1
|
Chen Y, You Y, Xie Y, Li X, Zhu Z, Li W, Du X, Yan Z. ZBP1 synchronized with periodontopathogenesis as the essential pattern recognition receptor. Microb Pathog 2025; 205:107678. [PMID: 40349992 DOI: 10.1016/j.micpath.2025.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease impacting quality of life. Understanding its pathogenesis is key to developing effective treatments. This study aimed to identify key pattern recognition receptors (PRRs) involved in periodontitis and elucidate their roles in disease progression. METHODS Periodontal tissues from healthy individuals and those with periodontitis were analyzed using RNA-sequencing, quantitative real-time PCR(qRT-PCR), and immunohistochemical analysis. Paired tissues collected before and after non-surgical treatment were analyzed via 4D-microDIA proteomics and Western blot. RESULTS RNA-sequencing showed significantly higher expression of Z-DNA binding protein 1(ZBP1) and absent in melanoma 2(AIM2) in periodontitis tissues compared to healthy controls, confirmed by qRT-PCR. Post-treatment proteomics indicated significant downregulation of ZBP1, with a non-significant trend for AIM2. Immunohistochemical staining localized ZBP1 to the middle and superficial layers of the gingival epithelium and around deep pockets in periodontitis, while AIM2 was detected in the junctional epithelium and extended throughout the pocket epithelium in periodontitis. CONCLUSIONS ZBP1 is highlighted as a key PRR in periodontitis, with significant regulatory potential. AIM2 may play a secondary role. Their distinct spatial distributions suggest involvement in specific microenvironments within periodontal tissues, mediating responses to microbial and inflammatory challenges. ZBP1 may be a critical receptor initiating periodontitis.
Collapse
Affiliation(s)
- Yu Chen
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China; Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuehua You
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Yi Xie
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Xiaoyu Li
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Zhigao Zhu
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Wenlong Li
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Xinya Du
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Zhengbin Yan
- Department of Dentistry, People's Hospital of Longhua, Shenzhen, 518109, China.
| |
Collapse
|
2
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
4
|
Li Y, Huang X, Qiao Q, Li Y, Han X, Chen C, Chen Y, Guo S, Zhang Y, Gao W, Liu H, Sun T. Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414237. [PMID: 39775885 DOI: 10.1002/adma.202414237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Sepsis is a life-threatening disease caused by a dysregulated immune response to infection, often involving the translocation of Gram-negative bacteria such as Escherichia coli (E. coli) into the bloodstream, triggering a cytokine storm. Despite its severity, no effective drugs currently exist for sepsis treatment. This study explores whether pathogen-derived carbon dots can mitigate their inherent toxicity while leveraging their structural similarity to pathogens to competitively bind pattern recognition receptors, thereby inhibiting sepsis. Based on this concept, E. coli wall-derived carbon dots (E-CDs) are synthesized and shown to reduce inflammatory cytokine production, protect organ function, and improve survival in septic mice. Mechanistic studies reveal that E-CDs competitively bind to lipopolysaccharide-binding protein with lipopolysaccharide, promoting toll-like receptor 4 degradation via the lysosomal pathway and inhibiting nuclear factor kappa-B (NF-κB) activation. Additionally, E-CDs exhibit antioxidant properties, reducing oxidative stress and mitochondrial DNA release, thereby suppressing overactivation of the stimulator of interferon genes pathway. In septic cynomolgus monkeys and patient-derived peripheral blood mononuclear cells, E-CDs alleviate inflammation and oxidative stress. Overall, this study demonstrates that E-CDs can suppress the cytokine storm in sepsis by co-silencing innate immune pathways, suggesting that converting pathogens into carbon dots offers a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Shuang Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yang Zhang
- Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin, 300142, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Wen H, Qian L, Gao X, Singer A, Xie S, Tang YW, Zhao J. Technical advances in laboratory diagnosis of bloodstream infection. Expert Rev Mol Diagn 2025; 25:67-85. [PMID: 39869103 DOI: 10.1080/14737159.2025.2458467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Rapid and accurate laboratory diagnosis is essential for the effective treatment of bloodstream infection (BSI). AREAS COVERED This review aims to address novel and traditional approaches that exhibit different performance characteristics in the diagnosis of BSI. In particular, the authors will discuss the pros and cons of the blood culture-based phenotypic methods, nucleic acid-targeted molecular methods, and host response-targeted biomarker detection in the diagnosis of BSI. EXPERT OPINION This manuscript summarizes etiologic and host-based techniques in the diagnosis of BSI. Both methods are not mutually exclusive but should be selected based on clinical needs and laboratory conditions to help diagnose BSI more quickly and accurately.
Collapse
Affiliation(s)
- Hainan Wen
- Department of Clinical Laboratory, Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People's Republic of China
| | - Liu Qian
- Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), Shanghai, People's Republic of China
| | - Xinghui Gao
- Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), Shanghai, People's Republic of China
| | | | - Shuojun Xie
- Department of Clinical Laboratory, Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People's Republic of China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), Shanghai, People's Republic of China
- College of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
6
|
Fialho S, Trieu-Cuot P, Ferreira P, Oliveira L. Could P2X7 receptor be a potencial target in neonatal sepsis? Int Immunopharmacol 2024; 142:112969. [PMID: 39241519 DOI: 10.1016/j.intimp.2024.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
The United Nations Inter-Agency Group for Child Mortality Estimation (UNIGME) estimates that every year 2.5 million neonates die in their first month of life, accounting for nearly one-half of deaths in children under 5 years of age. Neonatal sepsis is the third leading cause of neonatal mortality. The worldwide burden of bacterial sepsis is expected to increase in the next decades due to the lack of effective molecular therapies to replace the administration of antibiotics whose efficacy is compromised by the emergence of resistant strains. In addition, prolonged exposure to antibiotics can have negative effects by increasing the risk of infection by other organisms. With the global burden of sepsis increasing and no vaccine nor other therapeutic approaches proved efficient, the World Health Organization (WHO) stresses the need for new therapeutic targets for sepsis treatment and infection prevention (WHO, A73/32). In response to this unresolved clinical issue, the P2X7 receptor (P2X7R), a key component of the inflammatory cascade, has emerged as a potential target for treating inflammatory/infection diseases. Indeed numerous studies have demonstrated the relevance of the purinergic system as a pharmacological target in addressing immune-mediated inflammatory diseases by regulating immunity, inflammation, and organ function. In this review, we analyze key features of sepsis immunopathophysiology focusing in neonatal sepsis and on how the immunomodulatory role of P2X7R could be a potential pharmacological target for reducing the burden of neonatal sepsis.
Collapse
Affiliation(s)
- Sales Fialho
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Unité de Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Paula Ferreira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Institute of Research and Innovation in Health (i3S), University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Laura Oliveira
- Department of ImmunoPhysiology and Pharmacology, ICBAS - School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP)/Rise Health, University of Porto, Portugal.
| |
Collapse
|
7
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Wang Y, Ding Q, Ma G, Zhang Z, Wang J, Lu C, Xiang C, Qian K, Zheng J, Shan Y, Zhang P, Cheng Z, Gong P, Zhao Q. Mucus-Penetrable Biomimetic Nanoantibiotics for Pathogen-Induced Pneumonia Treatment. ACS NANO 2024; 18:31349-31359. [PMID: 39485232 DOI: 10.1021/acsnano.4c10837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacterial pneumonia has garnered significant attention in the realm of infectious diseases owing to a surge in the incidence of severe infections coupled with the growing scarcity of efficacious therapeutic modalities. Antibiotic treatment is still an irreplaceable method for bacterial pneumonia because of its strong bactericidal activity and good clinical efficacy. However, the mucus layer forming after a bacterial infection in the lungs has been considered as the "Achilles' heels" facing the clinical application of such treatment. Herein, traceable biomimetic nanoantibiotics (BioNanoCFPs) were developed by loading indacenodithieno[3,2-b]thiophene (ITIC) and cefoperazone (CFP) in nanoplatforms coated with natural killer (NK) cell membranes. The BioNanoCFP exhibited excellent demonstrated mucus-penetrating abilities, facilitating their arrival at the infection site. The presence of Toll-like receptors in the NK cell membrane rendered the BioNanoCFP with the capability to recognize pathogen-associated molecular patterns within bacteria, allowing precise targeting of bacterial colonization sites and achieving substantial therapeutic efficacy. Overall, our findings demonstrate the viability and desirability of using NK cell membrane-mediated drug delivery as a promising strategy for precision treatment.
Collapse
Affiliation(s)
- Yue Wang
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiwei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaqi Wang
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chang Lu
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zheng
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen 518024, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen 518024, China
| | - Qi Zhao
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
9
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
10
|
Guo S, Zeng M, Wang Z, Zhang C, Fan Y, Ran M, Shi Q, Song Z. Single-cell transcriptome landscape of the kidney reveals potential innate immune regulation mechanisms in hybrid yellow catfish after Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109866. [PMID: 39214264 DOI: 10.1016/j.fsi.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas hydrophila, the pathogen that is the causative agent of motile Aeromonas septicemia (MAS) disease, commonly attacks freshwater fishes, including yellow catfish (Pelteobagrus fulvidraco). Although the kidney is one of the most important organs involved in immunity in fish, its role in disease progression has not been fully elucidated. Understanding the cellular composition and innate immune regulation mechanisms of the kidney of yellow catfish is important for the treatment of MAS. In this study, single-cell RNA sequencing (scRNA-seq) was performed on the kidney of hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) after A. hydrophila infection. Nine types of kidney cells were identified using marker genes, and a transcription module of marker genes in the main immune cells of hybrid yellow catfish kidney tissue was constructed using in-situ hybridization. In addition, the single-cell transcriptome data showed that the differentially expressed genes of macrophages were primarily enriched in the Toll-like receptor and Nod-like receptor signaling pathways. The expression levels of genes involved in these pathways were upregulated in macrophages following A. hydrophila infection. Transmission electron microscopy and TUNEL analysis revealed the cellular characteristics of macrophages before and after A. hydrophila infection. These data provide empirical support for in-depth research on the role of the kidney in the innate immune response of hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chenhao Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Darwitz BP, Genito CJ, Thurlow LR. Triple threat: how diabetes results in worsened bacterial infections. Infect Immun 2024; 92:e0050923. [PMID: 38526063 PMCID: PMC11385445 DOI: 10.1128/iai.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.
Collapse
Affiliation(s)
- Benjamin P. Darwitz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher J. Genito
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Lance R. Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Vega B, Toro-Araneda T, Alvarado JF, Cárcamo CB, Guzmán F, Acosta F, Oliva M, Serrano E, Galarza JI, Álvarez CA. Effects of Hypoxia on the Antibacterial Activity of Epidermal Mucus from Chilean Meagre ( Cilus gilberti). Animals (Basel) 2024; 14:2014. [PMID: 38998124 PMCID: PMC11240494 DOI: 10.3390/ani14132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024] Open
Abstract
Comprehending the immune defense mechanisms of new aquaculture species, such as the Chilean meagre (Cilus gilberti), is essential for sustaining large-scale production. Two bioassays were conducted to assess the impact of acute and intermittent hypoxia on the antibacterial activity of juvenile Chilean meagre epidermal mucus against the potential pathogens Vibrio anguillarum and Vibrio ordalii. Lysozyme and peroxidase activities were also measured. In general, fish exposed to hypoxia showed a 9-30% reduction in mucus antibacterial activity at the end of hypoxic periods and after stimulation with lipopolysaccharide. However, following water reoxygenation, the activity of non-stimulated fish was comparable to that of fish in normoxic conditions, inhibiting bacterial growth by 35-52%. In the case of fish exposed to chronic hypoxia, the response against V. anguillarum increased by an additional 19.8% after 6 days of control inoculation. Lysozyme exhibited a similar pattern, while no modulation of peroxidase activity was detected post-hypoxia. These results highlight the resilience of C. gilberti to dissolved oxygen fluctuations and contribute to understanding the potential of mucus in maintaining the health of cultured fish and the development of future control strategies.
Collapse
Affiliation(s)
- Belinda Vega
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| | - Teresa Toro-Araneda
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| | - Juan F Alvarado
- Facultad de Ciencias Agronómicas, Universidad de El Salvador, San Salvador 3110, El Salvador
| | - Claudia B Cárcamo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
- Marine Department, Tilad Group, Riyadh 12821, Saudi Arabia
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35214 Taliarte, Spain
| | - Marcia Oliva
- Laboratorio de Cultivo de Peces Marinos, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Edison Serrano
- Laboratorio de Cultivo de Peces Marinos, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Janeth I Galarza
- Centro de Investigaciones Biológicas y Prácticas Académicas, Facultad de Ciencias del Mar, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Claudio A Álvarez
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
- Laboratorio de Cultivo de Peces Marinos, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| |
Collapse
|
13
|
Parrott AC, Coburn PS, Miller FC, LaGrow AL, Mursalin MH, Callegan MC. The Role of CCL Chemokines in Experimental Staphylococcus aureus Endophthalmitis. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38842829 PMCID: PMC11160947 DOI: 10.1167/iovs.65.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose To test the hypothesis that (C-C motif) ligand 2 (CCL2) and CCL3 impact retinal function decline and inflammation during Staphylococcus aureus endophthalmitis. Methods Experimental endophthalmitis was initiated by intravitreal injection of 5000 colony-forming units of S. aureus into the eyes of C57BL/6J, CCL2-/-, or CCL3-/- mice. At 12 and 24 hours post-infection, retinal function, bacterial load, and myeloperoxidase levels were quantified. Results During S. aureus endophthalmitis, we observed a significant improvement in retinal function in CCL2-/- mice relative to C57BL/6J mice at 12 hours but not at 24 hours. In CCL3-/- mice, retinal function was significantly improved relative to C57BL/6J mice at 12 and 24 hours. The absence of CCL2 did not alter intraocular S. aureus intraocular concentrations. However, CCL3-/- mice had significantly lower intraocular S. aureus at 12 hours but not at 24 hours. No difference in myeloperoxidase levels was observed between C57BL/6J and CCL2-/- mice at 12 hours. CCL3-/- mice had almost no myeloperoxidase at 12 hours. At 24 hours, increased myeloperoxidase was observed in CCL2-/- and CCL3-/- mice relative to C57BL/6J mice. Conclusions Although the absence of CCL2 resulted in improved retinal function retention at 12 hours, CCL3 deficiency resulted in improved retinal function at 12 and 24 hours. CCL3 deficiency, but not CCL2 deficiency, resulted in almost no inflammation at 12 hours. However, at 24 hours, the absence of CCL2 or CCL3 resulted in significantly increased inflammation. These results suggest that, although both CCL2 and CCL3 impact intraocular infection outcomes, CCL3 may have a more significant impact in S. aureus endophthalmitis.
Collapse
Affiliation(s)
- Aaron C. Parrott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| |
Collapse
|
14
|
Liang B, Li W, Yang C, Su J. LGP2 Facilitates Bacterial Escape through Binding Peptidoglycan via EEK Motif and Suppressing NOD2-RIP2 Axis in Cyprinidae and Xenocyprididae Families. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1791-1806. [PMID: 38629918 DOI: 10.4049/jimmunol.2300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/14/2024] [Indexed: 05/22/2024]
Abstract
RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.
Collapse
Affiliation(s)
- Bo Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wenqian Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
15
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
16
|
Aminov R, Aminova L. The role of the glycome in symbiotic host-microbe interactions. Glycobiology 2023; 33:1106-1116. [PMID: 37741057 PMCID: PMC10876039 DOI: 10.1093/glycob/cwad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Collapse
Affiliation(s)
- Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Leila Aminova
- Midwest Bioprocessing Center, 801 W Main St, Peoria, IL, 61606-1877, United States
| |
Collapse
|
17
|
Jiang X, Yu G, Zhu L, Siddique A, Zhan D, Zhou L, Yue M. Flanking N- and C-terminal domains of PrsA in Streptococcus suis type 2 are crucial for inducing cell death independent of TLR2 recognition. Virulence 2023; 14:2249779. [PMID: 37641974 PMCID: PMC10467536 DOI: 10.1080/21505594.2023.2249779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Streptococcus suis type 2 (SS2), a major emerging/re-emerging zoonotic pathogen found in humans and pigs, can cause severe clinical infections, and pose public health issues. Our previous studies recognized peptidyl-prolyl isomerase (PrsA) as a critical virulence factor promoting SS2 pathogenicity. PrsA contributed to cell death and operated as a pro-inflammatory effector. However, the molecular pathways through which PrsA contributes to cell death are poorly understood. Here in this study, we prepared the recombinant PrsA protein and found that pyroptosis and necroptosis were involved in cell death stimulated by PrsA. Specific pyroptosis and necroptosis signalling inhibitors could significantly alleviate the fatal effect. Cleaved caspase-1 and IL-1β in pyroptosis with phosphorylated MLKL proteins in necroptosis pathways, respectively, were activated after PrsA stimulation. Truncated protein fragments of enzymatic PPIase domain (PPI), N-terminal (NP), and C-terminal (PC) domains fused with PPIase, were expressed and purified. PrsA flanking N- or C-terminal but not enzymatic PPIase domain was found to be critical for PrsA function in inducing cell death and inflammation. Additionally, PrsA protein could be anchored on the cell surface to interact with host cells. However, Toll-like receptor 2 (TLR2) was not implicated in cell death and recognition of PrsA. PAMPs of PrsA could not promote TLR2 activation, and no rescued phenotypes of death were shown in cells blocking of TLR2 receptor or signal-transducing adaptor of MyD88. Overall, these data, for the first time, advanced our perspective on PrsA function and elucidated that PrsA-induced cell death requires its flanking N- or C-terminal domain but is dispensable for recognizing TLR2. Further efforts are still needed to explore the precise molecular mechanisms of PrsA-inducing cell death and, therefore, contribution to SS2 pathogenicity.
Collapse
Affiliation(s)
- Xiaowu Jiang
- College of Medicine, Yichun University, Yichun, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Yichun, Jiangxi, China
| | - Guijun Yu
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Lexin Zhu
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Abubakar Siddique
- Hainan Institute of Zhejiang University, Sanya, China
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Dongbo Zhan
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Linhua Zhou
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Gonzalez OA, Kirakodu SS, Ebersole JL. DAMPs and alarmin gene expression patterns in aging healthy and diseased mucosal tissues. FRONTIERS IN ORAL HEALTH 2023; 4:1320083. [PMID: 38098978 PMCID: PMC10720672 DOI: 10.3389/froh.2023.1320083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Periodontitis is delineated by a dysbiotic microbiome at sites of lesions accompanied by a dysregulated persistent inflammatory response that undermines the integrity of the periodontium. The interplay of the altered microbial ecology and warning signals from host cells would be a critical feature for maintaining or re-establishing homeostasis in these tissues. Methods This study used a nonhuman primate model (Macaca mulatta) with naturally-occurring periodontitis (n = 34) and experimental ligature-induced periodontitis (n = 36) to describe the features of gene expression for an array of damage-associate molecular patterns (DAMPs) or alarmins within the gingival tissues. The animals were age stratified into: ≤3 years (Young), 7-12 years (Adolescent), 12-15 years (Adult) and 17-23 years (Aged). Gingival tissue biopsies were examined via microarray. The analysis focused on 51 genes representative of the DAMPs/alarmins family of host cell warning factors and 18 genes associated with tissue destructive processed in the gingival tissues. Bacterial plaque samples were collected by curette sampling and 16S rRNA gene sequences used to describe the oral microbiome. Results A subset of DAMPs/alarmins were expressed in healthy and naturally-occurring periodontitis tissues in the animals and suggested local effects on gingival tissues leading to altered levels of DAMPs/alarmins related to age and disease. Significant differences from adult healthy levels were most frequently observed in the young and adolescent animals with few representatives in this gene array altered in the healthy aged gingival tissues. Of the 51 target genes, only approximately ⅓ were altered by ≥1.5-fold in any of the age groups of animals during disease, with those increases observed during disease initiation. Distinctive positive and negative correlations were noted with the DAMP/alarmin gene levels and comparative expression changes of tissue destructive molecules during disease across the age groups. Finally, specific correlations of DAMP/alarmin genes and relative abundance of particular microbes were observed in health and resolution samples in younger animals, while increased correlations during disease in the older groups were noted. Conclusions Thus, using this human-like preclinical model of induced periodontitis, we demonstrated the dynamics of the activation of the DAMP/alarmin warning system in the gingival tissues that showed some specific differences based on age.
Collapse
Affiliation(s)
- O. A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S. S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - J. L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
19
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Liu G, Li X, Zhao W, Shi R, Zhu Y, Wang Z, Pan H, Wang D. Development and validation of a nomogram for predicting gram-negative bacterial infections in patients with peritoneal dialysis-associated peritonitis. Heliyon 2023; 9:e18551. [PMID: 37520948 PMCID: PMC10382673 DOI: 10.1016/j.heliyon.2023.e18551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background This study aimed to develop a nomogram for predicting gram-negative bacterial (GNB) infections in patients with peritoneal dialysis-associated peritonitis (PDAP) to identify patients at high risk for GNB infections. Methods In this investigation, hospitalization information was gathered retrospectively for patients with PDAP from January 2016 to December 2021. The concatenation of potential biomarkers obtained by univariate logistic regression, LASSO analysis, and RF algorithms into multivariate logistic regression was used to identify confounding factors related to GNB infections, which were then integrated into the nomogram. The concordance index (C-Index) was utilized to assess the precision of the model's predictions. The area under the curve (AUC) and decision curve analysis (DCA) was used to assess the predictive performance and clinical utility of the nomogram. Results The final study population included 217 patients with PDAP, and 37 (17.1%) patients had gram-negative bacteria due to dialysate effluent culture. After multivariate logistic regression, age, procalcitonin, and hemoglobin were predictive factors of GNB infections. The C-index and bootstrap-corrected index of the nomogram for estimating GNB infections in patients were 0.821 and 0.814, respectively. The calibration plots showed good agreement between the predictions of the nomogram and the actual observation of GNB infections. The AUC of the receiver operating characteristic curve was 0.821, 95% CI: 0.747-0.896, which indicates that the model has good predictive accuracy. In addition, the DCA curve showed that the nomogram had a high clinical value in the range of 1%-94%, which further demonstrated that the nomogram could accurately predict GNB infection in patients with PDAP. Conclusions We have created a new nomogram for predicting GNB infections in patients with PDAP. The nomogram model may improve the identification of GNB infections in patients with PDAP and contribute to timely intervention to improve patient prognosis.
Collapse
Affiliation(s)
- Guiling Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xunliang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenman Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyu Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhijuan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haifeng Pan
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Mao X, Wu Y, Xu W. miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury and its correlation with inflammation and immune function. THE CLINICAL RESPIRATORY JOURNAL 2023. [PMID: 37248197 PMCID: PMC10363794 DOI: 10.1111/crj.13646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE This work was implemented to elucidate the miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury (ALI) and its correlation with inflammation and immune function. METHODS The peripheral blood of patients with sepsis-induced ALI was obtained, and the levels of inflammatory factors (interleukin-6 [IL-6], C-reactive protein [CRP], and procalcitonin [PCT]) were determined. Meanwhile, T lymphocyte subsets (CD3+, CD4+, and CD8+), and immunoglobulins (IgA, IgM, and IgG) were tested. miR-126-5p and TRAF6 mRNA expression in plasma was assessed. Receiver operating characteristic (ROC) curve was performed to assess the diagnostic accuracy of miR-126-5p in sepsis without ALI and sepsis with ALI. Correlation between miR-126-5p expression and clinical indicators was analyzed. The targets of miR-126-5p were predicted using the bioinformatics method, and the direct targets were verified through investigations. RESULTS miR-126-5p expression in plasma of patients with sepsis-induced ALI was reduced than that of patients with sepsis without ALI. miR-126-5p expression was negatively correlated with IL-6, CRP, and PCT but positively correlated with IgA, IgM, and IgG as well as CD3+, CD4+, and CD8+ in patients with sepsis-induced ALI. ROC curve suggested that miR-126-5p (AUC: 0.777; 95%CI: 0.689-0.866) could distinguish patients with sepsis with ALI from patients with sepsis without ALI. TRAF6 expression in patients with sepsis-induced ALI was higher than that in patients with sepsis without ALI. TRAF6 was a target gene of miR-126-5p, CONCLUSION: This research highlights that miR-126-5p is reduced in the plasma of patients with sepsis-induced ALI, and miR-126-5p relates to systemic inflammation and immune function indicators.
Collapse
Affiliation(s)
- Xiaoyong Mao
- Department of Blood Transfusion, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| | - Yiping Wu
- Department of Clinical Laboratory, The Second People's Hospital of Zhuji, Shaoxing, Zhejiang, China
| | - Weifeng Xu
- Department of Clinical Laboratory, The Second People's Hospital of Zhuji, Shaoxing, Zhejiang, China
| |
Collapse
|
22
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
23
|
Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, Borowicz-Reutt K, Sieniawska E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023; 28:molecules28073213. [PMID: 37049975 PMCID: PMC10096791 DOI: 10.3390/molecules28073213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Depression is a common and complex mental and emotional disorder that causes disability, morbidity, and quite often mortality around the world. Depression is closely related to several physical and metabolic conditions causing metabolic depression. Studies have indicated that there is a relationship between the intestinal microbiota and the brain, known as the gut–brain axis. While this microbiota–gut–brain connection is disturbed, dysfunctions of the brain, immune system, endocrine system, and gastrointestinal tract occur. Numerous studies show that intestinal dysbiosis characterized by abnormal microbiota and dysfunction of the microbiota–gut–brain axis could be a direct cause of mental and emotional disorders. Traditional treatment of depression includes psychotherapy and pharmacotherapy, and it mainly targets the brain. However, restoration of the intestinal microbiota and functions of the gut–brain axis via using probiotics, their metabolites, prebiotics, and healthy diet may alleviate depressive symptoms. Administration of probiotics labeled as psychobiotics and their metabolites as metabiotics, especially as an adjuvant to antidepressants, improves mental disorders. It is a new approach to the prevention, management, and treatment of mental and emotional illnesses, particularly major depressive disorder and metabolic depression. For the effectiveness of antidepressant therapy, psychobiotics should be administered at a dose higher than 1 billion CFU/day for at least 8 weeks.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Street 1J, 20-708 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Leandro Soares Santos
- Department of Animal and Rural Technology, State University of Southwest Bahia, Itapetinga 45700-000, BA, Brazil
| | - Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
24
|
Barichello T, Giridharan VV, Catalão CHR, Ritter C, Dal-Pizzol F. Neurochemical effects of sepsis on the brain. Clin Sci (Lond) 2023; 137:401-414. [PMID: 36942500 PMCID: PMC11315270 DOI: 10.1042/cs20220549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Sepsis is a life-threatening organ dysfunction triggered by a dysregulated host immune response to eliminate an infection. After the host immune response is activated, a complex, dynamic, and time-dependent process is triggered. This process promotes the production of inflammatory mediators, including acute-phase proteins, complement system proteins, cytokines, chemokines, and antimicrobial peptides, which are required to initiate an inflammatory environment for eliminating the invading pathogen. The physiological response of this sepsis-induced systemic inflammation can affect blood-brain barrier (BBB) function; subsequently, endothelial cells produce inflammatory mediators, including cytokines, chemokines, and matrix metalloproteinases (MMPs) that degrade tight junction (TJ) proteins and decrease BBB function. The resulting BBB permeability allows peripheral immune cells from the bloodstream to enter the brain, which then release a range of inflammatory mediators and activate glial cells. The activated microglia and astrocytes release reactive oxygen species (ROS), cytokines, chemokines, and neurochemicals, initiate mitochondrial dysfunction and neuronal damage, and exacerbate the inflammatory milieu in the brain. These changes trigger sepsis-associated encephalopathy (SAE), which has the potential to increase cognitive deterioration and susceptibility to cognitive decline later in life.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
| | - Carlos Henrique R Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Cristiane Ritter
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
25
|
Ning J, Sun K, Wang X, Fan X, Jia K, Cui J, Ma C. Use of machine learning-based integration to develop a monocyte differentiation-related signature for improving prognosis in patients with sepsis. Mol Med 2023; 29:37. [PMID: 36941583 PMCID: PMC10029317 DOI: 10.1186/s10020-023-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Although significant advances have been made in intensive care medicine and antibacterial treatment, sepsis is still a common disease with high mortality. The condition of sepsis patients changes rapidly, and each hour of delay in the administration of appropriate antibiotic treatment can lead to a 4-7% increase in fatality. Therefore, early diagnosis and intervention may help improve the prognosis of patients with sepsis. METHODS We obtained single-cell sequencing data from 12 patients. This included 14,622 cells from four patients with bacterial infectious sepsis and eight patients with sepsis admitted to the ICU for other various reasons. Monocyte differentiation trajectories were analyzed using the "monocle" software, and differentiation-related genes were identified. Based on the expression of differentiation-related genes, 99 machine-learning combinations of prognostic signatures were obtained, and risk scores were calculated for all patients. The "scissor" software was used to associate high-risk and low-risk patients with individual cells. The "cellchat" software was used to demonstrate the regulatory relationships between high-risk and low-risk cells in a cellular communication network. The diagnostic value and prognostic predictive value of Enah/Vasp-like (EVL) were determined. Clinical validation of the results was performed with 40 samples. The "CBNplot" software based on Bayesian network inference was used to construct EVL regulatory networks. RESULTS We systematically analyzed three cell states during monocyte differentiation. The differential analysis identified 166 monocyte differentiation-related genes. Among the 99 machine-learning combinations of prognostic signatures constructed, the Lasso + CoxBoost signature with 17 genes showed the best prognostic prediction performance. The highest percentage of high-risk cells was found in state one. Cell communication analysis demonstrated regulatory networks between high-risk and low-risk cell subpopulations and other immune cells. We then determined the diagnostic and prognostic value of EVL stabilization in multiple external datasets. Experiments with clinical samples demonstrated the accuracy of this analysis. Finally, Bayesian network inference revealed potential network mechanisms of EVL regulation. CONCLUSIONS Monocyte differentiation-related prognostic signatures based on the Lasso + CoxBoost combination were able to accurately predict the prognostic status of patients with sepsis. In addition, low EVL expression was associated with poor prognosis in sepsis.
Collapse
Affiliation(s)
- Jingyuan Ning
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Keran Sun
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xuan Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoqing Fan
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Keqi Jia
- Department of Pathology, Shijiazhuang People's Hospital, Shijiazhuang, People's Republic of China
| | - Jinlei Cui
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
26
|
Single-cell Sequence Analysis Combined with Multiple Machine Learning to Identify Markers in Sepsis Patients: LILRA5. Inflammation 2023:10.1007/s10753-023-01803-8. [PMID: 36920635 DOI: 10.1007/s10753-023-01803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Sepsis is a disease with a very high mortality rate, mainly involving an immune-dysregulated response due to bacterial infection. Most studies are currently limited to the whole blood transcriptome level; however, at the single cell level, there is still a great deal unknown about specific cell subsets and disease markers. We obtained 29 peripheral blood single-cell sequencing data, including 66,283 cells from 10 confirmed samples of sepsis infection and 19 healthy samples. Cells related to the sepsis phenotype were identified and characterized by the "scissor" method. The regulatory relationships of sepsis-related phenotype cells in the cellular communication network were clarified using the "cell chat" method. The least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest (RF) were used to identify sepsis signature genes of diagnostic value. External validation was performed using multiple datasets from the GEO database (GSE28750, GSE185263, GSE57065) and 40 clinical samples. Bayesian algorithm was used to calculate the regulatory network of LILRA5 co-expressed genes. The stability of atenolol-targeting LILRA5 was determined by molecular docking techniques. Ultimately, action trajectory and survival analyses demonstrate the effectiveness of atenolol-targeted LILRA5 in treating patients with sepsis. We successfully identified 1215 healthy phenotypic cells and 462 sepsis phenotypic cells. We focused on 447 monocytes of the sepsis phenotype. Among the cellular communications, there were a large number of differences between these cells and other immune cells showing a significant inflammatory phenotype compared to the healthy phenotypic cells. Together, the three machine learning algorithms identified the LILRA5 marker gene in sepsis patients, and validation results from multiple external datasets as well as real-world clinical samples demonstrated the robust diagnostic performance of LILRA5. The AUC values of LILRA5 in the external datasets GSE28750, GSE185263, and GSE57065 could reach 0.875, 0.940, and 0.980, in that order. Bayesian networks identified a large number of unknown regulatory relationships for LILRA5 co-expression. Molecular docking results demonstrated the possibility of atenolol targeting LILRA5 for the treatment of sepsis. Behavioral trajectory analysis and survival analysis demonstrate that atenolol has a desirable therapeutic effect. LILRA5 is a marker gene in sepsis patients, and atenolol can stably target LILRA5.
Collapse
|
27
|
Liu W, Liu T, Zheng Y, Xia Z. Metabolic Reprogramming and Its Regulatory Mechanism in Sepsis-Mediated Inflammation. J Inflamm Res 2023; 16:1195-1207. [PMID: 36968575 PMCID: PMC10038208 DOI: 10.2147/jir.s403778] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by an infection that can lead to multiple organ failure. Sepsis alters energy metabolism, leading to metabolic reprogramming of immune cells, which consequently disrupts innate and adaptive immune responses, triggering hyperinflammation and immunosuppression. This review summarizes metabolic reprogramming and its regulatory mechanism in sepsis-induced hyperinflammation and immunosuppression, highlights the significance and intricacies of immune cell metabolic reprogramming, and emphasizes the pivotal role of mitochondria in metabolic regulation and treatment of sepsis. This review provides an up-to-date overview of the relevant literature to inform future research directions in understanding the regulation of sepsis immunometabolism. Metabolic reprogramming has great promise as a new target for sepsis treatment in the future.
Collapse
Affiliation(s)
- Wenzhang Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tianyi Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Correspondence: Yongjun Zheng; Zhaofan Xia, Email ;
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
28
|
Yang S, Xu X, Zhang A, Wang Y, Ji G, Sun C, Li H. The evolution and immunomodulatory role of Zc3h12 proteins in zebrafish (Danio rerio). Int J Biol Macromol 2023; 239:124214. [PMID: 37001786 DOI: 10.1016/j.ijbiomac.2023.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Zc3h12 family is an important RNA-binding protein family regulating mRNA of inflammatory cytokines in mammals. However, there are few studies on their post-transcriptional level regulation of inflammatory cytokines in fish. Here, we investigated the evolution of zebrafish Zc3h12 family and explored their immunomodulatory role. Phylogenetic and syntenic analysis indicated the number of zc3h12 family members had increased ranging from a single member in invertebrates to a single copy of four members in mammals. As the most evolutionarily diverse group of vertebrates, the number of zc3h12 family members was more complex and diverse in the teleost, each member experienced different fates and followed different rules in multiple rounds of whole-genome duplication events. Thereinto, zebrafish contained three zc3h12 genes, among which zc3h12aa and zc3h12ab were duplicated from the same gene. Zebrafish Zc3h12 family could recognize the 3'-UTR regions of inflammatory cytokines through binding to the specific RNA secondary structure and negatively regulate their expression. Deletion of either Zc3h12 domains or mutation of the key amino acid in RNAase domain attenuated their modulatory effect, suggesting both domain and RNAase activity are important to the immunomodulatory role. These results elucidated the evolution of Zc3h12 family and uncovered Zc3h12-mediated post-transcriptional regulation of cytokines in zebrafish.
Collapse
|
29
|
Barichello T, Rocha Catalão CH, Rohlwink UK, van der Kuip M, Zaharie D, Solomons RS, van Toorn R, Tutu van Furth M, Hasbun R, Iovino F, Namale VS. Bacterial meningitis in Africa. Front Neurol 2023; 14:822575. [PMID: 36864913 PMCID: PMC9972001 DOI: 10.3389/fneur.2023.822575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tatiana Barichello
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neuroscience and Behavioral Science, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ursula K. Rohlwink
- Pediatric Neurosurgery Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Dan Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Services, Tygerberg Hospital, Cape Town, South Africa
| | - Regan S. Solomons
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, UT Health, McGovern Medical School, Houston, TX, United States
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vivian Ssonko Namale
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, United States
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
30
|
Satola SW, Schechter MC, Wilde S, Stephens DS. Host Defenses to Extracellular Bacteria Including Spirochetes. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
31
|
Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022; 13:1026173. [PMID: 36569932 PMCID: PMC9780679 DOI: 10.3389/fimmu.2022.1026173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Collapse
|
32
|
Abstract
Sepsis is an ill-defined syndrome yet is a leading cause of morbidity and mortality worldwide. The most recent consensus defines sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection. However, this definition belies the complexity and breadth of immune mechanisms involved in sepsis, which are characterized by simultaneous hyperinflammation and immune suppression. In this review, we describe the immunopathogenesis of sepsis and highlight some recent pathophysiological findings that have expanded our understanding of sepsis. Sepsis endotypes can be used to divide sepsis patients in different groups with distinct immune profiles and outcomes. We also summarize evidence on the role of the gut microbiome in sepsis immunity. The challenge of the coming years will be to translate our increasing knowledge about the molecular mechanisms underlying sepsis into therapies that improve relevant patient outcomes.
Collapse
|
33
|
Mursalin MH, Astley R, Coburn PS, Miller FC, Callegan MC. Roles of CCL2 and CCL3 in intraocular inflammation during Bacillus endophthalmitis. Exp Eye Res 2022; 224:109213. [PMID: 36063964 PMCID: PMC9826602 DOI: 10.1016/j.exer.2022.109213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Bacillus cereus (B. cereus) endophthalmitis is a vision-threatening bacterial infection. Uncontrolled inflammatory responses are the hallmark of this disease which cause irreversible damage to the retina. We recently reported C-X-C chemokines as a vital modulators which impacted the pathogenesis of this disease. Here, we investigated the impact of two highly upregulated C-C chemokines, CCL2 and CCL3, on intraocular inflammation this disease. B. cereus was injected into the eyes of C57BL/6J (WT), CCL2-/-, and CCL3-/- mice to induce endophthalmitis. Infected eyes were examined for bacterial growth, retinal function, and inflammation. Bacterial growth in CCL2-/- and CCL3-/- mice were similar, but retained retinal function was greater in CCL2-/- and CCL3-/- eyes compared to that of C57BL/6J eyes. The retinal architecture of infected eyes of CCL2-/- mice were conserved for a longer period of time than in infected CCL3-/- eyes. Infected CCL2-/- and CCL3-/- eyes had less inflammation than did infected C57BL/6J eyes. Based on these results, we assessed the efficacies of intravitreal anti-CCL2 or anti-CCL3 with or without the antibiotic gatifloxacin. Compared to infected untreated eyes, there was significantly less inflammation and greater retention of retinal function in eyes treated with anti-CCL2 or anti-CCL3 with gatifloxacin. This study showed that B. cereus endophthalmitis in CCL2-/- mice had a better clinical outcome than in CCL3-/- mice. Intravitreal administration of anti-CCL2 and anti-CCL3 with gatifloxacin significantly reduced inflammation and provided protection of retinal function. These results suggest that CCL2 and CCL3 are prospective anti-inflammatory targets that should be tested along with other antibiotics for treating Bacillus and perhaps other forms of endophthalmitis.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
34
|
Xiong NX, Kuang XY, Fang ZX, Ou J, Li SY, Zhao JH, Huang JF, Li KX, Wang R, Fan LF, Luo SW, Liu SJ. Transcriptome analysis and co-expression network reveal the mechanism linking mitochondrial function to immune regulation in red crucian carp (Carassius auratus red var) after Aeromonas hydrophila challenge. JOURNAL OF FISH DISEASES 2022; 45:1491-1509. [PMID: 35749280 DOI: 10.1111/jfd.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jia-Hui Zhao
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Rou Wang
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
35
|
Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step towards precision medicine? J Clin Med 2022; 11:jcm11195782. [PMID: 36233650 PMCID: PMC9571838 DOI: 10.3390/jcm11195782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis and septic shock are a major public health concern and are still associated with high rates of morbidity and mortality. Whilst there is growing understanding of different phenotypes and endotypes of sepsis, all too often treatment strategies still only employ a “one-size-fits-all” approach. Biomarkers offer a unique opportunity to close this gap to more precise treatment approaches by providing insight into clinically hidden, yet complex, pathophysiology, or by individualizing treatment pathways. Predicting and evaluating systemic inflammation, sepsis or septic shock are essential to improve outcomes for these patients. Besides opportunities to improve patient care, employing biomarkers offers a unique opportunity to improve clinical research in patients with sepsis. The high rate of negative clinical trials in this field may partly be explained by a high degree of heterogeneity in patient cohorts and a lack of understanding of specific endotypes or phenotypes. Moving forward, biomarkers can support the selection of more homogeneous cohorts, thereby potentially improving study conditions of clinical trials. This may finally pave the way to a precision medicine approach to sepsis, septic shock and complication of sepsis in the future.
Collapse
|
36
|
Routine laboratory biomarkers used to predict Gram-positive or Gram-negative bacteria involved in bloodstream infections. Sci Rep 2022; 12:15466. [PMID: 36104449 PMCID: PMC9474441 DOI: 10.1038/s41598-022-19643-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThis study evaluated routine laboratory biomarkers (RLB) to predict the infectious bacterial group, Gram-positive (GP) or Gram-negative (GN) associated with bloodstream infection (BSI) before the result of blood culture (BC). A total of 13,574 BC of 6787 patients (217 BSI-GP and 238 BSI-GN) and 68 different RLB from these were analyzed. The logistic regression model was built considering BSI-GP or BSI-GN as response variable and RLB as covariates. After four filters applied total of 320 patients and 16 RLB remained in the Complete-Model-CM, and 4 RLB in the Reduced-Model-RM (RLB p > 0.05 excluded). In the RM, only platelets, creatinine, mean corpuscular hemoglobin and erythrocytes were used. The reproductivity of both models were applied to a test bank of 2019. The new model presented values to predict BSI-GN of the area under the curve (AUC) of 0.72 and 0.69 for CM and RM, respectively; with sensitivity of 0.62 and 0.61 (CM and RM) and specificity of 0.67 for both. These data confirm the discriminatory capacity of the new models for BSI-GN (p = 0.64). AUC of 0.69 using only 4 RLB, associated with the patient's clinical data could be useful for better targeted antimicrobial therapy in BSI.
Collapse
|
37
|
Cheng X, Ning J, Xu X, Zhou X. The role of bacterial cyclic di-adenosine monophosphate in the host immune response. Front Microbiol 2022; 13:958133. [PMID: 36106081 PMCID: PMC9465037 DOI: 10.3389/fmicb.2022.958133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger which is widely used in signal transduction in bacteria and archaea. c-di-AMP plays an important role in the regulation of bacterial physiological activities, such as the cell cycle, cell wall stability, environmental stress response, and biofilm formation. Moreover, c-di-AMP produced by pathogens can be recognized by host cells for the activation of innate immune responses. It can induce type I interferon (IFN) response in a stimulator of interferon genes (STING)-dependent manner, activate the nuclear factor kappa B (NF-κB) pathway, inflammasome, and host autophagy, and promote the production and secretion of cytokines. In addition, c-di-AMP is capable of triggering a host mucosal immune response as a mucosal adjuvant. Therefore, c-di-AMP is now considered to be a new pathogen-associated molecular pattern in host immunity and has become a promising target in bacterial/viral vaccine and drug research. In this review, we discussed the crosstalk between bacteria and host immunity mediated by c-di-AMP and addressed the role of c-di-AMP as a mucosal adjuvant in boosting evoked immune responses of subunit vaccines. The potential application of c-di-AMP in immunomodulation and immunotherapy was also discussed in this review.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Ning
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xuedong Zhou,
| |
Collapse
|
38
|
Yue SR, Tan YY, Zhang L, Zhang BJ, Jiang FY, Ji G, Liu BC, Wang RR. Gynostemma pentaphyllum polysaccharides ameliorate non-alcoholic steatohepatitis in mice associated with gut microbiota and the TLR2/NLRP3 pathway. Front Endocrinol (Lausanne) 2022; 13:885039. [PMID: 35937847 PMCID: PMC9352886 DOI: 10.3389/fendo.2022.885039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have revealed the pivotal role of gut microbiota in the progress of liver diseases including non-alcoholic steatohepatitis (NASH). Many natural herbs, such as Gynostemma pentaphyllum (GP), have been extensively applied in the prevention of NASH, while the bioactive components and underlying mechanism remain unclear. The aim of this study was to investigate whether the polysaccharides of GP (GPP) have a protective effect on NASH and to explore the potential mechanism underlying these effects. C57BL/6 male mice were fed with a methionine-choline-deficient (MCD) diet for 4 weeks to induce NASH and administered daily oral gavage of sodium carboxymethylcellulose (CMC-Na), low dose of GPP (LGPP), high dose of GPP (HGPP), and polyene phosphatidylcholine capsules (PPC), compared with the methionine-choline-sufficient (MCS) group. Our results showed that the symptoms of hepatic steatosis, hepatocyte ballooning, liver fibrosis, and oxidative stress could be partially recovered through the intervention of GPP with a dose-dependent effect. Furthermore, gut microbiome sequencing revealed that HGPP altered the composition of gut microbiota, mainly characterized by the enrichment of genera including Akkermansia, Lactobacillus, and A2. Moreover, hepatic transcriptome analysis indicated that the anti-inflammatory effect of HGPP might be associated with toll-like receptor (TLR) and nod-like receptor (NLR) signaling pathways. HGPP could inhibit the expression of TLR2 and downregulate the expression of the NLRP3 inflammasome, as well as the pro-inflammatory cytokine tumor necrosis factor (TNF)-α and interleukin (IL)-1β. In summary, GPP could ameliorate NASH possibly mediated via the modulation of gut microbiota and the TLR2/NLRP3 signaling pathway, indicating that GPP could be tested as a prebiotic agent in the prevention of NASH.
Collapse
Affiliation(s)
- Si-Ran Yue
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yun Tan
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bao-Jun Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng-Yan Jiang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bao-Cheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Rui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Liu W, Jiang P, Yang K, Song Q, Yuan F, Liu Z, Gao T, Zhou D, Guo R, Li C, Sun P, Tian Y. Mycoplasma hyopneumoniae Infection Activates the NOD1 Signaling Pathway to Modulate Inflammation. Front Cell Infect Microbiol 2022; 12:927840. [PMID: 35873172 PMCID: PMC9304885 DOI: 10.3389/fcimb.2022.927840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Mycoplasma hyopneumoniae is a highly contagious pathogen causing porcine enzootic pneumonia, which elicits prolonged inflammatory response modulated by pattern recognition receptors (PRRs). Although significant advances have been achieved in understanding the Toll-Like receptors that recognize M. hyopneumoniae, the role of nucleotide-binding oligomerization domain 1 (NOD1) in M. hyopneumoniae infected cells remains poorly understood. This study revealed that M. hyopneumoniae activates the NOD1-RIP2 pathway and is co-localized with host NOD1 during infection. siRNA knockdown of NOD1 significantly impaired the TRIF and MYD88 pathway and blocked the activation of TNF-α. In contrast, NOD1 overexpression significantly suppressed M. hyopneumoniae proliferation. Furthermore, we for the first time investigated the interaction between M. hyopneumoniae mhp390 and NOD1 receptor, and the results suggested that mhp390 and NOD1 are possibly involved in the recognition of M. hyopneumoniae. These findings may improve our understanding of the interaction between PRRs and M. hyopneumoniae and the function of NOD1 in host defense against M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pengcheng Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiqi Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pei Sun
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Yongxiang Tian, ; Pei Sun,
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Pei Sun,
| |
Collapse
|
40
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
41
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
43
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
44
|
Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care 2022; 26:14. [PMID: 34991675 PMCID: PMC8740483 DOI: 10.1186/s13054-021-03862-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
A biomarker describes a measurable indicator of a patient's clinical condition that can be measured accurately and reproducibly. Biomarkers offer utility for diagnosis, prognosis, early disease recognition, risk stratification, appropriate treatment (theranostics), and trial enrichment for patients with sepsis or suspected sepsis. In this narrative review, we aim to answer the question, "Do biomarkers in patients with sepsis or septic shock predict mortality, multiple organ dysfunction syndrome (MODS), or organ dysfunction?" We also discuss the role of pro- and anti-inflammatory biomarkers and biomarkers associated with intestinal permeability, endothelial injury, organ dysfunction, blood-brain barrier (BBB) breakdown, brain injury, and short and long-term mortality. For sepsis, a range of biomarkers is identified, including fluid phase pattern recognition molecules (PRMs), complement system, cytokines, chemokines, damage-associated molecular patterns (DAMPs), non-coding RNAs, miRNAs, cell membrane receptors, cell proteins, metabolites, and soluble receptors. We also provide an overview of immune response biomarkers that can help identify or differentiate between systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and sepsis-associated encephalopathy. However, significant work is needed to identify the optimal combinations of biomarkers that can augment diagnosis, treatment, and good patient outcomes.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054 USA
| | - Jaqueline S. Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| |
Collapse
|
45
|
Using Classification Tree Analysis to Predict the Type of Infection in Preterm Neonates: Proof of Concept Study. Crit Care Explor 2022; 3:e0585. [PMID: 34984338 PMCID: PMC8718223 DOI: 10.1097/cce.0000000000000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Supplemental Digital Content is available in the text. BACKGROUND: Late-onset neonatal sepsis is a major complication in preterm neonates. Early identification of the type of infection could help to improve therapy and outcome depending on the suspected microorganism by tailoring antibiotic treatment to the individual patient based on the predicted organism. Results of blood cultures may take up to 2 days or may remain negative in case of clinical sepsis. Chemical biomarkers may show different patterns in response to different type of microorganisms. OBJECTIVE: The aim of this study was to develop, as a proof of concept, a simple classification tree algorithm using readily available information from biomarkers to show that biomarkers can potentially be used in discriminating in the type of infection in preterm neonates suspected of late-onset neonatal sepsis. DERIVATION COHORT: A total of 509 suspected late-onset neonatal sepsis episodes in neonates born before less than 32 weeks of gestation were analyzed. To examine model performance, 70% of the original dataset was randomly selected as a derivation cohort (n = 356; training dataset). VALIDATION COHORT: The remaining 30% of the original dataset was used as a validation cohort (n = 153; test dataset). PREDICTION MODEL: A classification tree prediction algorithm was applied to predict type of infection (defined as no/Gram-positive/Gram-negative sepsis). RESULTS: Suspected late-onset neonatal sepsis episodes were classified as no sepsis (80.8% [n = 411]), Gram-positive sepsis (13.9% [n = 71]), and Gram-negative sepsis (5.3% [n = 27]). When the derived classification tree was applied to the test cohort, the overall accuracy was 87.6% (95% CI, 81.3–92.4; p = 0.008). The classification tree demonstrates that interleukin-6 is the most important differentiating biomarker and C-reactive protein and procalcitonin help to further differentiate. CONCLUSION: We have developed and internally validated a simple, clinically relevant model to discriminate patients with different types of infection at moment of onset. Further research is needed to prospectively validate this in a larger population and assess whether adaptive antibiotic regimens are feasible.
Collapse
|
46
|
Xiong NX, Ou J, Fan LF, Kuang XY, Fang ZX, Luo SW, Mao ZW, Liu SJ, Wang S, Wen M, Luo KK, Hu FZ, Wu C, Liu QF. Blood cell characterization and transcriptome analysis reveal distinct immune response and host resistance of different ploidy cyprinid fish following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:547-559. [PMID: 34923115 DOI: 10.1016/j.fsi.2021.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1β (IL-1β) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1β secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
47
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
48
|
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54:2450-2464. [PMID: 34758337 DOI: 10.1016/j.immuni.2021.10.012] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to an infection. This recently implemented definition does not capture the heterogeneity or the underlying pathophysiology of the syndrome, which is characterized by concurrent unbalanced hyperinflammation and immune suppression. Here, we review current knowledge of aberrant immune responses during sepsis and recent initiatives to stratify patients with sepsis into subgroups that are more alike from a clinical and/or pathobiological perspective, which could be key for identification of patients who are more likely to benefit from specific immune interventions.
Collapse
Affiliation(s)
- Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - Manu Shankar-Hari
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, London, UK; Guy's and St Thomas' NHS Foundation Trust, Department of Intensive Care Medicine, London, UK
| | - W Joost Wiersinga
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Rodrigues DR, Wilson KM, Bielke LR. Proper Immune Response Depends on Early Exposure to Gut Microbiota in Broiler Chicks. Front Physiol 2021; 12:758183. [PMID: 34721080 PMCID: PMC8554228 DOI: 10.3389/fphys.2021.758183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
The successional changes in the early intestinal microbiota occur concomitantly with the development, expansion, and education of the mucosal immune system. Although great attention of researchers has been focused on understanding the linkage between microbiota and immune functions, many essential details of the symbiotic relationship between the intestinal pioneer microbiota and the avian immune system remain to be discovered. This study was conducted to understand the impact of different early life intestinal colonizers on innate and adaptive immune processes in chicks and further identify immune-associated proteins expressed in the intestinal tissue. To accomplish it, we performed an in ovo application of two apathogenic Enterobacteriaceae isolates and lactic acid bacteria (L) to determine their influences on the intestinal proteome profile of broilers at the day of hatch (DOH) and at 10 days old. The results indicated that there were predicted biological functions of L-treated chicks associated with the activation and balanced function of the innate and adaptive immune systems. At the same time, the Enterobacteriaceae-exposed birds presented dysregulated immunological mechanisms or downregulated processes related to immune development. Those findings suggested that a proper immune function was dependent on specific gut microbiota exposure, in which the prenatal probiotic application may have favored the fitting programming of immune functions in chicks.
Collapse
Affiliation(s)
- Denise R Rodrigues
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States.,Department of Inspection of Animal Products, Ministry of Agriculture, Livestock and Food Supply (MAPA), Brasília, Brazil
| | - Kim M Wilson
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Lisa R Bielke
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Xu HG, Tian M, Pan SY. Clinical utility of procalcitonin and its association with pathogenic microorganisms. Crit Rev Clin Lab Sci 2021; 59:93-111. [PMID: 34663176 DOI: 10.1080/10408363.2021.1988047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we summarize the relationship of PCT with pathogens, evaluate the clinical utility of PCT in the diagnosis of clinical diseases, condition monitoring and evaluation, and guiding medical decision-making, and explore current knowledge on the mechanisms by which pathogens cause changes in PCT levels. The lipopolysaccharides of the microorganisms stimulate cytokine production in host cells, which in turn stimulates production of serum PCT. Pathogens have different virulence mechanisms that lead to variable host inflammatory responses, and differences in the specific signal transduction pathways result in variable serum PCT concentrations. The mechanisms of signal transduction have not been fully elucidated. Further studies are necessary to ascertain the PCT fluctuation range of each pathogen. PCT levels are helpful in distinguishing between certain pathogens, in deciding if antibiotics are indicated, and in monitoring response to antibiotics.
Collapse
Affiliation(s)
- Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Tian
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shi-Yang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|