:
| |
Collapse
|