1
|
Ojha RK, Dongre S, Singh P, Srivastava RK. Late maternal separation provides resilience to chronic variable stress-induced anxiety- and depressive-like behaviours in male but not female mice. World J Biol Psychiatry 2024; 25:393-407. [PMID: 39155532 DOI: 10.1080/15622975.2024.2390411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maternal separation can have long-lasting effects on an individual's susceptibility to stress later in life. Maternal separation during the postnatal period is a commonly used paradigm in rodents to investigate the effects of early life stress on neurobehavioural changes and stress responsiveness. However, maternal separation during stress hyporesponsive and responsive periods of postnatal development may differ in its effects on stress resilience. Therefore, we hypothesised that late maternal separation (LMS) from postnatal day 10 to 21 in mice may have different effect on resilience than early maternal separation during the first week of postnatal life. Our results suggested that male LMS mice are more resilient to chronic variable stress (CVS)-induced anxiety and depressive-like behaviour as confirmed by the open field, light-dark field, elevated plus maze, sucrose preference and tail suspension tests. In contrast, female LMS mice were equally resilient as non-LMS female mice. We found increased expression of NPY, NPY1R, NPY2R, NPFFR1, and NPFFR2 in the hypothalamus of male LMS mice whereas the opposite effect was observed in the hippocampus. LMS in male and female mice did not affect circulating corticosterone levels in response to psychological or physiological stressors. Thus, LMS renders male mice resilient to CVS-induced neurobehavioural disorders in adulthood.
Collapse
Affiliation(s)
- Rajesh Kumar Ojha
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Shweta Dongre
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Padmasana Singh
- Department of Zoology, University of Allahabad, Prayagraj, India
| | | |
Collapse
|
2
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Häusl AS, Brix LM, Hartmann J, Pöhlmann ML, Lopez JP, Menegaz D, Brivio E, Engelhardt C, Roeh S, Bajaj T, Rudolph L, Stoffel R, Hafner K, Goss HM, Reul JMHM, Deussing JM, Eder M, Ressler KJ, Gassen NC, Chen A, Schmidt MV. The co-chaperone Fkbp5 shapes the acute stress response in the paraventricular nucleus of the hypothalamus of male mice. Mol Psychiatry 2021; 26:3060-3076. [PMID: 33649453 PMCID: PMC8505251 DOI: 10.1038/s41380-021-01044-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.
Collapse
Affiliation(s)
- Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea M Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan-Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Electrophysiology Core Unit, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elena Brivio
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Roeh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Lisa Rudolph
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Electrophysiology Core Unit, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
4
|
Kulhanek D, Weigel R, Paulsen ME. Maternal High-Fat-High-Carbohydrate Diet-Induced Obesity Is Associated with Increased Appetite in Peripubertal Male but Not Female C57Bl/6J Mice. Nutrients 2020; 12:E2919. [PMID: 32987812 PMCID: PMC7598591 DOI: 10.3390/nu12102919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Diet-induced maternal obesity might play a critical role in altering hypothalamic development, predisposing the offspring to obesity and metabolic disease later in life. The objective of this study was to describe both phenotypic and molecular sex differences in peripubertal offspring energy homeostasis, using a mouse model of maternal obesity induced by a high-fat-high-carbohydrate (HFHC) diet. We report that males, not females, exposed to a maternal HFHC diet had increased energy intake. Males exposed to a maternal HFHC diet had a 15% increased meal size and a 46% increased frequency, compared to the control (CON) males, without a change in energy expenditure. CON and HFHC offspring did not differ in body weight, composition, or plasma metabolic profile. HFHC diet caused decreased hypothalamic glucocorticoid expression, which was further decreased in males compared to females. Maternal weight, maternal caloric intake, and male offspring meal frequency were inversely correlated with offspring hypothalamic insulin receptor (IR) expression. There was a significant interaction between maternal-diet exposure and sex in hypothalamic IR. Based on our preclinical data, we suggest that interventions focusing on normalizing maternal nutrition might be considered to attenuate nutritional influences on obesity programming and curb the continuing rise in obesity rates.
Collapse
Affiliation(s)
| | | | - Megan E. Paulsen
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.K.); (R.W.)
| |
Collapse
|
5
|
Kim JS, Iremonger KJ. Temporally Tuned Corticosteroid Feedback Regulation of the Stress Axis. Trends Endocrinol Metab 2019; 30:783-792. [PMID: 31699237 DOI: 10.1016/j.tem.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
Activity of the hypothalamic-pituitary-adrenal (HPA) axis is tuned by corticosteroid feedback. Corticosteroids regulate cellular function via genomic and nongenomic mechanisms, which operate over diverse time scales. This review summarizes recent advances in our understanding of how corticosteroid feedback regulates hypothalamic stress neuron function and output through synaptic plasticity, changes in intrinsic excitability, and modulation of neuropeptide production. The temporal kinetics of corticosteroid actions in the brain versus the pituitary have important implications for how organisms respond to stress. Furthermore, we will discuss, some of the technical limitations and missing links in the field, and the potential implications these may have on our interpretations of corticosteroid negative feedback experiments.
Collapse
Affiliation(s)
- Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Muráni E, Ponsuksili S, Jaeger A, Görres A, Tuchscherer A, Wimmers K. A naturally hypersensitive glucocorticoid receptor elicits a compensatory reduction of hypothalamus-pituitary-adrenal axis activity early in ontogeny. Open Biol 2017; 6:rsob.150193. [PMID: 27440422 PMCID: PMC4967818 DOI: 10.1098/rsob.150193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/22/2016] [Indexed: 12/17/2022] Open
Abstract
We comprehensively characterized the effects of a unique natural gain-of-function mutation in the glucocorticoid receptor (GR), GRAla610Val, in domestic pigs to expand current knowledge of the phenotypic consequences of GR hypersensitivity. Cortisol levels were consistently reduced in one-week-old piglets, at weaning and in peripubertal age, probably due to a reduced adrenal capacity to produce glucocorticoids (GC), which was indicated by an adrenocortical thinning in GRAla610Val carriers. Adrenocorticotrophic hormone (ACTH) levels were significantly reduced in one-week-old piglets only. Expression analyses in peripubertal age revealed significant downregulation of hypothalamic expression of CRH and AVP, the latter only in females, and upregulation of hepatic expression of SERPINA6, by GRAla610Val Transcriptional repression of proinflammatory genes in peripheral blood mononuclear cells (PBMCs) from GRAla610Val carriers was more sensitive to dexamethasone treatment ex vivo However, no significant effects on growth, body composition, blood chemistry or cell counts were observed under baseline conditions. These results suggest that GRAla610Val-induced GR hypersensitivity elicits a compensatory reduction in endogenous, bioactive glucocorticoid levels via readjustment of the hypothalamus-pituitary-adrenal (HPA) axis early in ontogeny to maintain an adequate response, but carriers are more sensitive to exogenous GC. Therefore, GRAla610Val pigs represent a valuable animal model to explore GR-mediated mechanisms of HPA axis regulation and responses to glucocorticoid-based drugs.
Collapse
Affiliation(s)
- Eduard Muráni
- Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexandra Jaeger
- Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Andreas Görres
- Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Armin Tuchscherer
- Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
8
|
Mareckova K, Holsen L, Admon R, Whitfield-Gabrieli S, Seidman LJ, Buka SL, Klibanski A, Goldstein J. Neural - hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex. J Affect Disord 2017; 222:88-97. [PMID: 28688266 PMCID: PMC5560420 DOI: 10.1016/j.jad.2017.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Maladaptive responses to negative affective stimuli are pervasive, including clinically ill and healthy people, and men and women respond differently at neural and hormonal levels. Inspired by the Research Domain Criteria initiative, we used a transdiagnostic approach to investigate the impact of sex and dysphoric mood on neural-hormonal responses to negative affective stimuli. METHODS Participants included 99 individuals with major depressive disorder, psychosis and healthy controls. Functional magnetic resonance imaging (fMRI) was complemented with real-time acquisition of hypothalamo-pituitary-adrenal (HPA) and -gonadal (HPG) hormones. fMRI data were analyzed in SPM8 and task-related connectivity was assessed using generalized psychophysiological interaction. RESULTS Across all participants, elevated cortisol response predicted lower brain activity in orbitofrontal cortex and hypothalamus-amygdala connectivity. In those with worse dysphoric mood, elevated cortisol response predicted lower activity in hypothalamus and hippocampus. In women, elevated cortisol response was associated with lower activity in medial prefrontal cortex and low hypothalamo-hippocampal connectivity. In women with high dysphoric mood, elevated cortisol response was associated with low hypothalamo-hippocampal connectivity. There were no interactions with diagnosis or medication. LIMITATIONS There was limited power to correct for multiple comparisons across total number of ROIs and connectivity targets; cortisol responses were relatively low. CONCLUSIONS We conclude that the pathophysiology in neural-hormonal responses to negative affective stimuli is shared across healthy and clinical populations and varies as a function of sex and dysphoric mood. Our findings may contribute to the development of hormonal adjunctive therapeutics that are sex-dependent, underscoring the importance of one's sex to precision medicine.
Collapse
Affiliation(s)
- K. Mareckova
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA,CEITEC, Masaryk University, Brno, Czech Republic
| | - L. Holsen
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | - R. Admon
- McLean Hospital, Department of Psychiatry, HMS, Boston, MA USA
| | - S. Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - LJ Seidman
- Beth Israel Deaconess Medical Center, Division of Public Psychiatry, Massachusetts Mental Health Center; Department of Psychiatry, HMS, Boston, MA, USA
| | - SL Buka
- Department of Community Health, Brown University, Providence, RI, USA
| | - A. Klibanski
- Massachusetts General Hospital, Department of Medicine, Neuroendocrine Unit; HMS, Department of Medicine, Boston, MA, USA
| | - J.M. Goldstein
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Arcego DM, Toniazzo AP, Krolow R, Lampert C, Berlitz C, dos Santos Garcia E, do Couto Nicola F, Hoppe JB, Gaelzer MM, Klein CP, Lazzaretti C, Dalmaz C. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol 2017; 55:2740-2753. [DOI: 10.1007/s12035-017-0538-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
|
10
|
Al Aïn S, Perry RE, Nuñez B, Kayser K, Hochman C, Brehman E, LaComb M, Wilson DA, Sullivan RM. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering. Soc Neurosci 2017; 12:32-49. [PMID: 26934130 PMCID: PMC5033694 DOI: 10.1080/17470919.2016.1159605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Rosemarie E. Perry
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Neuroscience and Physiology, NYU Sackler Institute, New York University School of Medicine, New York, NY, USA
| | - Bestina Nuñez
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Kassandra Kayser
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Chase Hochman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Elizabeth Brehman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Miranda LaComb
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|