1
|
Kwak S, Wang C, Usyk M, Wu F, Freedman ND, Huang WY, McCullough ML, Um CY, Shrubsole MJ, Cai Q, Li H, Ahn J, Hayes RB. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol 2024; 10:1537-1547. [PMID: 39325441 PMCID: PMC11428028 DOI: 10.1001/jamaoncol.2024.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/21/2024] [Indexed: 09/27/2024]
Abstract
Importance The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. Objective To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. Design, Setting, and Participants Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. Exposures Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. Main Outcomes and Measures The primary outcome was HNSCC incidence. Results The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. Conclusions and Relevance This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
Collapse
Affiliation(s)
- Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Feng Wu
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Richard B. Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| |
Collapse
|
2
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
3
|
Rishiq A, Liu M, Mandelboim O. Enhancing immunity against Candida albicans infections through TIGIT knockout. mBio 2024; 15:e0116524. [PMID: 39109867 PMCID: PMC11389390 DOI: 10.1128/mbio.01165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 09/12/2024] Open
Abstract
T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is an inhibitory receptor expressed by T and natural killer cells. Here, we used TIGIT knockout (KO) mice to demonstrate that mouse TIGIT directly interacts with Candida albicans. Reduced fungal growth and colonization were observed when TIGIT-KO splenocytes were co-cultured with C. albicans compared to the wild type (WT). In a systemic candidiasis model, TIGIT-KO mice exhibited improved survival and reduced body weight loss compared to WT mice. Organ-specific fungal burden assessment revealed significantly lower fungal loads in the kidneys, spleen, and lungs of TIGIT-KO mice. Finally, we show that the agglutinin-like sequence proteins ALS6, ALS7, and ALS9 of C. albicans are ligands for TIGIT and that the absence of these proteins abolishes the TIGIT effect in vivo. Our results identify the significance of TIGIT in modulating host defense against C. albicans and highlight the potential therapeutic implications for C. albicans infections. IMPORTANCE Our results identify the significance of T cell immunoreceptor with immunoglobulin and ITIM domain in modulating host defense against Candida albicans and highlight the potential therapeutic implications for C. albicans infections.
Collapse
Affiliation(s)
- Ahmed Rishiq
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mingdong Liu
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
4
|
Tang S, Xu Y, Li X. Worldwide trend in research on Candida albicans and cancer correlations: a comprehensive bibliometric analysis. Front Microbiol 2024; 15:1398527. [PMID: 38855761 PMCID: PMC11158946 DOI: 10.3389/fmicb.2024.1398527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Candida albicans (C. albicans), an opportunistic pathogen, is implicated in the carcinogenesis of various cancers, thereby significantly impacting human health. This study conducts an in-depth analysis of the prevailing research dynamics concerning the relationship between C. albicans and cancer over the past decade, offering a comprehensive overview of the knowledge structure and emerging focal points in this field through bibliometric scrutiny. Methods A methodical quantitative and visual scrutiny of pertinent literature from the Web of Science Core Collection (WoSCC) spanning the previous decade was carried out employing VOS Viewer and CiteSpace software. Results From January 1, 2014, to January 1, 2024, a comprehensive corpus of 1,259 articles was delineated. Prominent research institutions included the Egyptian Knowledge Bank, Cairo University, and King Saud University. The top three prolific countries were the United States, China, and India. Among the authors, Mohamed, Gehad G., Mahmoud, Walaa H., and Netea, Mihai G., emerged as the most prolific, with Pfaller, Ma being distinguished as the most frequently cited author. The journal Molecules published the highest number of articles, while PLoS One had the highest citation count. Nature had the highest impact factor. The research focal points in this field encompassed the interactions between C. albicans and cancer, the correlation with oral cancer, the underlying mechanisms of C. albicans carcinogenic potential, as well as antifungal and anticancer therapies. Conclusion This investigation constitutes a pioneering bibliometric analysis elucidating the trends and advancements in research regarding the correlation between C. albicans and cancer. Said analyses uncover the prevailing research focal points and trends, offering insightful guidance for subsequent inquiry in this domain. Systematic review registration https://www.webofscience.com/wos/woscc/summary/df33afba-f843-41e8-b932-cb3678eb8243-e92e7316/relevance/1.
Collapse
Affiliation(s)
- Shiqin Tang
- School of Clinical Medicine, The Hebei University of Engineering, Handan, China
| | - Yanyan Xu
- Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Xiaojing Li
- School of Clinical Medicine, The Hebei University of Engineering, Handan, China
- Affiliated Hospital of Hebei University of Engineering, Handan, China
| |
Collapse
|
5
|
Yang Z, Zhang S, Ji N, Li J, Chen Q. The evil companion of OSCC: Candida albicans. Oral Dis 2024; 30:1873-1886. [PMID: 37530513 DOI: 10.1111/odi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Microbial dysbiosis and microbiome-induced inflammation may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). Candida albicans (C. albicans) is the most prevalent opportunistic pathogenic fungus in the oral cavity, and Candida infection is considered as one of its high-risk factors. Although oral microbiota-host interactions are closely associated with the development of OSCC, the interrelationship between fungi and OSCC is poorly understood compared to that between bacteria and viruses. RESULTS We accumulated knowledge of the evidence, pathogenic factors, and possible multiple mechanisms by which C. albicans promotes malignant transformation of OSCC, focusing on the induction of epithelial damage, production of carcinogens, and regulation of the tumor microenvironment. In addition, we highlight the latest treatment strategies for Candida infection. CONCLUSION This review provides a new perspective on the interrelationship between C. albicans and OSCC and contributes to the establishment of a systematic and reliable clinical treatment system for OSCC patients with C. albicans infection.
Collapse
Affiliation(s)
- Zhixin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
6
|
Monteiro JS, Kaushik K, de Arruda JAA, Georgakopoulou E, Vieira AT, Silva TA, Devadiga D, Anyanechi CE, Shetty S. Fungal footprints in oral cancer: unveiling the oral mycobiome. FRONTIERS IN ORAL HEALTH 2024; 5:1360340. [PMID: 38550775 PMCID: PMC10973146 DOI: 10.3389/froh.2024.1360340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer, with a high mortality rate. There is growing evidence supporting a link between oral cancer and the microbiome. The microbiome can impact various aspects of cancer, such as pathogenesis, diagnosis, treatment, and prognosis. While there is existing information on bacteria and its connection to oral cancer, the fungi residing in the oral cavity represent a significant component of the microbiome that remains in its early stages of exploration and understanding. Fungi comprise a minuscule part of the human microbiome called the mycobiome. Mycobiome is ubiquitous in the human body but a weakened immune system offers a leeway space for fungi to showcase its virulence. The role of mycobiome as a colonizer, facilitator, or driver of carcinogenesis is still ambiguous. Reactivating the mycobiome that undergoes collateral damage associated with cancer treatment can be watershed event in cancer research. The coordinated, virulent, non-virulent behavior of the fungi once they reach a critical density must be hacked, considering its diagnostic, prognostic and therapeutic implications in cancer. This review highlights the diversity of the mycobiome and its potential role in oral cancer.
Collapse
Affiliation(s)
- Jessica Sonal Monteiro
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Kriti Kaushik
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, India
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eleni Georgakopoulou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcilia A. Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Darshana Devadiga
- Department of Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Mangalore, India
| | - Charles E. Anyanechi
- Department of Oral and Maxillofacial Surgery, University of Calabar/University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, India
| |
Collapse
|
7
|
Conde-Torres D, Blanco-González A, Seco-González A, Suárez-Lestón F, Cabezón A, Antelo-Riveiro P, Piñeiro Á, García-Fandiño R. Unraveling lipid and inflammation interplay in cancer, aging and infection for novel theranostic approaches. Front Immunol 2024; 15:1320779. [PMID: 38361953 PMCID: PMC10867256 DOI: 10.3389/fimmu.2024.1320779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The synergistic relationships between Cancer, Aging, and Infection, here referred to as the CAIn Triangle, are significant determinants in numerous health maladies and mortality rates. The CAIn-related pathologies exhibit close correlations with each other and share two common underlying factors: persistent inflammation and anomalous lipid concentration profiles in the membranes of affected cells. This study provides a comprehensive evaluation of the most pertinent interconnections within the CAIn Triangle, in addition to examining the relationship between chronic inflammation and specific lipidic compositions in cellular membranes. To tackle the CAIn-associated diseases, a suite of complementary strategies aimed at diagnosis, prevention, and treatment is proffered. Our holistic approach is expected to augment the understanding of the fundamental mechanisms underlying these diseases and highlight the potential of shared features to facilitate the development of novel theranostic strategies.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alejandro Seco-González
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabián Suárez-Lestón
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paula Antelo-Riveiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
9
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
10
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Wang X, Wu S, Wu W, Zhang W, Li L, Liu Q, Yan Z. Candida albicans Promotes Oral Cancer via IL-17A/IL-17RA-Macrophage Axis. mBio 2023; 14:e0044723. [PMID: 37067414 PMCID: PMC10294694 DOI: 10.1128/mbio.00447-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
The association between Candida albicans (C. albicans) and oral cancer (OC) has been noticed for a long time, but the mechanisms for C. albicans promoting OC are rarely explored. In this study, we determined that C. albicans infection promoted OC incidence in a 4-nitroquinoline 1-oxide (4NQO)-induced mouse tongue carcinogenesis model as well as promoted OC progression in a tongue tumor-bearing mouse model (C3H/HeN-SCC VII). We then demonstrated that tumor-associated macrophage (TAMs) infiltration was elevated during C. albicans infection. Meanwhile, the attracted TAMs polarized into M2-like macrophages with high expression of programmed death ligand 1 (PD-L1) and galectin-9 (GAL-9). Further analysis suggested that the interleukin (IL)-17A/IL-17RA pathway activated in OC cells was a contributor to the excessive TAMs infiltration in C. albicans-infected mice. Thus, we constructed IL-17A neutralization and macrophage depletion experiments in C3H/HeN-SCC VII mice to explore the role of IL-17A/IL-17RA and TAMs in OC development caused by C. albicans infection. The results showed that both IL-17A neutralization and macrophage depletion tended to reduce the TAMs number and tumor size in mice with C. albicans infection. Collectively, our finding revealed that C. albicans promoted OC development via the IL-17A/IL-17RA-macrophage axis, opening perspectives for revealing C. albicans-tumor immune microenvironment links. IMPORTANCE The relationship between fungi and cancer is gradually receiving attention. Among them, some clinical evidence has shown that Candida may be a contributor to gastrointestinal cancers, especially oral cancer. However, the underlying mechanisms for Candida promoting oral cancer need to be explored. For this reason, this study demonstrated the role of C. albicans in oral cancer development. Moreover, this study revealed the underlying mechanisms for C. albicans promoting oral cancer from the perspective of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Shuangshaung Wu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
| | - Wenjie Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
| | - Wenqing Zhang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
| | - Linman Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
| | - Qian Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13:1187831. [PMID: 37333850 PMCID: PMC10272564 DOI: 10.3389/fcimb.2023.1187831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Diniz-Lima I, da Fonseca LM, Dos Reis JS, Decote-Ricardo D, Morrot A, Previato JO, Previato LM, Freire-de-Lima CG, Freire-de-Lima L. Non-self glycan structures as possible modulators of cancer progression: would polysaccharides from Cryptococcus spp. impact this phenomenon? Braz J Microbiol 2023; 54:907-919. [PMID: 36840821 PMCID: PMC10235250 DOI: 10.1007/s42770-023-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Invasive fungal infections (IFI) are responsible for a large number of annual deaths. Most cases are closely related to patients in a state of immunosuppression, as is the case of patients undergoing chemotherapy. Cancer patients are severely affected by the worrisome proportions that an IFI can take during cancer progression, especially in an already immunologically and metabolically impaired patient. There is scarce knowledge about strategies to mitigate cancer progression in these cases, beyond conventional treatment with antifungal drugs with a narrow therapeutic range. However, in recent years, ample evidence has surfaced describing the possible interferences that IFI may have both on the progression of pre-existing cancers and in the induction of newly transformed cells. The leading gambit for modulation of tumor progression comes from the ability of fungal virulence factors to modulate the host's immune system, since they are found in considerable concentrations in the tumor microenvironment during infection. In this context, cryptococcosis is of particular concern, since the main virulence factor of the pathogenic yeast is its polysaccharide capsule, which carries constituents with high immunomodulatory properties and cytotoxic potential. Therefore, we open a discussion on what has already been described regarding the progression of cryptococcosis in the context of cancer progression, and the possible implications that fungal glycan structures may take in both cancer development and progression.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Decote-Ricardo
- Departamento de Microbiologia E Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Rio de Janeiro, 23890-000, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-360, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
14
|
Lin Q, Guan SW, Yu HB. Immuno-oncology-microbiome axis of gastrointestinal malignancy. World J Gastrointest Oncol 2023; 15:757-775. [PMID: 37275452 PMCID: PMC10237027 DOI: 10.4251/wjgo.v15.i5.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Research on the relationship between the microbiome and cancer has been controversial for centuries. Recent works have discovered that the intratumor microbiome is an important component of the tumor microenvironment (TME). Intratumor bacteria, the most studied intratumor microbiome, are mainly localized in tumor cells and immune cells. As the largest bacterial reservoir in human body, the gut microbiome may be one of the sources of the intratumor microbiome in gastrointestinal malignancies. An increasing number of studies have shown that the gut and intratumor microbiome play an important role in regulating the immune tone of tumors. Moreover, it has been recently proposed that the gut and intratumor microbiome can influence tumor progression by modulating host metabolism and the immune and immune tone of the TME, which is defined as the immuno-oncology-microbiome (IOM) axis. The proposal of the IOM axis provides a new target for the tumor microbiome and tumor immunity. This review aims to reveal the mechanism and progress of the gut and intratumor microbiome in gastrointestinal malignancies such as esophageal cancer, gastric cancer, liver cancer, colorectal cancer and pancreatic cancer by exploring the IOM axis. Providing new insights into the research related to gastrointestinal malignancies.
Collapse
Affiliation(s)
- Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
15
|
Evren AE, Karaduman AB, Sağlik BN, Özkay Y, Yurttaş L. Investigation of Novel Quinoline-Thiazole Derivatives as Antimicrobial Agents: In Vitro and In Silico Approaches. ACS OMEGA 2023; 8:1410-1429. [PMID: 36643421 PMCID: PMC9835529 DOI: 10.1021/acsomega.2c06871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Infectious diseases are a major concern around the world. Today, it is an urgent need for new chemotherapeutics for infectious diseases. Because of that, our group designed, synthesized, and analyzed 14 new quinoline derivatives endowed with the pharmacophore moiety of fluoroquinolones primarily for their antimicrobial effects. Their cytotoxicity effects were tested against six bacterial and four fungal strains and NIH/3T3 cell line. Additionally, their action mechanisms were evaluated against DNA gyrase and lanosterol 14α-demethylase (LMD). Furthermore, to eliminate the potential side effects, the active compounds were evaluated against the aromatase enzyme. The experimental enzymatic results were evaluated for active compounds' binding modes using molecular docking and molecular dynamics simulation studies. The results were utilized to clarify the structure-activity relationship (SAR). Finally, compound 4m was the most potent compound for its antifungal activity with low cytotoxicity against healthy cells and fewer possible side effects, while compounds 4j and 4l can be used alone for special patients who are suffering from fungal infections in addition to the primer disease.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik 11000, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Abdullah Burak Karaduman
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Leyla Yurttaş
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
16
|
Bagirova NS, Petukhova IN, Grigorievskaya ZV, Sytov AV, Slukin PV, Goremykina EA, Khokhlova OE, Fursova NK, Kazimov AE. Oral microbiota in patients with oropharyngeal cancer with an emphasis on <i>Candida</i> spp. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-71-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction. Interactions between the 2 microbiota components – bacteria and fungi – are of interest as diagnostic and prognostic markers in selection of treatment tactics for oncological patients.Aim. To study microbiota of the oral cavity in patients with primary squamous cell carcinoma of the oropharyngeal area before and after surgical intervention to find biomarkers for rational selection of antifungal drugs.Materials and methods. At the Surgical Department of Head and Neck Tumors of the N. N. Blokhin National Research Center of Oncology, three-component study was performed: investigations of spectrum of Candida spp. isolates, Candida spp. strains’ resistance to antifungals, and oral washes in primary patients before and after surgery. mALDI-Tof microflex LT (Biotyper, Bruker Daltonics, germany) was used for strain identification; Sensititre Yeast ONE, YO10 (Trek Diagnostic System, united kingdom) plates were used for determination of minimal inhibiting concentrations of anti fungals. values of minimal inhibiting concentrations were evaluated based on the European Committee on Antimicrobial Susceptibility Testing (EuCAST) criteria (version 10.0).Results. four-year observation of patients at the surgical department of head and neck tumors of the N. N. Blokhin National Research Center of Oncology showed that the most common species of Candida is C. albicans (73.5 % of cases). Candida spp. resistance to antifungals was detected only for fluconazole (9.3 % of cases) and micafungin (8.0 % of cases), mostly among C. albicans strains. In 31.8 % of primary patients, oral washes prior to surgery showed growth of Candida spp. (probably, tissue colonization). After surgical intervention, Candida spp. growth was detected in 36.4 % of cases, only 1 of which was diagnosed as invasive mycosis. In 54.5 % of cases before and in 72.7 % of cases after surgery, gram-negative rods were detected. After surgical intervention, percentage of enterobacteria and non-fermenters significantly increased: 59.1 % versus 27.3 % (p <0.05) and 63.6 % versus 27.3 % (p <0.02), respectively. prior to surgery, non-fermenting gram-negative bacteria were represented only by P. aeruginosa; after surgery, the spectrum of non-fermenting gram-negative bacteria became wider but percentage of P. aeruginosa remained high: 71.4 %. ERG11 gene was identified only in 1 strain: C. albicans. FKS1 gene also was identified only in 1 strain: C. inconspicua. virulence factor genes were detected in 57.1 % of strains.Conclusion. Surgical intervention is associated with changes in bacterial microbiota but not fugal microbiota. presence of virulence factor genes and resistance genes in Candida spp. strains should be considered a biomarker allowing to differentiate between colonization and candida infection and can be used for rational selection of antifungal drugs in prevention and treatment of invasive candidiasis, especially in the absence of criteria for interpretation of measured minimal inhibiting concentrations of antifungals.
Collapse
Affiliation(s)
- N. S. Bagirova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - I. N. Petukhova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - Z. V. Grigorievskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. V. Sytov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - P. V. Slukin
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - E. A. Goremykina
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - O. E. Khokhlova
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - N. K. Fursova
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - A. E. Kazimov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
17
|
Naik S, Mohammed A. Coexpression network analysis of human candida infection reveals key modules and hub genes responsible for host-pathogen interactions. Front Genet 2022; 13:917636. [PMID: 36482897 PMCID: PMC9722774 DOI: 10.3389/fgene.2022.917636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Invasive fungal infections are a significant reason for morbidity and mortality among organ transplant recipients. Therefore, it is critical to investigate the host and candida niches to understand the epidemiology of fungal infections in transplantation. Candida albicans is an opportunistic fungal pathogen that causes fatal invasive mucosal infections, particularly in solid organ transplant patients. Therefore, identifying and characterizing these genes would play a vital role in understanding the complex regulation of host-pathogen interactions. Using 32 RNA-sequencing samples of human cells infected with C. albicans, we developed WGCNA coexpression networks and performed DESeq2 differential gene expression analysis to identify the genes that positively correlate with human candida infection. Using hierarchical clustering, we identified 5 distinct modules. We studied the inter- and intramodular gene network properties in the context of sample status traits and identified the highly enriched genes in the correlated modules. We identified 52 genes that were common in the most significant WGCNA turquoise module and differentially expressed genes in human endothelial cells (HUVEC) infection vs. control samples. As a validation step, we identified the differentially expressed genes from the independent Candida-infected human oral keratinocytes (OKF6) samples and validated 30 of the 52 common genes. We then performed the functional enrichment analysis using KEGG and GO. Finally, we performed protein-protein interaction (PPI) analysis using STRING and CytoHubba from 30 validated genes. We identified 8 hub genes (JUN, ATF3, VEGFA, SLC2A1, HK2, PTGS2, PFKFB3, and KLF6) that were enriched in response to hypoxia, angiogenesis, vasculogenesis, hypoxia-induced signaling, cancer, diabetes, and transplant-related disease pathways. The discovery of genes and functional pathways related to the immune system and gene coexpression and differential gene expression analyses may serve as novel diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Surabhi Naik
- Department of Surgery, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akram Mohammed
- Center for Biomedical Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Xu J, Ren X, Liu Y, Zhang Y, Zhang Y, Chen G, Huang Q, Liu Q, Zhou J, Liu Y. Alterations of Fungal Microbiota in Patients With Cholecystectomy. Front Microbiol 2022; 13:831947. [PMID: 35633725 PMCID: PMC9132483 DOI: 10.3389/fmicb.2022.831947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests a high risk of gastrointestinal postoperative comorbidities (such as colorectal cancer) in patients with postcholecystectomy (PC). Although previous studies implicated the role of fungi in colon carcinogenesis, few reports focused on the fungal profile in patients with PC. We enrolled 104 subjects, including 52 patients with PC and 52 non-PC controls (CON), for fecal collection to detect the fungal composition by an internal transcribed spacer (ITS) 1 rDNA sequencing. Data showed that Candida (C.) glabrata and Aspergillus (A.) Unassigned were enriched, and Candida albicans was depleted in patients with PC. In addition, postoperative duration was the main factor to affect the fungal composition. Machine learning identified that C. glabrata, A. Unassigned, and C. albicans were three biomarkers to discriminate patients with PC from CON subjects. To investigate the fungal role in colon carcinogenesis, the subjects of the PC group were divided into two subgroups, namely, patients with PC without (non-CA) and with precancerous lesions or colorectal cancer (preCA_CRC), by histopathological studies. C. glabrata was found to be gradually accumulated in different statuses of patients with PC. In conclusion, we found fungal dysbiosis in patients with cholecystectomy, and the postoperative duration was a potent factor to influence the fungal composition. The accumulation of C. glabrata might be connected with carcinogenesis after cholecystectomy.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Xinhua Ren
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yuanyuan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Yiwen Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Guodong Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Qing Huang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Qing Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China
| |
Collapse
|
19
|
Liu Z, Li Y, Li C, Lei G, Zhou L, Chen X, Jia X, Lu Y. Intestinal Candida albicans Promotes Hepatocarcinogenesis by Up-Regulating NLRP6. Front Microbiol 2022; 13:812771. [PMID: 35369462 PMCID: PMC8964356 DOI: 10.3389/fmicb.2022.812771] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a primary liver cancer, is closely associated with the gut microbiota. However, the role of gut fungi in the development of HCC remains unclear. The aim of this study was to explore the influence of intestinal Candida albicans on HCC. Here, We found that patients with HCC showed significantly decreased diversity of the gut mycobiome and increased abundance of C. albicans, compared to the patients with liver cirrhosis. The gavage of C. albicans in the WT models increased the tumor size and weight and influenced the plasma metabolome, which was indicated by alterations in 117 metabolites, such as L-carnitine and L-acetylcarnitine, and several KEGG enriched pathways, such as phenylalanine metabolism and citrate cycle. Moreover, the expression of nucleotide oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) in the intestinal tissues and primary intestinal epithelial cells of the WT mice interacted with C. albicans increased. Notably, the colonization of C. albicans had no effect on tumor growth in Nlrp6–/– mice. In conclusion, the abnormal colonization of C. albicans reprogrammed HCC metabolism and contributed to the progression of HCC dependent on NLRP6, which provided new targets for the treatment of HCC.
Collapse
Affiliation(s)
- Zherui Liu
- Peking University 302 Clinical Medical School, Beijing, China.,Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinyin Li
- Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chen Li
- Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanglin Lei
- Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Zhou
- Senior Department of Oncology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangling Chen
- Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Jia
- Senior Department of Oncology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinying Lu
- Peking University 302 Clinical Medical School, Beijing, China.,Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Issrani R, Reddy J, Dabah THEM, Prabhu N. Role of Oral Microbiota in Carcinogenesis: A Short Review. J Cancer Prev 2022; 27:16-21. [PMID: 35419305 PMCID: PMC8984651 DOI: 10.15430/jcp.2022.27.1.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
A strong and healthy microbiome is responsible for homeostasis between the host and microbiota which is necessary to achieve the normal functioning of the body. Dysbiosis provokes prevalence of pathogenic microbes, leading to alterations in gene expression profiles and metabolic processes. This in turn results in anomalous immune responses of the host. Dysbiosis may be associated with a wide variety of diseases like irritable bowel syndrome, coeliac disease, allergic conditions, bronchitis, asthma, heart diseases and oncogenesis. Presently, the links between oral microbial consortia and their functions, not only in the preservation of homeostasis but also pathogenesis of several malignancies have gained much awareness from the scientific community. The primary intent of this review is to highlight the dynamic role of oral microbiome in oncogenesis and its progression through various mechanisms. A literature search was conducted using multiple databases comprising of PubMed, Scopus, Google Scholar, and Cochrane electronic databases with keywords including microbiome, microbiota, carcinogenesis, tumorigenesis, and immunosuppression. Current and the past literature has pointed out the role of microorganisms in oncogenesis. It may be put forth that both the commensal and pathogenic strains of oral microbiome play an undeniably conspicuous role in carcinogenesis at different body sites.
Collapse
Affiliation(s)
- Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Jagat Reddy
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Tarek H. El-Metwally Dabah
- Medical Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Mahalingam SS, Jayaraman S, Pandiyan P. Fungal Colonization and Infections-Interactions with Other Human Diseases. Pathogens 2022; 11:212. [PMID: 35215155 PMCID: PMC8875122 DOI: 10.3390/pathogens11020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host-fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs.
Collapse
Affiliation(s)
- Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.S.M.); (S.J.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Wu Y, Hu S, Wu C, Gu F, Yang Y. Probiotics: Potential Novel Therapeutics Against Fungal Infections. Front Cell Infect Microbiol 2022; 11:793419. [PMID: 35127557 PMCID: PMC8813855 DOI: 10.3389/fcimb.2021.793419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The global infection rate of fungal diseases is increasing year by year, and it has gradually become one of the most serious infectious diseases threatening human health. However, the side effects of antifungal drugs and the fungal resistance to these drugs are gradually increasing. Therefore, the development of new broad-spectrum, safe, and economical alternatives to antibacterial drugs are essential. Probiotics are microorganisms that are beneficial for human health. They boost human immunity, resist pathogen colonization, and reduce pathogen infection. Many investigations have shown their inhibitory activity on a wide range of pathogenic fungi. However, their antibacterial mechanism is still a secret. This article reviews the progress of probiotics as a new method for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Yunjian Wu
- Department of Biotechnology, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shan Hu
- Department of Laboratory Medicine, Xuzhou Tumor Hospital, Xuzhou, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| | - Ying Yang
- Department of Biotechnology, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| |
Collapse
|
23
|
Shahid RK, Ahmed S, Le D, Yadav S. Diabetes and Cancer: Risk, Challenges, Management and Outcomes. Cancers (Basel) 2021; 13:5735. [PMID: 34830886 PMCID: PMC8616213 DOI: 10.3390/cancers13225735] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetes mellitus and cancer are commonly coexisting illnesses, and the global incidence and prevalence of both are rising. Cancer patients with diabetes face unique challenges. This review highlights the relationship between diabetes and cancer and various aspects of the management of diabetes in cancer patients. METHODS A literature search using keywords in PubMed was performed. Studies that were published in English prior to July 2021 were assessed and an overview of epidemiology, cancer risk, outcomes, treatment-related hyperglycemia and management of diabetes in cancer patients is provided. RESULTS Overall, 8-18% of cancer patients have diabetes as a comorbid medical condition. Diabetes is a risk factor for certain solid malignancies, such as pancreatic, liver, colon, breast, and endometrial cancer. Several novel targeted compounds and immunotherapies can cause hyperglycemia. Nevertheless, most patients undergoing cancer therapy can be managed with an appropriate glucose lowering agent without the need for discontinuation of cancer treatment. Evidence suggests that cancer patients with diabetes have higher cancer-related mortality; therefore, a multidisciplinary approach is important in the management of patients with diabetes and cancer for a better outcome. CONCLUSIONS Future studies are required to better understand the underlying mechanism between the risk of cancer and diabetes. Furthermore, high-quality prospective studies evaluating management of diabetes in cancer patients using innovative tools are needed. A patient-centered approach is important in cancer patients with diabetes to avoid adverse outcomes.
Collapse
Affiliation(s)
- Rabia K. Shahid
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Shahid Ahmed
- Saskatoon Cancer Center, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada; (D.L.); (S.Y.)
| | - Duc Le
- Saskatoon Cancer Center, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada; (D.L.); (S.Y.)
| | - Sunil Yadav
- Saskatoon Cancer Center, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada; (D.L.); (S.Y.)
| |
Collapse
|
24
|
Shams K, Larypoor M, Salimian J. The immunomodulatory effects of Candida albicans isolated from the normal gastrointestinal microbiome of the elderly on colorectal cancer. Med Oncol 2021; 38:140. [PMID: 34637027 DOI: 10.1007/s12032-021-01591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022]
Abstract
The association of gut microbiota with occurrence and development of colorectal cancer (CRC) has been reported in recent studies. Probiotics have been shown to mediate anti-cancer effects through immune system. The aim of this study was to evaluate the efficacy of Lactobacillus plantarum and Candida albicans in the suppression of azoxymethane-induced CRC in male Fischer 344 rats. 30 adult male Fischer 344 rats were divided into 6 distinct groups (n = 5 per group): non-treated animals, fat-food intake group, fat-food and carcinogen intake group, CRC cancer-induced rats treated with the chemotherapy drug, CRC-induced rats treated with Lactobacillus plantarum, and CRC-induced rats treated with Candida albicans. Identification of Candida albicans isolated from human feces was performed by microbiological, biochemical, and PCR methods. The serum levels of IFN-γ, IL-4, TGF-β, and TNF-α were measured by ELISA. Pathological studies were performed through hematoxylin and eosin (H&E) staining method. The data were analyzed using one-way ANOVA and Tukey's post-hoc analysis. Shrinking cancer cells with very dark nuclei were observed in CRC-induced rats treated with the chemotherapy drug, Lactobacillus plantarum, and Candida albicans indicating the occurrence of apoptosis. Serum levels of IFN-γ, IL-4, and TGF-β significantly decreased compared to the control group (p < 0.05). Lactobacillus plantarum and Candida albicans isolated from the gastrointestinal tract of the elderly and healthy individuals can efficiently improve CRC.
Collapse
Affiliation(s)
- Kimiya Shams
- Deparment of Biotechnology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohaddeseh Larypoor
- Deparment of Biotechnology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran. .,Islamic Azad University, North Tehran Branch, Hakymiyeh-Babaee Highway, Tehran, Iran.
| | - Jafar Salimian
- Departmentof Immunology, Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut Microbiota Modulation in the Context of Immune-Related Aspects of Lactobacillus spp. and Bifidobacterium spp. in Gastrointestinal Cancers. Nutrients 2021; 13:nu13082674. [PMID: 34444834 PMCID: PMC8401094 DOI: 10.3390/nu13082674] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression and recently several investigators have evaluated the therapeutic effectiveness of targeting the microbiota. This gut microbiota-related approach is especially attractive in the treatment of gastrointestinal cancers. Probiotics supplementation is a microbiota-targeted strategy that appears to improve treatment efficacy; Lactobacillus spp. and Bifidobacterium spp. are among the most commonly used probiotic agents. These bacteria seem to exert immunomodulatory effects, impacting on the immune system both locally and systemically. The gut microbiota are able to affect the efficiency of immunotherapy, mainly acting as inhibitors at immune checkpoints. The effects of immunotherapy may be modulated using traditional probiotic strains and/or next generation probiotics, such as Akkermansia municiphila. It is possible that probiotics might enhance the efficiency of immunotherapy based on PD-1/PD-L1 and CTLA-4 but more data are needed to confirm this speculation. Indeed, although there is experimental evidence for the efficacy of several strains, the health-promoting effects of numerous probiotics have not been demonstrated in human patients and furthermore the potential risks of these products, particularly in oncologic patients, are rarely mentioned.
Collapse
Affiliation(s)
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Karol Polom
- Department of Surgical Oncology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| |
Collapse
|
26
|
Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021; 9:microorganisms9081549. [PMID: 34442627 PMCID: PMC8400438 DOI: 10.3390/microorganisms9081549] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis in the oral environment may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This review aims to summarize the current knowledge about the association of oral microbiota with OSCC and to describe possible etiopathogenetic mechanisms involved in processes of OSCC development and progression. Association studies included in this review were designed as case–control/case studies, analyzing the bacteriome, mycobiome, and virome from saliva, oral rinses, oral mucosal swabs, or oral mucosal tissue samples (deep and superficial) and comparing the results in healthy individuals to those with OSCC and/or with premalignant lesions. Changes in relative abundances of specific bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.) and fungi (especially Candida sp.) were associated with OSCC. Viruses can also play a role; while the results of studies investigating the role of human papillomavirus in OSCC development are controversial, Epstein–Barr virus was positively correlated with OSCC. The oral microbiota has been linked to tumorigenesis through a variety of mechanisms, including the stimulation of cell proliferation, tumor invasiveness, angiogenesis, inhibition of cell apoptosis, induction of chronic inflammation, or production of oncometabolites. We also advocate for the necessity of performing a complex analysis of the microbiome in further studies and of standardizing the sampling procedures by establishing guidelines to support future meta-analyses.
Collapse
Affiliation(s)
- Tereza Vyhnalova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Department of Maxillofacial Surgery, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +420-777-550-596
| | - Daniela Gachova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
| | - Petra Borilova Linhartova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
27
|
Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu Z, Song Y, Hong X. Candida albicans disorder is associated with gastric carcinogenesis. Theranostics 2021; 11:4945-4956. [PMID: 33754037 PMCID: PMC7978306 DOI: 10.7150/thno.55209] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Bacterial infection is associated with gastric carcinogenesis. However, the relationship between nonbacterial components and gastric cancer (GC) has not been fully explored. We aimed to characterize the fungal microbiome in GC. Methods: We performed ITS rDNA gene analysis in cancer lesions and adjacent noncancerous tissues of 45 GC cases from Shenyang, China. Obtaining the OTUs and combining effective grouping, we carried out species identifications, alpha and beta diversity analyses, and FUNGuild functional annotation. Moreover, differences were compared and tested between groups to better investigate the composition and ecology of fungi associated with GC and find fungal indicators. Results: We observed significant gastric fungal imbalance in GC. Principal component analysis revealed separate clusters for the GC and control groups, and Venn diagram analysis indicated that the GC group showed a lower OTU abundance than the control. At the genus level, the abundances of 15 fungal biomarkers distinguished the GC group from the control, of which Candida (p = 0.000246) and Alternaria (p = 0.00341) were enriched in GC, while Saitozyma (p = 0.002324) and Thermomyces (p = 0.009158) were decreased. Combining the results of Welch's t test and Wilcoxon rank sum test, Candida albicans (C. albicans) was significantly elevated in GC. The species richness Krona pie chart further revealed that C. albicans occupied 22% and classified GC from the control with an area under the receiver operating curve (AUC) of 0.743. Random forest analysis also confirmed that C. albicans could serve as a biomarker with a certain degree of accuracy. Moreover, compared with that of the control, the alpha diversity index was significantly reduced in the GC group. The Jaccard distance index and the Bray abundance index of the PCoA clarified separate clusters between the GC and control groups at the species level (p = 0.00051). Adonis (PERMANOVA) analysis and ANOVA showed that there were significant differences in fungal structure among groups (p = 0.001). Finally, FUNGuild functional classification predicted that saprotrophs were the most abundant taxa in the GC group. Conclusions: This study revealed GC-associated mycobiome imbalance characterized by an altered fungal composition and ecology and demonstrated that C. albicans can be a fungal biomarker for GC. With the significant increase of C. albicans in GC, the abundance of Fusicolla acetilerea, Arcopilus aureus, Fusicolla aquaeductuum were increased, while Candida glabrata, Aspergillus montevidensis, Saitozyma podzolica and Penicillium arenicola were obviously decreased. In addition, C. albicans may mediate GC by reducing the diversity and richness of fungi in the stomach, contributing to the pathogenesis of GC.
Collapse
Affiliation(s)
- Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yubo Xiong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingsong Ma
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
28
|
Amaya Arbeláez MI, de Paula E Silva ACA, Navegante G, Valente V, Barbugli PA, Vergani CE. Proto-Oncogenes and Cell Cycle Gene Expression in Normal and Neoplastic Oral Epithelial Cells Stimulated With Soluble Factors From Single and Dual Biofilms of Candida albicans and Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:627043. [PMID: 33718274 PMCID: PMC7947338 DOI: 10.3389/fcimb.2021.627043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
This study was aimed at analyzing proto-oncogenic signaling pathway activation in normal oral keratinocytes (NOK-si) and neoplastic cell lines (SCC 25 and Detroit 562) stimulated with metabolites (soluble factors) from single and dual biofilms of Candida albicans and Staphylococcus aureus. Soluble factors (SF) from early (16-h) and mature (36-h) biofilms of C. albicans and S. aureus were collected and incubated with cell cultures, which were subsequently evaluated using gene expression via RT-qPCR, cell viability via AlamarBlueTM, and flow cytometry cell cycle analysis. In general, exposure to the SF of early and mature biofilms from C. albicans and dual species caused a major reduction in NOK-si cell viability and enhanced the sub G0 phase. This led to a decrease in gene expression. However, in this cell line, SF of S. aureus biofilms upregulated the CDKN1A gene followed by the maintenance of cell viability and a significant increase in the G2/M population. For tumor cells, SCC 25 and Detroit 562, the stimuli of SF biofilms upregulated oncogenes such as hRAS and mTOR, as well as Bcl-2 and CDKN1A. SCC 25 and Detroit 562 cells could survive even after 24 h of stimuli from both SF (early and mature). This occurred without significant changes taking place in the cell cycle progression for SCC 25, and with a significant tendency to increase the G2/M phase for Detroit 562. These results point to the fact that metabolites from prevalent clinical fungal and bacterial biofilms, C. albicans and S. aureus, can disrupt the homeostasis of normal and neoplastic oral epithelial cells. This changes proto-oncogenes’ expression, specifically PI3KCA, hRAS, mTOR, BRAF, and cell cycle genes CDKN1A and Bcl-2, thus causing a disturbance in cell viability, survival, and the cell cycle profile.
Collapse
Affiliation(s)
- María Isabel Amaya Arbeláez
- Laboratory of Applied Microbiology, Faculty of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Araraquara, Brazil
| | - Ana Carolina Alves de Paula E Silva
- Laboratory of Applied Microbiology, Faculty of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Araraquara, Brazil
| | - Geovana Navegante
- Laboratory of Molecular and Cell Biology, School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, Brazil
| | - Valeria Valente
- Laboratory of Molecular and Cell Biology, School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, Brazil
| | - Paula Aboud Barbugli
- Laboratory of Applied Microbiology, Faculty of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Araraquara, Brazil.,Laboratory of Molecular and Cell Biology, School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, Brazil
| | - Carlos Eduardo Vergani
- Laboratory of Applied Microbiology, Faculty of Dentistry, Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Araraquara, Brazil
| |
Collapse
|
29
|
Li D, Li T, Bai C, Zhang Q, Li Z, Li X. A predictive nomogram for mortality of cancer patients with invasive candidiasis: a 10-year study in a cancer center of North China. BMC Infect Dis 2021; 21:76. [PMID: 33446133 PMCID: PMC7809763 DOI: 10.1186/s12879-021-05780-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Invasive candidiasis is the most common fungal disease among hospitalized patients and continues to be a major cause of mortality. Risk factors for mortality have been studied previously but rarely developed into a predictive nomogram, especially for cancer patients. We constructed a nomogram for mortality prediction based on a retrospective review of 10 years of data for cancer patients with invasive candidiasis. Methods Clinical data for cancer patients with invasive candidiasis during the period of 2010–2019 were studied; the cases were randomly divided into training and validation cohorts. Variables in the training cohort were subjected to a predictive nomogram based on multivariate logistic regression analysis and a stepwise algorithm. We assessed the performance of the nomogram through the area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA) in both the training and validation cohorts. Results A total of 207 cases of invasive candidiasis were examined, and the crude 30-day mortality was 28.0%. Candida albicans (48.3%) was the predominant species responsible for infection, followed by the Candida glabrata complex (24.2%) and Candida tropicalis (10.1%). The training and validation cohorts contained 147 and 60 cases, respectively. The predictive nomogram consisted of bloodstream infections, intensive care unit (ICU) admitted > 3 days, no prior surgery, metastasis and no source control. The AUCs of the training and validation cohorts were 0.895 (95% confidence interval [CI], 0.846–0.945) and 0.862 (95% CI, 0.770–0.955), respectively. The net benefit of the model performed better than “treatment for all” in DCA and was also better for opting low-risk patients out of treatment than “treatment for none” in opt-out DCA. Conclusion Cancer patients with invasive candidiasis exhibit high crude mortality. The predictive nomogram established in this study can provide a probability of mortality for a given patient, which will be beneficial for therapeutic strategies and outcome improvement.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Qing Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zheng Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Tianjin, 300387, Xiqing District, China.
| |
Collapse
|
30
|
Zhang W, Zhang K, Zhang P, Zheng J, Min C, Li X. Research Progress of Pancreas-Related Microorganisms and Pancreatic Cancer. Front Oncol 2021; 10:604531. [PMID: 33520714 PMCID: PMC7841623 DOI: 10.3389/fonc.2020.604531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is one of the most common digestive system cancers. Early diagnosis is difficult owing to the lack of specific symptoms and reliable biomarkers. The cause of pancreatic cancer remains ambiguous. Smoking, drinking, new-onset diabetes, and chronic pancreatitis have been proven to be associated with the occurrence of pancreatic cancer. In recent years, a large number of studies have clarified that a variety of microorganisms colonized in pancreatic cancer tissues are also closely related to the occurrence and development of pancreatic cancer, and the specific mechanisms include inflammatory induction, immune regulation, metabolism, and microenvironment changes caused by microorganism. The mechanism of action of the pancreatic colonized microbiome in the tumor microenvironment, as well as immunotherapy approaches require further study in order to find more evidence to explain the complex relationship between the pancreatic colonized microbiome and PDAC. Relevant studies targeting the microbiome may provide insight into the mechanisms of PDAC development and progression, improving treatment effectiveness and overall patient prognosis. In this article, we focus on the research relating to the microorganisms colonized in pancreatic cancer tissues, including viruses, bacteria, and fungi. We also highlight the microbial diversity in the occurrence, invasion, metastasis, treatment, and prognosis of pancreatic cancer in order to elucidate its significance in the early diagnosis and new therapeutic treatment of pancreatic cancer, which urgently need to be improved in clinical practice. The elimination or increase in diversity of the pancreatic microbiome is beneficial for prolonging the survival of PDAC patients, improving the response to chemotherapy drugs, and reducing tumor burden. The colonization of microorganisms in the pancreas may become a new hotspot in the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Extract of Herba Anthrisci cerefolii: Chemical Profiling and Insights into Its Anti-Glioblastoma and Antimicrobial Mechanism of Actions. Pharmaceuticals (Basel) 2021; 14:ph14010055. [PMID: 33445425 PMCID: PMC7827728 DOI: 10.3390/ph14010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Anthriscus cerefolium (L.) Hoffm. is a plant traditionally used around the globe since antiquity. Although widely used in many traditional medicines in different cultures, from the scientific point of view it is poorly investigated. Glioblastoma, a tumor type with poor prognosis, is the most common and lethal brain tumor in adults. Current therapeutic strategies for glioblastoma include surgery, radiation and chemotherapy. On the other hand, it has been revealed that patients with cancers are highly susceptible to microbial infections due to the invasive nature of cancer treatment approaches. This study was designed to investigate the chemical profile of herba Anthriscii cerefoli methanolic extract by applying UHPLC-LTQ OrbiTrap MS4 analysis and to analyze its anti-glioblastoma and antimicrobial activities. This study revealed that methanolic extract of herba Anthrisc cerefolii contained phenolic acids and flavonoids, with 32 compounds being identified. Anti-glioblastoma activity was investigated in vitro using A172 glioblastoma cell line. The cytotoxic effects of the extract on A172 cells were compared to the same effect on primary human gingival fibroblast (HGF-1) cells. Decreased rate of proliferation and changes in cell morphology were detected upon treatment of A172 cells with the extract. The antimicrobial activity of extract was tested against Staphylococcus aureus and Candida species. The extract was active against the tested bacterium and yeasts, inhibiting free floating cells and microbial biofilms. This study is the first one to provide a detailed description of the chemical profile of A. cerefolium extract dealing with scientific insights into its anti-glioblastoma and antimicrobial activities.
Collapse
|
32
|
Candida albicans cell wall as a target of action for the protein-carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Sci Rep 2020; 10:16352. [PMID: 33004852 PMCID: PMC7529762 DOI: 10.1038/s41598-020-73044-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
The protein-polysaccharide fraction (AAF) isolated from the coelomic fluid of the earthworm Dendrobaena veneta destroys C. albicans cells by changing their morphology, disrupting cell division, and leading to cell death. Morphological changes in C. albicans cells induced by treatment with AAF were documented using DIC, SEM, and AFM. Congo Red staining showed that the fungal wall structure was changed after incubation with AAF. The effect on C. albicans cell walls was shown by AFM analysis of the surface roughness of fungal cell walls and changes in the wall thickness were visualized using Cryo-SEM. The FTIR analysis of C. albicans cells incubated with AAF indicated attachment of protein or peptide compounds to the fungal walls. The intact LC-ESI-MS analysis allowed accurate determination of the masses of molecules present in AAF. As shown by the chromatographic study, the fraction does not cross biological membranes. The Cryo-TEM analysis of AAF demonstrated the ability of smaller subunits to combine into larger agglomerates. AAF is thermally stable, which was confirmed by Raman spectroscopy. AAF can be considered as a potential antifungal antibiotic with activity against clinical C. albicans strains.
Collapse
|
33
|
Recognition of Candida albicans and Role of Innate Type 17 Immunity in Oral Candidiasis. Microorganisms 2020; 8:microorganisms8091340. [PMID: 32887412 PMCID: PMC7563233 DOI: 10.3390/microorganisms8091340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus considered to be a common member of the human microflora. Similar to some other opportunistic microbes, C. albicans can invade and benefit from its host when the immune status of that host is weakened. Most often this happens to immunocompromised individuals, leading to the infection of oral and vaginal mucosae or the systemic spread of the pathogen throughout the entire body. Oropharyngeal candidiasis (OPC) occurs in up to 90 percent of patients with acquired immunodeficiency syndrome (AIDS), making it the most frequent opportunistic infection for this group. Upon first signs of fungal invasion, a range of host signaling activates in order to eliminate the threat. Epithelial and myeloid type cells detect C. albicans mainly through receptor tyrosine kinases and pattern-recognition receptors. This review provides an overview of downstream signaling resulting in an adequate immune response through the activation of various transcription factors. The study discusses recent advances in research of the interleukin-17 (IL-17) producing innate cells, including natural T helper 17 (nTh17) cells, γδ T cells, invariant natural killer T (iNKT) cells and type 3 innate lymphoid cells (ILC3) that are involved in response to oral C. albicans infections.
Collapse
|
34
|
Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules 2020; 25:molecules25173866. [PMID: 32854362 PMCID: PMC7504079 DOI: 10.3390/molecules25173866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/19/2023] Open
Abstract
Plant extracts are highly valuable pharmaceutical complexes recognized for their biological properties, including antibacterial, antifungal, antiviral, antioxidant, anticancer, and anti-inflammatory properties. However, their use is limited by their low water solubility and physicochemical stability. In order to overcome these limitations, we aimed to develop nanostructured carriers as delivery systems for plant extracts; in particular, we selected the extract of Anthriscus sylvestris (AN) on the basis of its antimicrobial effect and antitumor activity. In this study, AN-extract-functionalized magnetite (Fe3O4@AN) nanoparticles (NPs) were prepared by the co-precipitation method. The purpose of this study was to synthesize and investigate the physicochemical and biological features of composite coatings based on Fe3O4@AN NPs obtained by matrix-assisted pulsed laser evaporation technique. In this respect, laser fluence and drop-casting studies on coatings were performed. The physical and chemical properties of laser-synthesized coatings were investigated by scanning electron microscopy, while Fourier transform infrared spectroscopy comparative analysis was used for determining the chemical structure and functional integrity. Relevant data regarding the presence of magnetic nanoparticles as the only crystalline phase and the size of nanoparticles were obtained by transmission electron microscopy. The in vitro toxicity assessment of the Fe3O4@AN showed significant cytotoxic activity against human adenocarcinoma HT-29 cells after prolonged exposure. Antimicrobial results demonstrated that Fe3O4@AN coatings inhibit microbial colonization and biofilm formation in clinically relevant bacteria species and yeasts. Such coatings are useful, natural, and multifunctional solutions for the development of tailored medical devices and surfaces.
Collapse
|
35
|
Liao M, Cheng L, Zhou XD, Ren B. [Research progress of Candida albicans on malignant transformation of oral mucosal diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:431-437. [PMID: 32865364 DOI: 10.7518/hxkq.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral cancer is the most common malignant tumor in the head and neck, and is one of the world's top ten malignancies. Microbial infection is an important risk factor of oral cancer. Candida albicans is the most popular opportunistic fungal pathogen. Epidemiological studies have shown that Candida albicans is closely tied to oral malignancy. Animal experimentation have also proven that infection of Candida albicans can promote the development of oral epithelial carcinogenesis. The current studies have revealed several mechanisms involved in this process, including destroying the epithelial barrier, producing carcinogenic substances (nitrosamines, acetaldehyde), inducing chronic inflammation, activating immune response, etc. However, current researches on mechanisms are still inadequate, and some hypotheses remain controversial. Here, we review the findings related to Candida albicans' effect on the malignant transformation of oral mucosa, hoping to provide reference for deep research and controlling oral cancer clinically.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Starý L, Mezerová K, Vysloužil K, Zbořil P, Skalický P, Stašek M, Raclavský V. Candida albicans culture from a rectal swab can be associated with newly diagnosed colorectal cancer. Folia Microbiol (Praha) 2020; 65:989-994. [DOI: 10.1007/s12223-020-00807-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
|
37
|
Antoran A, Aparicio-Fernandez L, Pellon A, Buldain I, Martin-Souto L, Rementeria A, Ghannoum MA, Fuchs BB, Mylonakis E, Hernando FL, Ramirez-Garcia A. The monoclonal antibody Ca37, developed against Candida albicans alcohol dehydrogenase, inhibits the yeast in vitro and in vivo. Sci Rep 2020; 10:9206. [PMID: 32514067 PMCID: PMC7280234 DOI: 10.1038/s41598-020-65859-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast able to cause life threatening invasive infections particularly in immunocompromised patients. Despite the availability of antifungal treatments, mortality rates are still unacceptably high and drug resistance is increasing. We, therefore, generated the Ca37 monoclonal antibody against the C. albicans alcohol dehydrogenase (Adh) 1. Our data showed that Ca37 was able to detect C. albicans cells, and it bound to Adh1 in yeast and Adh2 in hyphae among the cell wall-associated proteins. Moreover, Ca37 was able to inhibit candidal growth following 18 h incubation time and reduced the minimal inhibitory concentration of amphotericin B or fluconazole when used in combination with those antifungals. In addition, the antibody prolonged the survival of C. albicans infected-Galleria mellonella larvae, when C. albicans was exposed to antibody prior to inoculating G. mellonella or by direct application as a therapeutic agent on infected larvae. In conclusion, the Ca37 monoclonal antibody proved to be effective against C. albicans, both in vitro and in vivo, and to act together with antifungal drugs, suggesting Adh proteins could be interesting therapeutic targets against this pathogen.
Collapse
Affiliation(s)
- Aitziber Antoran
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Leire Aparicio-Fernandez
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aize Pellon
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Aize Pellon, Centre for Host-Microbiome Interactions, Mucosal and Salivary Biology Division, King's College London Dental Institute, London, United Kingdom
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mahmoud A Ghannoum
- Department of Dermatology and Center for Medical Mycology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
38
|
Kaźmierczak-Siedlecka K, Dvořák A, Folwarski M, Daca A, Przewłócka K, Makarewicz W. Fungal Gut Microbiota Dysbiosis and Its Role in Colorectal, Oral, and Pancreatic Carcinogenesis. Cancers (Basel) 2020; 12:E1326. [PMID: 32455985 PMCID: PMC7281455 DOI: 10.3390/cancers12051326] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The association between bacterial as well as viral gut microbiota imbalance and carcinogenesis has been intensively analysed in many studies; nevertheless, the role of fungal gut microbiota (mycobiota) in colorectal, oral, and pancreatic cancer development is relatively new and undiscovered field due to low abundance of intestinal fungi as well as lack of well-characterized reference genomes. Several specific fungi amounts are increased in colorectal cancer patients; moreover, it was observed that the disease stage is strongly related to the fungal microbiota profile; thus, it may be used as a potential diagnostic biomarker for adenomas. Candida albicans, which is the major microbe contributing to oral cancer development, may promote carcinogenesis via several mechanisms, mainly triggering inflammation. Early detection of pancreatic cancer provides the opportunity to improve survival rate, therefore, there is a need to conduct further studies regarding the role of fungal microbiota as a potential prognostic tool to diagnose this cancer at early stage. Additionally, growing attention towards the characterization of mycobiota may contribute to improve the efficiency of therapeutic methods used to alter the composition and activity of gut microbiota. The administration of Saccharomyces boulardii in oncology, mainly in immunocompromised and/or critically ill patients, is still controversial.
Collapse
Affiliation(s)
| | - Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1st Faculty of Medicine, Charles University, 12108 Prague, Czech Republic;
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Katarzyna Przewłócka
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Wojciech Makarewicz
- Department of Surgical Oncology, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| |
Collapse
|
39
|
Azevedo MM, Pina-Vaz C, Baltazar F. Microbes and Cancer: Friends or Faux? Int J Mol Sci 2020; 21:ijms21093115. [PMID: 32354115 PMCID: PMC7247677 DOI: 10.3390/ijms21093115] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most aggressive and deadly diseases in the world, representing the second leading cause of death. It is a multifactorial disease, in which genetic alterations play a key role, but several environmental factors also contribute to its development and progression. Infections induced by certain viruses, bacteria, fungi and parasites constitute risk factors for cancer, being chronic infection associated to the development of certain types of cancer. On the other hand, susceptibility to infectious diseases is higher in cancer patients. The state of the host immune system plays a crucial role in the susceptibility to both infection and cancer. Importantly, immunosuppressive cancer treatments increase the risk of infection, by decreasing the host defenses. Furthermore, alterations in the host microbiota is also a key factor in the susceptibility to develop cancer. More recently, the identification of a tumor microbiota, in which bacteria establish a symbiotic relationship with cancer cells, opened a new area of research. There is evidence demonstrating that the interaction between bacteria and cancer cells can modulate the anticancer drug response and toxicity. The present review focuses on the interaction between microbes and cancer, specifically aiming to: (1) review the main infectious agents associated with development of cancer and the role of microbiota in cancer susceptibility; (2) highlight the higher vulnerability of cancer patients to acquire infectious diseases; (3) document the relationship between cancer cells and tissue microbiota; (4) describe the role of intratumoral bacteria in the response and toxicity to cancer therapy.
Collapse
Affiliation(s)
- Maria Manuel Azevedo
- Department of Microbiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Agrupamento de Escolas D. Maria II, 4760-067 V.N. Famalicão, Portugal
- Correspondence: ; Tel.: +351-22-551-36
| | - Cidália Pina-Vaz
- Department of Microbiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4835-258 Guimarães, Portugal
| |
Collapse
|
40
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Ong BX, Yoo Y, Han MG, Park JB, Choi MK, Choi Y, Shin JS, Bahn YS, Cho HS. Structural analysis of fungal pathogenicity-related casein kinase α subunit, Cka1, in the human fungal pathogen Cryptococcus neoformans. Sci Rep 2019; 9:14398. [PMID: 31591414 PMCID: PMC6779870 DOI: 10.1038/s41598-019-50678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
CK2α is a constitutively active and highly conserved serine/threonine protein kinase that is involved in the regulation of key cellular metabolic pathways and associated with a variety of tumours and cancers. The most well-known CK2α inhibitor is the human clinical trial candidate CX-4945, which has recently shown to exhibit not only anti-cancer, but also anti-fungal properties. This prompted us to work on the CK2α orthologue, Cka1, from the pathogenic fungus Cryptococcus neoformans, which causes life-threatening systemic cryptococcosis and meningoencephalitis mainly in immunocompromised individuals. At present, treatment of cryptococcosis remains a challenge due to limited anti-cryptococcal therapeutic strategies. Hence, expanding therapeutic options for the treatment of the disease is highly clinically relevant. Herein, we report the structures of Cka1-AMPPNP-Mg2+ (2.40 Å) and Cka1-CX-4945 (2.09 Å). Structural comparisons of Cka1-AMPPNP-Mg2+ with other orthologues revealed the dynamic architecture of the N-lobe across species. This may explain for the difference in binding affinities and deviations in protein-inhibitor interactions between Cka1-CX-4945 and human CK2α-CX-4945. Supporting it, in vitro kinase assay demonstrated that CX-4945 inhibited human CK2α much more efficiently than Cka1. Our results provide structural insights into the design of more selective inhibitors against Cka1.
Collapse
Affiliation(s)
- Belinda X Ong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Youngki Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeong Gil Han
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jun Bae Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
43
|
Wang M, Cao Y, Xia M, Al-Hatmi AMS, Ou W, Wang Y, Sibirny AA, Zhao L, Zou C, Liao W, Bai F, Zhi X, de Hoog S, Kang Y. Virulence and antifungal susceptibility of microsatellite genotypes of Candida albicans from superficial and deep locations. Yeast 2019; 36:363-373. [PMID: 31037772 PMCID: PMC6618086 DOI: 10.1002/yea.3397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
A set of 185 strains of Candida albicans from patients with vulvovaginal candidiasis (VVC) and from non‐VVC clinical sources in southwest China was analysed. Strains were subjected to genotyping using CAI microsatellite typing and amplification of an intron‐containing region of the 25S rRNA gene. Microsatellite genotypes of strains from non‐VVC sources showed high polymorphism, whereas those of VVC were dominated by few, closely similar genotypes. However, among non‐VVC strains, two genotypes were particularly prevalent in patients with lung cancer. 25S rDNA genotype A was dominant in VVC sources (86.7%), whereas genotypes A, B, and C were rather evenly distributed among non‐VVC sources; known genotypes D and E were not found. In an experimental mouse model, isolates from lung cancer and AIDS patients proved to have higher virulence than VVC strains. Among 156 mice infected with C. albicans, 19 developed non‐invasive urothelial carcinoma. No correlation could be established between parameters of virulence, source of infection, and incidence of carcinoma. C. albicans strains from VVC were less susceptible to itraconazole than the strains from non‐VVC sources, whereas there was small difference in antifungal susceptibility between different 25S rDNA genotypes of C. albicans tested against amphotericin B, itraconazole, fluconazole, and flucytosine.
Collapse
Affiliation(s)
- Meizhu Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Yu Cao
- School of Big Health, Guizhou Medical University, Guiyang, China
| | - Maoning Xia
- Department of Clinical Laboratory, People's Hospital of Dazu District, Chongqing, China
| | - Abdullah M S Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Ministry of Health, Directorate General of Health Services, Ibri, Oman.,Centre of Expertise in Mycology of Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Weizheng Ou
- Department of Clinical Lab, Guiyang Public Health Treatment Center, Guiyang, China
| | - Yanyan Wang
- Infection Control Section, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Andriy A Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, Poland.,Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Liang Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fengyan Bai
- Systematic Mycology and Lichenology Laboratory, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xie Zhi
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Centre of Expertise in Mycology of Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,School of Big Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
44
|
Roy SK, Astekar M, Sapra G, Chitlangia RK, Raj N. Evaluation of candidal species among individuals with oral potentially malignant disorders and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2019; 23:302. [PMID: 31516244 PMCID: PMC6714276 DOI: 10.4103/jomfp.jomfp_111_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
CONTEXT Cancer afflicts almost all communities worldwide. Although it arises de novo in many instances, a significant proportion of oral squamous cell carcinoma (OSCC) develops from potentially malignant disorders (PMDs). Further, the association of Candida with various potentially malignant and malignant lesions has been reported as a causative agent. AIMS The aim of the study is to evaluate and intercompare the predominant candidal species among individuals with PMD and OSCC. SUBJECTS AND METHODS The swab samples were collected for the microbiological culture followed by incisional biopsy for histopathological confirmation. The swab samples were streaked and incubated on Sabouraud-dextrose agar medium and positive candidal colonies were incubated on CHROM agar for speciation. SETTINGS AND DESIGN A total of clinically diagnosed 95 subjects of which 25 as normal controls, 30 as PMDs and 40 as OSCC were included. The collected swab samples were initially streaked and incubated on Sabouraud dextrose agar (SDA) medium, and later, only positive candidal colonies were incubated on CHROM agar for speciation. STATISTICAL ANALYSIS Chi-square test was utilized. RESULTS Positive candidal growth on SDA medium was seen in 24%, 43% and 82% and negative in 76%, 57% and 18% individuals of normal controls, PMDs and OSCC, respectively. On evaluation on Chromagar medium, Candida species was present in 20%, 40% and 77% and absent in 80%, 60% and 23% individuals among controls, PMDs and OSCC group, respectively. On speciation of Candida in CHROMagar among the controls, PMDs and OSCC, Candida albicans species was present in 4 (16%), 7 (23%) and 4 (10%); Candida krusei in 1 (4%), 5 (17%) and 10 (25%); Candida glabrata in nil, nil and 6 (20%) and Candida tropicalis in nil, nil, and 2 (5%) cases, respectively. CONCLUSION There was predominant carriage of candidal species in PMDs and OSCC, but whether Candida has specific establishment in PMDs or in malignancy is still a matter of debate.
Collapse
Affiliation(s)
- Saurabh Kumar Roy
- Department of Oral Pathology and Microbiology, People's Dental College, Kathmandu, Nepal
| | - Madhusudan Astekar
- Department of Oral Pathology and Microbiology, Keshlata Cancer Institute, Bareilly, Uttar Pradesh, India
| | - Gaurav Sapra
- Department of Oral Pathology and Microbiology, Keshlata Cancer Institute, Bareilly, Uttar Pradesh, India
| | | | - Nitish Raj
- Department of Pathology and Microbiology, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| |
Collapse
|
45
|
Arastehfar A, Daneshnia F, Farahyar S, Fang W, Salimi M, Salehi M, Hagen F, Weihua P, Roudbary M, Boekhout T. Incidence and spectrum of yeast species isolated from the oral cavity of Iranian patients suffering from hematological malignancies. J Oral Microbiol 2019; 11:1601061. [PMID: 31044032 PMCID: PMC6484487 DOI: 10.1080/20002297.2019.1601061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
Background: Oral candidiasis (OC) has a profound effect on the life quality of immunocompromised patients, such as those undergoing chemotherapy. Objective: Systematic investigation of clinical outcome and microbiological features of yeast isolates recovered from the oral cavity of 150 Iranian patients with hematological malignancies. Design: MALDI-TOF MS, 21-plex PCR, and rDNA sequencing were used for identification. Antifungal susceptibility testing (broth microdilution, CLSI M27-A3/S4) and genotypic diversity of yeast isolates (amplified fragment length polymorphism) were assessed. Results: Nystatin treatment resulted in 70% therapeutic failure and administration of 150 mg fluconazole (FLZ) + nystatin for patients with OC relapse showed 70% clinical failure. Previous history of OC was significantly correlated with FLZ treatment requirement and nystatin failure (P = 0.005, α < 0.05). Candida albicans (80.3%) and Kluyveromyces marxianus (C. kefyr) (12.7%) were the two most prevalent yeast species isolated. FLZ and AMB exhibited the highest geometric mean values. 21-PCR showed 98.9% agreement with MALDI-TOF MS. K. marxianus isolates had the same genotype, while C. albicans isolates grouped in 15 genotypes. Conclusions: Marked rate of therapeutic failure of nystatin necessitated OC treatment with systemic antifungals. K. marxianus was the second most prevalent yeast and 21-plex PCR could be considered as an inexpensive identification tool.
Collapse
Affiliation(s)
- Amir Arastehfar
- Department of Yeasts , Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Farnaz Daneshnia
- Department of Yeasts , Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Shirin Farahyar
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center (MBiRC), Iran University of Medical Sciences, Tehran, Iran
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Maryam Salimi
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of infectious diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ferry Hagen
- Department of Yeasts , Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Pan Weihua
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Teun Boekhout
- Department of Yeasts , Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Vesty A, Gear K, Biswas K, Radcliff FJ, Taylor MW, Douglas RG. Microbial and inflammatory-based salivary biomarkers of head and neck squamous cell carcinoma. Clin Exp Dent Res 2018; 4:255-262. [PMID: 30603107 PMCID: PMC6305924 DOI: 10.1002/cre2.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients often present with poor oral health, making it difficult to assess the relationship between oral microbes, inflammation, and carcinoma. This study investigates salivary microbes and inflammatory cytokines as biomarkers for HNSCC, with consideration of oral health. Saliva was collected from 30 participants, including 14 HNSCC patients and 16 participants representing both dentally compromised and healthy individuals. Bacterial and fungal communities were analyzed based on 16S rRNA gene and ITS1 amplicon sequencing, respectively, and concentrations of inflammatory cytokines were quantified using a cytometric bead array, with flow cytometry. Diversity-based analyses revealed that the bacterial communities of HNSCC patients were significantly different to those of the healthy control group but not the dentally compromised patients. Fungal communities were dominated by Candida, irrespective of cohort, with Candida albicans comprising ≥96% of fungal sequences in most HNSCC patients. Significantly higher concentrations of interleukin (IL)-1β and IL-8 were detected in HNSCC and dentally compromised patients, when independently compared with healthy controls. IL-1β and IL-8 concentrations were significantly positively correlated with the abundance of C. albicans. Our findings suggest that salivary microbial and inflammatory biomarkers of HNSCC are influenced by oral health.
Collapse
Affiliation(s)
- Anna Vesty
- Department of SurgeryThe University of AucklandNew Zealand
| | - Kim Gear
- OtorhinolaryngologyAuckland District Health BoardNew Zealand
| | - Kristi Biswas
- Department of SurgeryThe University of AucklandNew Zealand
| | - Fiona J. Radcliff
- Department of Molecular Medicine & PathologyThe University of AucklandNew Zealand
| | - Michael W. Taylor
- School of Biological SciencesThe University of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandNew Zealand
| | | |
Collapse
|
47
|
Abd Al-Hay H, Mohamed Ha M, Fayad W, Abd El-Gha M. Prospective Role of Solanum Cultures in Producing Bioactive Agents against Melanoma, Breast, Hematologic Carcinomas Cell Lines and Associated Microbiome. JOURNAL OF BIOLOGICAL SCIENCES 2018; 18:297-306. [DOI: 10.3923/jbs.2018.297.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Chung LM, Liang JA, Lin CL, Sun LM, Kao CH. Cancer risk in patients with candidiasis: a nationwide population-based cohort study. Oncotarget 2017; 8:63562-63573. [PMID: 28969011 PMCID: PMC5609943 DOI: 10.18632/oncotarget.18855] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Candidiasis and certain types of cancer are related to immunocompromised status. This study aimed to evaluate whether Candida infection (CI) is associated with subsequent cancer risk in Taiwan. METHODS Data from the National Health Insurance system of Taiwan were used to evaluate the association between CI and cancer risk. The CI cohort comprised 34,829 patients. Each patient was randomly frequency matched with one person from the general population without CI on the basis of age, sex, year of index date of CI diagnosis, and other characteristics to generate the control group. We used Cox's proportional hazard regression analysis to estimate the effects of CI on subsequent cancer risk. RESULTS Compared with the control group, patients with CI had a significantly higher risk of overall cancer (adjusted hazard ratio = 1.19, 95% confidence interval = 1.09-1.30). For subsite analysis, the risks of hematologic malignancy and head and neck, pancreatic, skin, and thyroid cancers were significantly higher in the CI group. Stratified analyses by sex, age, and follow-up time revealed different patterns. CONCLUSION Our study suggested that CI can significantly increase overall and some individual cancer risks, which is partially compatible with previous findings.
Collapse
Affiliation(s)
- Li-Min Chung
- Department of Medical Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ji-An Liang
- Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Min Sun
- Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
49
|
Masłyk M, Janeczko M, Martyna A, Kubiński K. CX-4945: the protein kinase CK2 inhibitor and anti-cancer drug shows anti-fungal activity. Mol Cell Biochem 2017; 435:193-196. [PMID: 28501934 PMCID: PMC5632345 DOI: 10.1007/s11010-017-3068-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/05/2017] [Indexed: 01/01/2023]
Abstract
CX-4945 is a selective inhibitor of protein kinase CK2 exhibiting clinical significance. Its antitumor properties arise from the abrogation of CK2-mediated pro-survival cellular pathways. The presented data reveal the influence of CX-4945 on the growth of yeast cells showing variable potency against Saccharomyces cerevisiae deletion strains with different contents of CK2 subunits. The catalytic subunit CK2α appears to sensitize yeast to the CX-4945 action. Moreover, the compound suppresses hyphal growth and cell adhesion of Candida albicans, thereby abolishing some hallmarks of invasiveness of the pathogen. It is known that cancer patients are more prone to fungal infections. Our data unveil the dual-activity of CX-4945; when used in anti-cancer therapy, it may simultaneously prevent cancer-associated candidiasis.
Collapse
Affiliation(s)
- Maciej Masłyk
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Monika Janeczko
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland.
| |
Collapse
|
50
|
Bavle RM, Hosthor SS. CANCER CONUNDRUM. J Oral Maxillofac Pathol 2016; 20:166-9. [PMID: 27601802 PMCID: PMC4989540 DOI: 10.4103/0973-029x.185901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Radhika Manoj Bavle
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India. E-mail:
| | - Sreelatha S Hosthor
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India. E-mail:
| |
Collapse
|