1
|
Ouaksel A, Carboni A, Slomberg D, Vidal V, Proux O, Santaella C, Brousset L, Angeletti B, Thiéry A, Rose J, Auffan M. Behavior and fate of ITER-like tungsten nanoparticles in freshwater ecosystems produced during operation and maintenance. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137201. [PMID: 39854992 DOI: 10.1016/j.jhazmat.2025.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Within the ITER project (International Thermonuclear Experimental Reactor) an international project building a magnetic confinement device to achieve fusion as a sustainable energy source, tungsten (W) is planned to serve as a plasma-facing component (PFC) in the tokamak, a magnetic confinement device used to produce controlled thermonuclear fusion power. Post plasma-W interactions, submicron tungsten particles can be released. This study investigated the exposure of lentic freshwater ecosystems to ITER-like tungsten nanoparticles in indoor aquatic mesocosms. Monitoring included tungsten (bio)distribution, (bio)transformation, speciation, and impacts following a relevant exposure scenario (chronic, medium-term, low-dose contamination). Additionally, mechanistic studies using a combination of microfluidic cells and X-ray Absorption Spectroscopy (XAS) provided a time-resolved understanding of tungsten's oxidative dissolution in freshwater. Following contamination, tungsten persisted in the water column (over 90 %), showing significant (∼40 %) and rapid (< 7 days) oxidation-dissolution and polymerization. This led to significant exposure of planktonic niches, strong affinity of polymeric tungsten species for aquatic vegetation, and potential transfer to higher trophic levels like aquatic snails. Over five weeks, the bio-physicochemical parameters of the mesocosms remained stable, and no acute impacts were observed on micro- and macro-organisms.
Collapse
Affiliation(s)
- A Ouaksel
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France.
| | - A Carboni
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - D Slomberg
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - V Vidal
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - O Proux
- OSUG UMR832 UGA, Grenoble, France; FAME-UHD, FAME, ESRF, Grenoble, France
| | - C Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint-Paul-Lez-Durance, France
| | - L Brousset
- CNRS, Aix-Marseille Université, CNRS, IMBE, UMR 7263, Marseille, France
| | - B Angeletti
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - A Thiéry
- CNRS, Aix-Marseille Université, CNRS, IMBE, UMR 7263, Marseille, France
| | - J Rose
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States
| | - M Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Al Isawi W, Philip AS, Singh P, Zeller M, Mezei G. Supramolecular Entrapping and Extraction of Selenate, Molybdate and Tungstate Ions from Water by Nanojars. Inorg Chem 2025; 64:1048-1063. [PMID: 39752602 PMCID: PMC11752490 DOI: 10.1021/acs.inorgchem.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/21/2025]
Abstract
The supramolecular binding exclusively by H-bonds of SeO42-, MoO42- and WO42- ions to form nanojars of the formula [EO42-⊂{cis-CuII(μ-OH)(μ-pz)}n]2- (CunEO4; E = Se, Mo, W; n = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic 1H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, Cu34EO4 (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO42-, MoO42- or WO42- entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, Cu31MoO4 and Cu32MoO4. The latter provides unprecedented structural information about the Cu8+Cu14+Cu10 ring combination of a nanojar with an entrapped tetrahedral anion. Also, the first crystal structure of a supramolecular host-guest complex with an entrapped WO42- ion, Cu31WO4 is reported in this work. The relative strength of binding of SeO42-, MoO42- and WO42- ions by nanojars of different sizes was assessed by reactivity studies toward Ba2+ ions and NH3. Thermal stability studies of the various CunEO4 nanojars were conducted in DMSO-d6 solutions over a 22-150 °C range. Furthermore, liquid-liquid extraction of SeO42-, MoO42- and WO42- ions from water into an organic solvent by nanojars was investigated.
Collapse
Affiliation(s)
- Wisam
A. Al Isawi
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Angel S. Philip
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Pooja Singh
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gellert Mezei
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
3
|
Li W, Xie J, Huang R, Chen W, Du H. Molecular characteristics of dissolved organic matter regulate the binding and migration of tungsten in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176670. [PMID: 39366568 DOI: 10.1016/j.scitotenv.2024.176670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Tungsten (W) is an emerging contaminant that poses potential risks to both the environment and human health. While dissolved organic matter (DOM) can significantly influence the W's environmental behavior in natural aquifers, the mechanisms by which DOM's molecular structure and functional group diversity impact W binding and migration remain unclear. Using molecular weight-fractionated soil and sediment DOM (<1 kDa, 1-100 kDa, and 100 kDa-0.45 μm), this study systematically investigated the relationship between DOM molecular characteristics and tungstate (WO42-) binding properties using multiple spectroscopic methods, including FTIR, fluorescence spectroscopy and XPS. The migration behavior of WO42- in porous media was also investigated through quartz sand column experiments. Results revealed that approximately 75 % of W was controlled by DOM, with over 50 % binding to low molecular weight DOM (<1 kDa). Tungsten bound to medium-high molecular weight DOM (1-100 kDa, >100 kDa) showed a greater propensity for retention, with the >100 kDa fractions demonstrating stronger selective binding to W, exhibiting distribution coefficients (Kmd) of 6.11 L/g and 10.69 L/g, respectively. Further analysis indicated that W primarily binds with aromatic rings, phenolic hydroxyls, polysaccharides, and carboxyl groups in DOM, potentially affecting DOM structural stability and consequently influencing W migration characteristics. Free W migration in quartz sand was primarily controlled by Langmuir monolayer adsorption, leading to local enrichment (Da = 6.83, Rd = 86.98). When bound to DOM, W's migration ability significantly increased (Rd = 8-10), with adsorption shifting to a Freundlich multilayer model, primarily controlled by convective transport (Npe = 27-62> > 1.96), while adsorption effects weakened (Da ≈ 1). This study, for the first time, systematically reveals the regulatory mechanisms of DOM molecular characteristics on tungsten's environmental behavior. It offers crucial parameter support for constructing tungsten migration models and provides important guidance for tungsten pollution risk assessment and remediation strategies.
Collapse
Affiliation(s)
- Weijun Li
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Jian Xie
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Rui Huang
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
4
|
Sokolenko EA, Flühs D, Lalos F, Meyer P, Fiorentzis M, Lindziute M, Gemmecke J, Berchner-Pfannschmidt U, Hendgen-Cotta U, Bechrakis NE, Tsimpaki T, Dubicanac M, Wißmann A, Hilken G. Wolfram-silicone implants as effective radiation shielding for ocular brachytherapy: dosimetric features and in vivo animal study on biocompatibility. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:e515-e524. [PMID: 38815956 DOI: 10.1016/j.jcjo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To evaluate wolfram as a photon and beta absorber in the management of uveal melanoma with radiotherapy, examining its potential ocular adverse effects and physiologic tolerance using an in vivo rabbit ocular model. METHODS A method of manufacturing implants from mixtures of wolfram and silicone was developed. Their shielding effect on the radiation of sources used in ocular brachytherapy was investigated by dosimetric measurement in an eye phantom as well as numerical simulations. Different wolfram implantation techniques, such as extraocular fixation of a wolfram-silicone implant (n = 1), vitrectomy with silicone oil and intravitreal injection of a wolfram-silicone oil suspension (n = 2), and concurrent attachment of a wolfram implant onto the sclera (n = 2), were tested to investigate the long-term effects of wolfram. A vitrectomy with silicone oil without wolfram implantation was carried out in 2 rabbits (n = 2), constituting the control group. The eyes were enucleated after 3 months for histologic analysis. RESULTS Wolfram-silicone mixtures have been dosimetrically proven to be very effective radiation absorbers for use in ocular brachytherapy. Severe complications, such as endophthalmitis, secondary glaucoma, cornea decompensation, and vessel occlusion, were not documented in the tested rabbit eyes after the application of wolfram. Histologic examination of the bulbi after enucleation showed epiretinal gliosis without further pathologic findings in all eyes after vitrectomy. CONCLUSIONS The results of this study show that wolfram and wolfram-silicone implants constitute a promising candidate as potential radiation shielding substrates.
Collapse
Affiliation(s)
- Ekaterina A Sokolenko
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany.
| | - Dirk Flühs
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fotis Lalos
- MVZ Private Clinic of Ophthalmology, Altenessen GmbH, Essen, Germany
| | - Peter Meyer
- Ophthalmology Department, University Hospital Basel, Basel, Switzerland
| | - Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Migle Lindziute
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Justine Gemmecke
- Department of Physics, Technical University Dortmund, Dortmund, Germany
| | | | - Ulrike Hendgen-Cotta
- West German Heart and Vascular Center, Clinic for Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Theodora Tsimpaki
- Ophthalmology Department, University Hospital Basel, Basel, Switzerland
| | - Marko Dubicanac
- Central Animal Laboratory, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Wißmann
- Central Animal Laboratory, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Song L, Yang F, Bostick BC, Du H, Dai Y, Li C, Sun J, Liu C. Comparison of multiple preservation and digestion methods for determination of tungsten concentrations in environmental media using ICP-MS. Talanta 2024; 276:126307. [PMID: 38788381 DOI: 10.1016/j.talanta.2024.126307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Tungsten is an emerging environmental pollutant. However, a proved robust method for preserving and determining the concentrations of tungsten in environmental media is still lacking. This study examined and compared the suitability of classic methods and previously reported tungsten-oriented methods on preserving dissolved tungsten and recovering tungsten from soil/sediment matrix. Tungsten concentrations in the water samples and digestates were then determined by inductively coupled plasma mass spectrometry. Our data showed that the tungsten-oriented HF and alkaline preservatives indeed successfully maintained the stability of dissolved tungsten. Even when preserved using HNO3 or HCl, dissolved tungsten concentrations did not notably change in most of our water samples over the course of ∼4 months. Using glass containers for storing water samples also did not produce much difference from using high-density polyethylene containers. Our data further suggested that the addition of HF in digestion was important for tungsten solubilization from soil/sediment matrix. The digestion methods with HNO3/HCl/HF and HNO3/HF/NH4OH/EDTA both yielded quantitative recoveries of tungsten from certified reference materials and known synthetic samples, while the other tested methods had limited recoveries. The methods validated by this study could be used to accurately determine tungsten concentrations in environmental media and thereby to assess the fate and potential risks of tungsten.
Collapse
Affiliation(s)
- Lei Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fei Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York, 10964, United States
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Dai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
6
|
Wang Y, Nie B, Zheng S, Wu H, Chen N, Wang D. Emerging activated tungsten dust: Source, environmental behaviors, and health effects. ENVIRONMENT INTERNATIONAL 2024; 188:108774. [PMID: 38810497 DOI: 10.1016/j.envint.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Fusion energy investigation has stepped to a new stage adopting deuterium and tritium as fuels from the previous stage concentrating hydrogen plasma physics. Special radiation safety issues would be introduced during this stage. In addition to industrial and military uses, tungsten is also regarded as the most promising plasma facing material for fusion reactors. During the operation of fusion reactors, tungsten-based plasma facing materials can be activated via neutron nuclear reaction. Meanwhile, activated tungsten dust can be produced when high-energy plasma interacts with the tungsten-based plasma facing materials, namely plasma wall interaction. Activated tungsten dust would be an emerging environmental pollutant with radiation toxicity containing various radionuclides in addition to the chemical toxicity of tungsten itself. Nonetheless, the historical underestimation of its environmental availability has led to limited research on tungsten compared to other environmental contaminants. This paper presents the first systematic review on the safety issue of emerging activated tungsten dust, encompassing source terms, environmental behaviors, and health effects. The key contents are as follows: 1) to detail the source terms of activated tungsten dust from aspects of tungsten basic properties, generation mechanism, physical morphology and chemical component, radioactivity, as well as potential release pathways, 2) to illustrate the environmental behaviors from aspects of atmospheric dispersion and deposition, transformation and migration in soil, as well as plant absorption and distribution, 3) to identify the toxicity and health effects from aspects of toxicity to plants, distribution in human body, as well as health effects by radiation and chemical toxicity, 4) based on the research progress, research and development issues needed are also pointed out to better knowledge of safety issue of activated tungsten dust, which would be beneficial to the area of fusion energy and ecological impact caused by the routine tungsten related industrial and military applications.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Nie
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shanliang Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dezhong Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Barrera-Chimal J, Henley N, Grant MP, Cenatus S, Geraldes P, Pichette V, Gerarduzzi C. Tungsten toxicity on kidney tubular epithelial cells induces renal inflammation and M1-macrophage polarization. Cell Biol Toxicol 2023; 39:3061-3075. [PMID: 37368165 DOI: 10.1007/s10565-023-09817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Tungsten is widely used in medical, industrial, and military applications. The environmental exposure to tungsten has increased over the past several years, and few studies have addressed its potential toxicity. In this study, we evaluated the effects of chronic oral tungsten exposure (100 ppm) on renal inflammation in male mice. We found that 30- or 90-day tungsten exposure led to the accumulation of LAMP1-positive lysosomes in renal tubular epithelial cells. In addition, the kidneys of mice exposed to tungsten showed interstitial infiltration of leukocytes, myeloid cells, and macrophages together with increased levels of proinflammatory cytokines and p50/p65-NFkB subunits. In proximal tubule epithelial cells (HK-2) in vitro, tungsten induced a similar inflammatory status characterized by increased mRNA levels of CSF1, IL34, CXCL2, and CXCL10 and NFkB activation. Moreover, tungsten exposure reduced HK-2 cell viability and enhanced reactive oxygen species generation. Conditioned media from HK-2 cells treated with tungsten induced an M1-proinflammatory polarization of RAW macrophages as evidenced by increased levels of iNOS and interleukin-6 and decreased levels of the M2-antiinflammatory marker CD206. These effects were not observed when RAW cells were exposed to conditioned media from HK-2 cells treated with tungsten and supplemented with the antioxidant N-acetylcysteine (NAC). Similarly, direct tungsten exposure induced M1-proinflammatory polarization of RAW cells that was prevented by NAC co-treatment. Altogether, our data suggest that prolonged tungsten exposure leads to oxidative injury in the kidney ultimately leading to chronic renal inflammation characterized by a proinflammatory status in kidney tubular epithelial cells and immune cell infiltration.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Michael Philip Grant
- Department of Orthopaedics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Schrodinger Cenatus
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Pedro Geraldes
- Research Center, Centre Hospitalier, Université de Sherbrooke, Quebec, Canada
| | - Vincent Pichette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Casimiro Gerarduzzi
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
9
|
Coreas R, Li Z, Chen J, Zhong W. Low-Dose Exposure of WS 2 Nanosheets Induces Differential Apoptosis in Lung Epithelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14493-14501. [PMID: 37726893 DOI: 10.1021/acs.est.3c01843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Escalating the production and application of tungsten disulfide (WS2) nanosheets inevitably increases environmental human exposure and warrants the necessity of studies to elucidate their biological impacts. Herein, we assessed the toxicity of WS2 nanosheets and focused on the impacts of low doses (≤10 μg/mL) on normal (BEAS-2B) and tumorigenic (A549) lung epithelial cells. The low doses, which approximate real-world exposures, were found to induce cell apoptosis, while doses ≥ 50 μg/mL cause necrosis. Focused studies on low-dose exposure to WS2 nanosheets revealed more details of the impacts on both cell lines, including reduction of cell metabolic activity, induction of lipid peroxidation in cell membranes, and uncoupling of mitochondrial oxidative phosphorylation that led to the loss of ATP production. These phenomena, along with the expression situations of a few key proteins involved in apoptosis, point toward the occurrence of mitochondria-dependent apoptotic signaling in exposed cells. Substantial differences in responses to WS2 exposure between normal and tumorigenic lung epithelial cells were noticed as well. Specifically, BEAS-2B cells experienced more adverse effects and took up more nanosheets than A549 cells. Our results highlight the importance of dose and cell model selection in the assessment of nanotoxicity. By using doses consistent with real-world exposures and comparing normal and diseased cells, we can gain knowledge to guide the development of safety precautions for mitigating the adverse impacts of nanomaterial exposure on human health.
Collapse
Affiliation(s)
- Roxana Coreas
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Zongbo Li
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Surendranath A. Evaluation of biodistribution and kinetics of tungsten disulphide quantum dots by Inductively coupled plasma mass spectroscopy: A detailed in vivo QD-bio interactions study. Colloids Surf B Biointerfaces 2023; 223:113153. [PMID: 36716657 DOI: 10.1016/j.colsurfb.2023.113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
WS2 QDs are inorganic semiconductor nanocrystals which belong to the family of transition metal dichalcogenides (TMDC). As toxic heavy metal free quantum dots, TMDC based QDs is gaining attention due to excellent chemical stability, good thermal conductivity and stable optical properties. In the present study, bright green emissive and excellent WS2 QDs was synthesized by solvothermal liquid exfoliation method using NMP solvent. The size and morphology were confirmed by HRTEM (3-4 nm, spherical). Illumination by 370 nm UV source showed bright green fluorescence due to the excellent quantum confinement effect. The as synthesised WS2 QDs exhibits excellent properties such as stable dispersion, extreme low cytotoxicity as well as fluorescent properties, which makes them suitable candidates for optoelectronic and biological applications. Cytotoxicity analysis via NRU assay confirmed the low cytotoxic potential. Subcellular localization confirmed the distribution of WS2 QDs around the nucleus. Spleenocyte proliferation via radioactivity measurement showed lack of any immune response. ICP-MS analysis showed that a significant amount of the administered WS2 QDs was found in the urine samples when compared to feces, which confirmed the renal excretion route of the material. WS2 QDs didnot evoke any evident toxic response upto 10 mg/kg body weight i.p administration. Excellent fluorescence property shown by this material marked its prominence in in vitro/ in vivo imaging and other biomedical applications. The study proved that WS2 QDs are excellent candidate materials validated to be safe material for biomedical applications.
Collapse
Affiliation(s)
- Anju Surendranath
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India.
| |
Collapse
|
11
|
San Valentin EM, Damasco JA, Bernardino M, Court KA, Godin B, Canlas GM, Melancon A, Chintalapani G, Jacobsen MC, Norton W, Layman RR, Fowlkes N, Chen SR, Huang SY, Melancon MP. Image-guided deployment and monitoring of a novel tungsten nanoparticleâ€"infused radiopaque absorbable inferior vena cava filter in pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527049. [PMID: 36798362 PMCID: PMC9934538 DOI: 10.1101/2023.02.06.527049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The use of absorbable inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) eliminates risks and complications associated with the use of retrievable metallic filters. Radiopacity of radiolucent PPDO IVCFs can be improved with the incorporation of nanoparticles (NPs) made of high-atomic number materials such as gold and bismuth. In this study, we focused on incorporating tungsten NPs (WNPs), along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of the WNPs. We compared the imaging properties of WNPs with single-polymer PHB (W-P) and WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). Our in vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physico-mechanical properties of the PPDO sutures. We observed a more sustained release of WNPs from W-PB-coated sutures than W-P-coated sutures. We successfully deployed W-P- and W-PB-coated IVCFs into the inferior vena cava of pig models, with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at week 3 for both filters. Results of this study highlight the utility of NPs and polymers for enhancing radiopacity of medical devices; however, different methods of incorporating NPs and polymers can still be explored to improve the efficacy, safety, and quality of absorbable IVCFs.
Collapse
|
12
|
Kim KS, Maeng WY, Kim S, Lee G, Hong M, Kim GB, Kim J, Kim S, Han S, Yoo J, Lee H, Lee K, Koo J. Isotropic conductive paste for bioresorbable electronics. Mater Today Bio 2023; 18:100541. [PMID: 36647537 PMCID: PMC9840151 DOI: 10.1016/j.mtbio.2023.100541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
Bioresorbable implantable medical devices can be employed in versatile clinical scenarios that burden patients with complications and surgical removal of conventional devices. However, a shortage of suitable electricalinterconnection materials limits the development of bioresorbable electronic systems. Therefore, this study highlights a highly conductive, naturally resorbable paste exhibiting enhanced electrical conductivity and mechanical stability that can solve the existing problems of bioresorbable interconnections. Multifaceted experiments on electrical and physical properties were used to optimize the composition of pastes containing beeswax, submicron tungstenparticles, and glycofurol. These pastes embody isotropic conductive paths for three-dimensional interconnects and function as antennas, sensors, and contact pads for bioresorbable electronic devices. The degradation behavior in aqueous solutions was used to assess its stability and ability to retain electrical conductance (∼7 kS/m) and structural form over the requisite dissolution period. In vitro and in vivo biocompatibility tests clarified the safety of the paste as an implantable material.
Collapse
Affiliation(s)
- Kyung Su Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Woo-Youl Maeng
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Seongchan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Minki Hong
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Ga-been Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea,Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Jaewon Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea
| | - Sungeun Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Seunghun Han
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Jaeyoung Yoo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea,Research Institute for Convergence Science, Seoul National University, Seoul, 08826, South Korea
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea,Corresponding author.. School of Biomedical Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
Azman MN, Abualroos NJ, Yaacob KA, Zainon R. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
15
|
Tomašek I, Mouri H, Dille A, Bennett G, Bhattacharya P, Brion N, Elskens M, Fontijn K, Gao Y, Gevera PK, Ijumulana J, Kisaka M, Leermakers M, Shemsanga C, Walraevens K, Wragg J, Kervyn M. Naturally occurring potentially toxic elements in groundwater from the volcanic landscape around Mount Meru, Arusha, Tanzania and their potential health hazard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150487. [PMID: 34600984 DOI: 10.1016/j.scitotenv.2021.150487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The population of the semi-arid areas of the countries in the East African Rift Valley (EARV) is faced with serious problems associated with the availability and the quality of the drinking water. In these areas, the drinking water supply largely relies on groundwater characterised by elevated fluoride concentration (> 1.5 mg/L), resulting from interactions with the surrounding alkaline volcanic rocks. This geochemical anomaly is often associated with the presence of other naturally occurring potentially toxic elements (PTEs), such as As, Mo, U, V, which are known to cause adverse effects on human health. This study reports on the occurrence of such PTEs in the groundwater on the populated flanks of Mt. Meru, an active volcano situated in the EARV. Our results show that the majority of analysed PTEs (Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Se, Sr, Pb, and Zn) are within the acceptable limits for drinking purpose in samples collected from wells, springs and tap systems, suggesting that there is no immediate health risk associated with these PTEs. However, some of the samples were found to exceed the WHO tolerance limit for U (> 30 μg/L) and Mo (> 70 μg/L). The sample analysis also revealed that in some of the collected samples, the concentrations of total dissolved solids, Na+ and K+ exceed the permissible limits. The concerning levels of major parameters and PTEs were found to be associated with areas covered with debris avalanche deposits on the northeast flank, and volcanic ash and alluvial deposits on the southwest flanks of the volcano. The study highlights the need to extend the range of elements monitored in the regional groundwater and make a more routine measurement of PTEs to ensure drinking water safety and effective water management measures.
Collapse
Affiliation(s)
- Ines Tomašek
- Analytical, Environmental and Geochemistry (AMGC) group, Department of Chemistry, Vrije Universiteit Brussel, Belgium; Physical Geography (FARD) group, Department of Geography, Vrije Universiteit Brussel, Belgium.
| | - Hassina Mouri
- Department of Geology, University of Johannesburg, South Africa
| | - Antoine Dille
- Physical Geography (FARD) group, Department of Geography, Vrije Universiteit Brussel, Belgium; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
| | - George Bennett
- Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Belgium; Department of Mining and Mineral Processing Engineering, University of Dodoma, Tanzania
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Sweden
| | - Natacha Brion
- Analytical, Environmental and Geochemistry (AMGC) group, Department of Chemistry, Vrije Universiteit Brussel, Belgium
| | - Marc Elskens
- Analytical, Environmental and Geochemistry (AMGC) group, Department of Chemistry, Vrije Universiteit Brussel, Belgium
| | - Karen Fontijn
- Laboratoire G-Time, Department of Geosciences, Environment and Society, Université libre de Bruxelles, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC) group, Department of Chemistry, Vrije Universiteit Brussel, Belgium
| | | | - Julian Ijumulana
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Sweden; DAFWAT Research Group, Department of Water Resources Engineering, College of Engineering and Technology, University of Dar es Salaam, Tanzania
| | - Mary Kisaka
- Physical Geography (FARD) group, Department of Geography, Vrije Universiteit Brussel, Belgium; Department of Geology, University of Dodoma, Tanzania
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry (AMGC) group, Department of Chemistry, Vrije Universiteit Brussel, Belgium
| | | | - Kristine Walraevens
- Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, Belgium
| | - Joanna Wragg
- British Geological Survey, Environmental Science Centre, Nottingham, United Kingdom
| | - Matthieu Kervyn
- Physical Geography (FARD) group, Department of Geography, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
16
|
Grant MP, Henley N, Dubuissez M, Chen N, Hartmann U, Royal V, Barbier O, Pichette V, Gerarduzzi C. Sub-chronic oral exposure of tungsten induces markers of kidney injury. Am J Physiol Cell Physiol 2021; 322:C205-C217. [PMID: 34852206 DOI: 10.1152/ajpcell.00277.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tungsten is a naturally occurring transition element used in a broad range of applications. As a result of its extensive use, we are increasingly exposed to tungsten from our environment, including potable water, since tungsten can become bioaccessible in ground sources. The kidneys are particularly susceptible to tungsten exposure as this is the main site for tungsten excretion. In this study, we investigated the prolonged effects of tungsten on the kidneys and how this may impact injury and function. When mice were exposed to tungsten in their drinking water for 1-month, kidney function had not significantly changed. Following 3-month exposure, mice were presented with deterioration in kidney function as determined by serum and urine creatinine levels. During 3-months of tungsten exposure, murine kidneys demonstrated significant increases in the myofibroblast marker ⍺SMA, and extracellular matrix products: fibronectin, collagen, and matricellular proteins. In addition, Masson's trichrome and H&E staining revealed an increase in fibrotic tissue and vacuolization of tubular epithelial cells, respectively, from kidneys of tungsten-treated mice, indicative of renal injury. In vitro treatment of kidney fibroblasts with tungsten led to increased proliferation and upregulation of Transforming Growth Factor Beta 1 (TGFβ1), which was consistent with the appearance of fibroblast-to-myofibroblast transition (FMT) markers. Our data suggest that continuous exposure to tungsten impairs kidney function that may lead to the development of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Michael P Grant
- Department of Orthopaedics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada; Department of Surgery, McGill University, Montréal, Québec, Montreal, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Montreal, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada; Département de microbiologie, infectiologie et immunologie, Montreal, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Vancouver, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Cologne, Germany
| | - Virginie Royal
- Départment de Pathologie, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Montreal, Canada
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico, Mexico
| | - Vincent Pichette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Montreal, Canada
| | - Casimiro Gerarduzzi
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Montreal, Canada
| |
Collapse
|
17
|
VanderSchee CR, Frier D, Kuter D, Mann KK, Jackson BP, Bohle DS. Quantification of local zinc and tungsten deposits in bone with LA-ICP-MS using novel hydroxyapatite-collagen calibration standards. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2021; 36:2431-2438. [PMID: 35992610 PMCID: PMC9390078 DOI: 10.1039/d1ja00211b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tungsten has recently emerged as a potential toxicant and is known to heterogeneously deposit in bone as reactive polytungstates. Zinc, which accumulates in regions of bone remodeling, also has a heterogenous distribution in bone. Determining the local concentrations of these metals will provide valuable information about their mechanisms of uptake and action. A series of bone (BN), 7:3 hydroxyapatite:collagen (HC), and hydroxyapatite (HA) standards were spiked with tungsten and zinc and used as calibration standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of bone tissue. The analytical performance of these standards was studied and validated at different step sizes using NIST SRM 1486 Bone Meal. The effect of matrix-matched calibration was assessed by comparing the calibration with BN and HC standards, which incorporate both inorganic and organic components of bone, to that of HA standards. HC standards were found to be more homogenous (RSD < 10%) and provide a linear calibration with better accuracy (R2 > 0.994) compared to other standards. The limits of detection for HC at a 15 μm step size were determined to be 0.24 and 0.012 μg g-1 for zinc and tungsten, respectively. Using this approach, we quantitatively measured zinc and tungsten deposits in the femoral bone of a mouse exposed to 15 μg mL-1 tungsten for four weeks. Localized concentrations of zinc (942 μg g-1) and tungsten (15.7 μg g-1) at selected regions of enrichment were substantially higher than indicated by bulk measurements of these metals.
Collapse
Affiliation(s)
- Cassidy R VanderSchee
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
- Department of Chemistry, The King's University, Edmonton, T6H 2H3, Canada
| | - David Frier
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - David Kuter
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, McGill University, 3755 Cote Ste Catherine Rd, Montreal, H3T 1E2 Canada
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| |
Collapse
|
18
|
Sachdeva S, Sharma A, Flora SJS. MiADMSA abrogates sodium tungstate-induced oxidative stress in rats. Drug Chem Toxicol 2021; 45:2448-2453. [PMID: 34348527 DOI: 10.1080/01480545.2021.1957560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tungsten (W) and its compounds have emerged as a relatively new area of environmental health concern in the last decade. Tungsten is environmentally benign due to its increasing use in armour-piercing munitions and as a replacement for lead in other ammunition. It has also been identified in various hazardous waste sites and therefore been proposed for inclusion in the Environmental Protection Agency National Priorities List. The major objective of this study was to evaluate the therapeutic efficacy of orally administered monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA) against tungstate induced oxidative injury in blood, liver and kidneys of male Wistar rats. MiADMSA, a thiol chelator has gained wide recognition recently as a future chelating drug of choice specifically for arsenic and was chosen for this study as tungstate ions too have an affinity toward the -SH group thus, being less bioavailable in the body. We determined the effects of MiADMSA (50 mg/kg, p.o.) against sodium tungstate (500 ppm in drinking water, daily for 28 days) induced biochemical changes indicative of oxidative stress in blood, and other soft tissues of of male Wistar rats. Tungsten exposure led to an increased levels of Reactive Oxygen Species (ROS) in liver, kidney, spleen and blood accompanied also by an increase in TBARS levels. The GSH: GSSG ratio also showed a decrease on sodium tungstate intoxication. Treatment with MiADMSA restored most of the sodium tungstate-induced alterations in the biomarkers suggestive of oxidative stress. These preliminary results led us to conclude that sub-acute exposure to tungstate-induced oxidative stress could be effectively reduced by the administration of MiADMSA and thus might be a promising antidote for studying in detail its efficacy in reducing body tungstate burden and its excretion post tungstate exposure.
Collapse
Affiliation(s)
- Sherry Sachdeva
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Ankita Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, India
| | - S J S Flora
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, India
| |
Collapse
|
19
|
Sachdeva S, Maret W. Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate. Toxicol Mech Methods 2021; 31:690-698. [PMID: 34320920 DOI: 10.1080/15376516.2021.1956031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tungsten has no known function in humans and is a relatively new contaminant, whereas molybdenum, its congener in the periodic table, is a nutritionally essential element. In addition to early studies on molybdosis in ruminants, their toxic effects in the form of tungstate and molybdate have been addressed primarily in rodents and are predominantly mediated by inducing oxidative stress in various tissues. The purpose of this study was to evaluate the differences between tungstate and molybdate in human liver (HepG2) and kidney (HEK293) cell lines in terms of retention in cells, effect on reactive oxygen species, and activities of xanthine oxidase and phosphatases. The cell lines were exposed to tungstate or molybdate (1 µM to 10 mM) for 24 h, lysed and analyzed for the above biochemical parameters. Despite the chemical similarity of the two anions, cell-specific differential effects were observed. At all concentrations, tungstate was retained more in HEK293 cells while molybdate was retained more in HepG2 cells. HepG2 cells were more sensitive to tungstate than molybdate, showing reduced viability at concentrations as low as 10 µM. Exposure to either anion resulted in the inhibition of protein tyrosine phosphatases at 1 mM and an increased production of reactive oxygen species (ROS) at 100 µM despite their inhibition of the ROS-producing molybdenum enzyme xanthine oxidase. In conclusion, the results indicate that excess of nutritionally essential molybdate or non-essential tungstate causes toxicity by affecting ROS- and phosphorylation-dependent signaling pathways and ensuing gene expression.
Collapse
Affiliation(s)
- Sherry Sachdeva
- Division of Regulatory Toxicology, Defence Research Development Establishment, Gwalior, India
| | - Wolfgang Maret
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
20
|
Dias D, Don D, Jandosov J, Bernardo M, Pinto F, Fonseca I, Sanches A, Caetano PS, Lyubchyk S, Lapa N. Highly efficient porous carbons for the removal of W(VI) oxyanion from wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125201. [PMID: 33524731 DOI: 10.1016/j.jhazmat.2021.125201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Pyrolysis chars derived from rice wastes were chemically activated and used in W(VI) oxyanion adsorption assays in synthetic and mining wastewaters. For comparison purposes, a commercial activated carbon (CAC) was also used. Different experimental conditions were tested in the adsorption assays: solid/liquid ratio (S/L), initial pH, contact time, and initial W concentration. The porous carbon P2C+KOH presented the overall best performance in both media, due to its high surface area (2610 m2 g-1), mesopore volume (1.14 cm3 g-1), and neutral pHpzc (6.92). In the synthetic wastewater, the highest uptake capacity of P2C+KOH (854 mg g-1) was found in the assays with an S/L 0.1 g L-1, an initial pH 2, and an initial W concentration of 150 mg L-1, for 24 h. This value was almost 8 times higher than the one obtained for CAC (113 mg g-1). In the mining wastewater, P2C+KOH showed an even higher uptake capacity (1561 mg g-1) in the assay with the same experimental conditions, which was almost 3 times higher than for CAC (561 mg g-1). These results suggest that P2C+KOH seems to be an efficient alternative to CAC in the W(VI) adsorption from liquid effluents.
Collapse
Affiliation(s)
- Diogo Dias
- LAQV/REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa (DCTB), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Davide Don
- DICEA, Dipartimento di Ingegneria Civile, Edile e Ambientale; Università di Padova, Padova, Italy
| | - Jakpar Jandosov
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tole bi Street, Almaty, Kazakhstan
| | - Maria Bernardo
- LAQV/REQUIMTE, Departamento de Química (DQ), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Filomena Pinto
- Unidade de Bioenergia (UB), Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, Ed. J, 1649-038 Lisboa, Portugal
| | - Isabel Fonseca
- LAQV/REQUIMTE, Departamento de Química (DQ), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - André Sanches
- GeoBioTec, Polo FCTNOVA, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Paulo Sá Caetano
- GeoBioTec, Polo FCTNOVA, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Svitlana Lyubchyk
- LAQV/REQUIMTE, Departamento de Química (DQ), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Nuno Lapa
- LAQV/REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa (DCTB), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal.
| |
Collapse
|
21
|
Adsorption of bio-organic eco-corona molecules reduces the toxic response to metallic nanoparticles in Daphnia magna. Sci Rep 2021; 11:10784. [PMID: 34031463 PMCID: PMC8144400 DOI: 10.1038/s41598-021-90053-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/05/2021] [Indexed: 01/05/2023] Open
Abstract
As the use of engineered nanomaterials increases, so does the risk of them spreading to natural ecosystems. Hitherto, knowledge regarding the toxic properties of nanoparticles (NP’s) and their potential interactions with natural bio-organic molecules adsorbed to them, and thereby forming surface coronas, is limited. However, we show here that the toxic effect of NPs of tungsten carbide cobalt (WC–Co) and cobalt (Co) on the crustacean Daphnia magna is postponed in the presence of natural biological degradation products (eco-corona biomolecules). For Daphnia exposed to WC–Co NPs the survival time increased with 20–25% and for Co NPs with 30–47% after mixing the particles with a solution of eco-corona biomolecules before exposure. This suggests that an eco-corona, composed of biomolecules always present in natural ecosystems, reduces the toxic potency of both studied NPs. Further, the eco-coronas did not affect the particle uptake, suggesting that the reduction in toxicity was related to the particle-organism interaction after eco-corona formation. In a broader context, this implies that although the increasing use and production of NPs may constitute a novel, global environmental threat, the acute toxicity and long-term effects of some NPs will, at least under certain conditions, be reduced as they enter natural ecosystems.
Collapse
|
22
|
Chou H, Grant MP, Bolt AM, Guilbert C, Plourde D, Mwale F, Mann KK. Tungsten Increases Sex-Specific Osteoclast Differentiation in Murine Bone. Toxicol Sci 2021; 179:135-146. [PMID: 33146397 PMCID: PMC7797767 DOI: 10.1093/toxsci/kfaa165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tungsten is a naturally occurring metal that is increasingly used in industry and medical devices, and is labeled as an emerging environmental contaminant. Like many metals, tungsten accumulates in bone. Our previous data indicate that tungsten decreases differentiation of osteoblasts, bone-forming cells. Herein, we explored the impact of tungsten on osteoclast differentiation, which function in bone resorption. We observed significantly elevated osteoclast numbers in the trabecular bone of femurs following oral exposure to tungsten in male, but not female mice. In order to explore the mechanism(s) by which tungsten increases osteoclast number, we utilized in vitro murine primary and cell line pre-osteoclast models. Although tungsten did not alter the adhesion of osteoclasts to the extracellular matrix protein, vitronectin, we did observe that tungsten enhanced RANKL-induced differentiation into tartrate-resistant acid phosphatase (TRAP)-positive mononucleated osteoclasts. Importantly, tungsten alone had no effect on differentiation or on the number of multinucleated TRAP-positive osteoclasts. Enhanced RANKL-induced differentiation correlated with increased gene expression of differentiated osteoclast markers Nfatc1, Acp5, and Ctsk. Although tungsten did not alter the RANK surface receptor expression, it did modulate its downstream signaling. Co-exposure of tungsten and RANKL resulted in sustained positive p38 signaling. These findings demonstrate that tungsten enhances sex-specific osteoclast differentiation, and together with previous findings of decreased osteoblastogenesis, implicate tungsten as a modulator of bone homeostasis.
Collapse
Affiliation(s)
- Hsiang Chou
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Michael P Grant
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Alicia M Bolt
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque 87131, New Mexico
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Dany Plourde
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Experimental Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| |
Collapse
|
23
|
Wiklund JA, Kirk JL, Muir DCG, Gleason A, Carrier J, Yang F. Atmospheric trace metal deposition to remote Northwest Ontario, Canada: Anthropogenic fluxes and inventories from 1860 to 2010. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142276. [PMID: 33370897 DOI: 10.1016/j.scitotenv.2020.142276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
National and global inventories of anthropogenic trace element emissions to air is a comparatively recent phenomenon (post-1993 in Canada) as is the monitoring of atmospheric metal deposition, the latter being also very spatially limited. Paleo-reconstructive methods offer a contiguous record of environmental contamination providing a needed framework to establish locally relevant "pre-industrial" (~natural) conditions which can be compare with relative and quantitative deviations away from reference conditions. In this study, we reconstruct the history of the long-range, anthropogenic sourced atmospheric trace element deposition to the remote region of Northwestern Ontario Canada (Experimental Lakes Area (ELA)) using dated sediment records from five lakes. Several elements are shown to be highly enriched in lake sediments relative to pre-1860 sediments (Antimony, Lead, Tellurium, Tin, Arsenic, Bismuth, Cadmium and Mercury) and moderately (Zinc, Tungsten, Thallium, Copper, Silver, Selenium, Nickel and Vanadium). Mean decadal anthropogenic atmospheric fluxes (mg m-2 yr-1) are reconstructed for 1860-2010 and compare well with available local (ELA), regional (NW Ontario Canada, N Michigan USA) monitoring data, as well as global assessments of anthropogenic contribution to atmospheric trace metal burdens. Quantitative paleo reconstructions of atmospheric contamination history using the collective signal from multiple lakes provide a rigorous methodology to assess trends, uncertainties, evaluation with monitoring data and, provide an opportunity to explore landscape processes of contaminant transport and storage. Further study of the latter is recommended to understand the latency of legacy anthropogenic contamination of the environment.
Collapse
Affiliation(s)
- Johan A Wiklund
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6.
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6.
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6
| | - Amber Gleason
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6
| | - Jacques Carrier
- National Laboratory of Environmental Testing, Environment Canada, Burlington, Ontario, Canada L7R 4A6
| | - Fan Yang
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada, L7R 4A6
| |
Collapse
|
24
|
Hobson C, Kulkarni HV, Johannesson KH, Bednar A, Tappero R, Mohajerin TJ, Sheppard PR, Witten ML, Hettiarachchi GM, Datta S. Origin of tungsten and geochemical controls on its occurrence and mobilization in shallow sediments from Fallon, Nevada, USA. CHEMOSPHERE 2020; 260:127577. [PMID: 32758784 DOI: 10.1016/j.chemosphere.2020.127577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Tungsten (W) occurrence and speciation was investigated in sediments collected from Fallon, Nevada where previous studies have linked elevated W levels in human body fluids to an unusual cluster of childhood leukemia cases. The speciation of sedimentary W was determined by μ-XRF mapping and μ-XANES. The W content of the analyzed surface sediments ranged between 81 and 25,908 mg/kg, which is significantly higher than the W content in deeper sediments which ranged from 37 to 373 mg/kg at 30 cm depth. The μ-XANES findings reveal that approximately 20-50% of the total W in the shallow sediment occurs in the metallic form (W0); the rest occurs in the oxide form (WVIO3). Because W0 does not occur naturally, its elevated concentrations in surface sediments point toward a possible local anthropogenic origin. The oxidation of metallic W0 with meteoric waters likely leads to the formation of WVIO3. The chief water-soluble W species was identified as WO42- by chromatographic separation and speciation modeling. These results led us to postulate that W0 particles from a currently unknown but local source(s) is (are) deposited onto the soils and/or surface sediments. The W0 in interaction with meteoric water is oxidized to WVIO3, and as these sediment-water interactions progress, WO42- is formed in the water at pH ∼7. Under pH < 7, and sufficient W concentrations, tungstate tends to polymerize, and polymerized species are less likely to adsorb onto sediments. Polymerized species have lower affinity than monomers, which leads to enhanced mobility of W.
Collapse
Affiliation(s)
- Chad Hobson
- Department of Geology, Kansas State University, Manhattan, KS, 66506, USA
| | - Harshad V Kulkarni
- Department of Geology, Kansas State University, Manhattan, KS, 66506, USA; Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Karen H Johannesson
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Anthony Bednar
- US Army Engineer Research and Development Center Vicksburg, MS, 39180, USA
| | - Ryan Tappero
- Photon Sciences Dept., Brookhaven National Lab, Upton, NY, 11973, USA
| | - T Jade Mohajerin
- Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, 70118, USA
| | | | | | | | - Saugata Datta
- Department of Geology, Kansas State University, Manhattan, KS, 66506, USA; Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
25
|
Dose dependent changes in oxidative stress, hematological variables, tissue pathology, and apoptosis following chronic sodium tungstate exposure in rats. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Sohail M, Ashraf MZ, Nadeem R, Bibi S, Rehman R, Iqbal MA. Techniques in the synthesis of organometallic compounds of tungsten. REV INORG CHEM 2020. [DOI: 10.1515/revic-2019-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractTungsten is an elegant substance, and its compounds have great significance because of their extensive range of applications in diverse fields such as in gas sensors, photocatalysis, lithium ion batteries, H2production, electrochromic devices, dyed sensitized solar cells, microchip technology, and liquid crystal displays. Tungsten compounds exhibit a more efficient catalytic behavior, and tungsten-dependent enzymes generally catalyze the transfer of an oxygen atom to or from a physiological donor/acceptor with the metal center. Furthermore, tungsten has an n-type semiconductor band gap. Tungsten forms complexes by reacting with several elements such as H, C, N, O, and P as well as other numerous inorganic elements. Interestingly, all tungsten reactions occur at ambient temperature, usually with tetrahydrofuran and dichloromethane under vacuum. Tungsten has extraordinarily high-temperature properties, making it very useful for X-ray production and heating elements in furnaces. Tungsten coordinates with diverse nonmetallic elements and ligands and produces interesting compounds. This article describes an overview of the synthesis of various organometallic compounds of tungsten.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Raziya Nadeem
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Rabia Rehman
- Institute of Chemistry, University of the Punjab, Lahore 5400, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad 38040, Pakistan
| | | |
Collapse
|
27
|
Zhang R, Song C, Kou M, Yin P, Jin X, Wang L, Deng Y, Wang B, Xia D, Wong PK, Ye L. Sterilization of Escherichia coli by Photothermal Synergy of WO 3-x/C Nanosheet under Infrared Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3691-3701. [PMID: 32100998 DOI: 10.1021/acs.est.9b07891] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The application of photocatalytic sterilization technology for the sterilization of water has been broadly studied in recent years. However, developing photocatalysts with high disinfection efficiency remains an urgent challenge. Tungsten trioxide with coexisting oxygen vacancies and carbon coating (WO3-x/C) has been successfully synthesized toward the photothermal inactivation of Escherichia coli. Oxygen vacancies and carbon coating bring WO3-x/C strong absorption in the infrared region and enhance the carrier separation efficiency. As a result, a higher sterilization rate is obtained compared to WO3. WO3-x/C can completely inactivate E. coli under infrared light within 40 min through photothermal synergy process. During the process of inactivating bacteria over WO3-x/C, E. coli is killed by the destruction of their cell membrane to decrease the activity of enzymes and release the cell contents, which can be ascribed to the efficient generation of reactive oxygen species (O2•- and •OH) and thermal effect. This work demonstrates a novel approach for engineering efficient and energy-saving catalysts for water sterilization.
Collapse
Affiliation(s)
- Rumeng Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
- Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Chenjie Song
- Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mingpu Kou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
- Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Panqing Yin
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen 518055, P. R. China
| | - Xiaoli Jin
- Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Li Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Yu Deng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Bo Wang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen 518055, P. R. China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, NT, Shatin, Hong Kong SAR, P. R. China
| | - Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
- Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
28
|
The Sealing Step in Aluminum Anodizing: A Focus on Sustainable Strategies for Enhancing Both Energy Efficiency and Corrosion Resistance. COATINGS 2020. [DOI: 10.3390/coatings10030226] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing demands for environmental accountability and energy efficiency in industrial practice necessitates significant modification(s) of existing technologies and development of new ones to meet the stringent sustainability demands of the future. Generally, development of required new technologies and appropriate modifications of existing ones need to be premised on in-depth appreciation of existing technologies, their limitations, and desired ideal products or processes. In the light of these, published literature mostly in the past 30 years on the sealing process; the second highest energy consuming step in aluminum anodization and a step with significant environmental impacts has been critical reviewed in this systematic review. Emphasis have been placed on the need to reduce both the energy input in the anodization process and environmental implications. The implications of the nano-porous structure of the anodic oxide on mass transport and chemical reactivity of relevant species during the sealing process is highlighted with a focus on exploiting these peculiarities, in improving the quality of sealed products. In addition, perspective is provided on plausible approaches and important factors to be considered in developing sealing procedures that can minimize the energy input and environmental impact of the sealing step, and ensure a more sustainable aluminum anodization process/industry.
Collapse
|
29
|
Hällström LPB, Alakangas L, Martinsson O. Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6180-6192. [PMID: 31865574 PMCID: PMC7044260 DOI: 10.1007/s11356-019-07305-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
More knowledge of the geochemical behavior of tungsten (W) and associated contamination risks is needed. Therefore, weathering of scheelite (CaWO4) and secondary sequestration and transport of W to groundwater in historical skarn tailings and surface water downstream of the tailings were studied. The tailings contained 920 mg/kg W, primarily in scheelite. Mineralogical and geochemical analyses were combined to elucidate the geochemical behavior of W in the tailings, and water samples were taken monthly during 2018 to monitor its mobility. In the tailings, a large peak of W was found at 1.5 m depth. There, 30 wt%. of W was present in easily reducible phases, indicating former scheelite weathering. Currently, W is being released from scheelite to water-soluble phases at 2.5 m depth. The release of WO42- is hypothetically attributed to anion exchange with CO32- released from calcite neutralizing acid produced from pyrrhotite oxidation in the upper tailings and transported downwards to pH conditions > 7. Higher concentrations of dissolved W were found in the groundwater and particulate W in downstream surface water than in reference water, but they were lower than current contamination thresholds. Tungsten showed correlations with hydrous ferric oxides (HFO) in both the tailings and surface water.
Collapse
Affiliation(s)
| | - Lena Alakangas
- Applied Geochemistry, Luleå University of Technology, Luleå, Sweden
| | | |
Collapse
|
30
|
VanderSchee CR, Kuter D, Chou H, Jackson BP, Mann KK, Bohle DS. Addressing K/L-edge overlap in elemental analysis from micro-X-ray fluorescence: bioimaging of tungsten and zinc in bone tissue using synchrotron radiation and laser ablation inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2019; 412:259-265. [PMID: 31776641 DOI: 10.1007/s00216-019-02244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 01/21/2023]
Abstract
Synchrotron radiation micro-X-ray fluorescence (SR-μXRF) is a powerful elemental mapping technique that has been used to map tungsten and zinc distribution in bone tissue. However, the heterogeneity of the bone samples along with overlap of the tungsten L-edge with the zinc K-edge signals complicates SR-μXRF data analysis, introduces minor artefacts into the resulting element maps, and decreases image sensitivity and resolution. To confirm and more carefully delineate these SR-μXRF results, we have employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to untangle the problem created by the K/L-edge overlap of the tungsten/zinc pair. While the overall elemental distribution results are consistent between the two techniques, LA-ICP-MS provides significantly higher sensitivity and image resolution compared with SR-μXRF measurements in bone. These improvements reveal tissue-specific distribution patterns of tungsten and zinc in bone, not observed using SR-μXRF. We conclude that probing elemental distribution in bone is best achieved using LA-ICP-MS, though SR-μXRF retains the advantage of being a non-destructive method with the capability of being paired with X-ray techniques, which determine speciation in situ. Since tungsten is an emerging contaminant recently found to accumulate in bone, accurately determining its distribution and speciation in situ is essential for directing toxicological studies and informing treatment regimes. Graphical abstract Tungsten and zinc localization and uptake in mouse femurs were imaged by synchrotron radiation, left, and by laser ablation ICP-MS, right. The increased resolution of the LA-ICP-MS technique resolves the problem of the overlap in tungsten's L-edge and zinc's K-edge.
Collapse
Affiliation(s)
| | - David Kuter
- Department of Chemistry, McGill University, Montreal, H3A0B8, Canada
| | - Hsiang Chou
- Lady Davis Institute for Medical Research, McGill University, 3755 Cote Ste Catherine Rd, Montreal, H3T 1E2, Canada
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Koren K Mann
- Lady Davis Institute for Medical Research, McGill University, 3755 Cote Ste Catherine Rd, Montreal, H3T 1E2, Canada
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montreal, H3A0B8, Canada.
| |
Collapse
|
31
|
Li R, Wang W, Wang S, Lin C, Wang X, Meng L, Yuan X. Comparison of two sequential extraction procedures for tungsten fractionation in the tungsten mining soils. RSC Adv 2019; 9:35456-35462. [PMID: 35528076 PMCID: PMC9074636 DOI: 10.1039/c9ra07158j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
Two sequential extraction procedures including Tessier and Wenzel schemes have been evaluated for the study of tungsten fractionation in soil samples adjacent to the World's largest and longest-operating tungsten mines in China. The efficiency and suitability of two methods and the corresponding extraction steps for partitioning tungsten were compared. Results showed the Tessier scheme classical for cation metals was inappropriate for tungsten fractionation. Although the percentage of readily bioavailable tungsten fractions extracted by the Tessier method is comparable to the Wenzel method, the Tessier scheme still has some drawbacks for partitioning tungsten mainly arising from the lack of selectivity of some of the reagents used. The Wenzel scheme has higher extraction recovery and efficiency than the Tessier method, especially for extracting amorphous and crystalline oxyhydroxides which were mainly responsible for tungsten retention. As a final conclusion, the study indicated that the Wenzel scheme should be more suitable for tungsten fractionation, but we need to make further improvement on the Wenzel scheme by supplementing the extraction stage for the oxidisable fraction to find a reliable and easy to use method to characterize tungsten forms in all soil samples to provide valuable information for risk assessment.
Collapse
Affiliation(s)
- Ruiping Li
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University Beijing China +86 10 58801858 +86 10 58801858
| | - Wenjie Wang
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Shiliang Wang
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University Beijing China +86 10 58801858 +86 10 58801858
| | - Xiangyi Wang
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Lingchuan Meng
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Xianlong Yuan
- Rizhao Environmental Monitoring Station Rizhao China
| |
Collapse
|
32
|
George I, Uboldi C, Bernard E, Sobrido MS, Dine S, Hagège A, Vrel D, Herlin N, Rose J, Orsière T, Grisolia C, Rousseau B, Malard V. Toxicological Assessment of ITER-Like Tungsten Nanoparticles Using an In Vitro 3D Human Airway Epithelium Model. NANOMATERIALS 2019; 9:nano9101374. [PMID: 31557883 PMCID: PMC6836029 DOI: 10.3390/nano9101374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
The International Thermonuclear Experimental Reactor (ITER) is an international project aimed at the production of carbon-free energy through the use of thermonuclear fusion. During ITER operation, in case of a loss-of-vacuum-accident, tungsten nanoparticles (W-NPs) could potentially be released into the environment and induce occupational exposure via inhalation. W-NPs toxicity was evaluated on MucilAir™, a 3D in vitro cell model of the human airway epithelium. MucilAir™ was exposed for 24 h to metallic ITER-like milled W-NPs, tungstate (WO42−) and tungsten carbide cobalt particles alloy (WC-Co). Cytotoxicity and its reversibility were assessed using a kinetic mode up to 28 days after exposure. Epithelial tightness, metabolic activity and interleukin-8 release were also evaluated. Electron microscopy was performed to determine any morphological modification, while mass spectrometry allowed the quantification of W-NPs internalization and of W transfer through the MucilAir™. Our results underlined a decrease in barrier integrity, no effect on metabolic activity or cell viability and a transient increase in IL-8 secretion after exposure to ITER-like milled W-NPs. These effects were associated with W-transfer through the epithelium, but not with intracellular accumulation. We have shown that, under our experimental conditions, ITER-like milled W-NPs have a minor impact on the MucilAir™ in vitro model.
Collapse
Affiliation(s)
- Isabelle George
- CEA, SCBM, Université Paris Saclay, 91191 Gif-sur-Yvette, France.
| | - Chiara Uboldi
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13005 Marseille, France.
| | | | - Marcos Sanles Sobrido
- CNRS, Aix Marseille Univ, IRD, INRA, Coll France, CEREGE, 13545, Aix en Provence, France.
| | - Sarah Dine
- Université Paris 13, Sorbonne Paris Cité; Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407-CNRS, 99 avenue J.-B. Clément 93430 Villetaneuse, France.
| | - Agnès Hagège
- Université de Lyon, CNRS, Université Claude Bernard Lyon I, Institute of Analytical Sciences (ISA), UMR 5280, 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Dominique Vrel
- Université Paris 13, Sorbonne Paris Cité; Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407-CNRS, 99 avenue J.-B. Clément 93430 Villetaneuse, France.
| | - Nathalie Herlin
- NIMBE, IRAMIS, Université Paris Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Jerome Rose
- CNRS, Aix Marseille Univ, IRD, INRA, Coll France, CEREGE, 13545, Aix en Provence, France.
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13005 Marseille, France.
| | | | - Bernard Rousseau
- CEA, SCBM, Université Paris Saclay, 91191 Gif-sur-Yvette, France.
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EIPM, F-13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
33
|
Peña-Ortega M, Del Rio-Salas R, Valencia-Sauceda J, Mendívil-Quijada H, Minjarez-Osorio C, Molina-Freaner F, de la O-Villanueva M, Moreno-Rodríguez V. Environmental assessment and historic erosion calculation of abandoned mine tailings from a semi-arid zone of northwestern Mexico: insights from geochemistry and unmanned aerial vehicles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26203-26215. [PMID: 31286374 DOI: 10.1007/s11356-019-05849-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Mining is known as one of the primary economic activities where exploitation of minerals and other materials have become essential for human development. However, this activity may represent a risk to the environment, starting from deforestation and ending with production of residues that might contain potentially toxic elements. Tailing deposits from historical mining are an example of waste that may represent an environmental concern when abandoned and exposed to environmental conditions. The town of Nacozari de Garcia, in northwestern Mexico, has three abandoned mine tailings (locally known as tailings I, II, and III) located around the urban area that represent important sources of dust and pollution. Images obtained using unmanned aerial vehicles (UAV) in conjunction with geochemical data are used to assess historic erosion calculation and pollution considering contamination and hazard indexes in tailings II and III. Digital elevation models of abandoned tailings were obtained using photogrammetry with UAV. A total of 37 surficial samples were collected from mine tailings to determine elemental concentrations (As, Cu, Pb, W, Zn) using portable X-ray fluorescence. Higher concentrations were found on samples from mine tailing II. Average concentrations followed the decreasing order of Cu > Zn > W > Pb > As for tailing II, whereas decreasing order of Cu > Zn > W > As > Pb was found for tailing III. Contamination Index (CI) values obtained from tailings II and III represent a low potential of pollution, whereas efflorescent crusts from these tailings represent a high potential of polluting soils and sediments by dust generation. Hazard Average Quotient (HAQ) values on both tailings suggest a very high potential of contamination if fluids infiltrate tailings and interact with surficial water and/or groundwater. Obtained surfaces of mine tailings II and III are 146,216 and 216,689 m2, respectively, which represent around 11% of the urbanized area. A loss mass of 321,675 tons was determined for mine tailing II, whereas 634,062 tons for tailing III, accounting for 0.96 million tons of total eroded mass. Since abandonment, calculated erosion rates of 493 t ha-1 year-1 (tailing II) and 232 t ha-1 year-1 (tailing III) are in agreement with those determined in other mining areas. CI and HAQ indexes provide good estimates of pollution associated with abandoned mine tailings from Nacozari de García. Historic erosion determined in these tailings is an environmental concern since eroded material and polluted water have been incorporated into the Moctezuma River, which feeds several villages, whose major activities include agriculture and livestock raising.
Collapse
Affiliation(s)
- Mayra Peña-Ortega
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas s/n, 83000, Hermosillo, Sonora, Mexico
| | - Rafael Del Rio-Salas
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico.
- Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, México City, Mexico.
| | - Javier Valencia-Sauceda
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas s/n, 83000, Hermosillo, Sonora, Mexico
| | | | - Christian Minjarez-Osorio
- Department of Scientific and Technological Research, University of Sonora, Hermosillo, 83000, Hermosillo, Sonora, Mexico
| | - Francisco Molina-Freaner
- Instituto de Ecología, Universidad Nacional Autónoma de México. Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| | - Margarita de la O-Villanueva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas s/n, 83000, Hermosillo, Sonora, Mexico
| | - Verónica Moreno-Rodríguez
- Ingeniería en Geociencias, Universidad Estatal de Sonora, Av. Ley Federal del Trabajo s/n, Col. Apolo, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
34
|
Wu TH, Bolt AM, Chou H, Plourde D, De Jay N, Guilbert C, Young YK, Kleinman CL, Mann KK. Tungsten Blocks Murine B Lymphocyte Differentiation and Proliferation Through Downregulation of IL-7 Receptor/Pax5 Signaling. Toxicol Sci 2019; 170:45-56. [DOI: 10.1093/toxsci/kfz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ting Hua Wu
- Lady Davis Institute for Medical Research
- Department of Experimental Medicine
| | - Alicia M Bolt
- Lady Davis Institute for Medical Research
- Department of Oncology
| | - Hsiang Chou
- Lady Davis Institute for Medical Research
- Department of Experimental Medicine
| | | | - Nicolas De Jay
- Lady Davis Institute for Medical Research
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | | | - Claudia L Kleinman
- Lady Davis Institute for Medical Research
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research
- Department of Experimental Medicine
- Department of Oncology
| |
Collapse
|
35
|
Grau-Perez M, Zhao J, Pierce B, Francesconi KA, Goessler W, Zhu Y, An Q, Umans J, Best L, Cole SA, Navas-Acien A, Tellez-Plaza M. Urinary metals and leukocyte telomere length in American Indian communities: The Strong Heart and the Strong Heart Family Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:311-318. [PMID: 30557805 PMCID: PMC6363843 DOI: 10.1016/j.envpol.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
INTRODUCTION While several mechanisms may explain metal-related health effects, the exact cellular processes are not fully understood. We evaluated the association between leukocyte telomere length (LTL) and urine arsenic (ΣAs), cadmium (Cd) and tungsten (W) exposure in the Strong Heart Study (SHS, N = 1702) and in the Strong Heart Family Study (SHFS, N = 1793). METHODS Urine metal concentrations were measured using ICP-MS. Arsenic exposure was assessed as the sum of inorganic arsenic, monomethylarsonate and dimethylarsinate levels (ΣAs). LTL was measured by quantitative polymerase chain reaction. RESULTS In the SHS, median levels were 1.09 for LTL, and 8.8, 1.01 and 0.11 μg/g creatinine for ΣAs, Cd, and W, respectively. In the SHFS, median levels were 1.01 for LTL, and 4.3, 0.44, and 0.10 μg/g creatinine. Among SHS participants, increased urine ΣAs, Cd, and W was associated with shorter LTL. The adjusted geometric mean ratio (95% confidence interval) of LTL per an increase equal to the difference between the percentiles 90th and 10th in metal distributions was 0.85 (0.79, 0.92) for ΣAs, 0.91 (0.84, 1.00) for Cd and 0.93 (0.88, 0.98) for W. We observed no significant associations among SHFS participants. The findings also suggest that the association between arsenic and LTL might be differential depending on the exposure levels or age. CONCLUSIONS Additional research is needed to confirm the association between metal exposures and telomere length.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Area of Cardiometabolic and Renal Risk, Biomedical Research Institute Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA; Public Health Research, Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | | | - Yun Zhu
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Qiang An
- Public Health Research, Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - Jason Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA; MedStar Health Research Institute, Hyattsville, MD, USA
| | - Lyle Best
- Department of Epidemiology, Missouri Breaks Industries Research Inc., Timber Lake, SD, USA
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| |
Collapse
|
36
|
Nigra AE, Howard BV, Umans JG, Best L, Francesconi KA, Goessler W, Devereux R, Navas-Acien A. Urinary tungsten and incident cardiovascular disease in the Strong Heart Study: An interaction with urinary molybdenum. ENVIRONMENTAL RESEARCH 2018; 166:444-451. [PMID: 29940477 PMCID: PMC6347476 DOI: 10.1016/j.envres.2018.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/22/2018] [Accepted: 06/09/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Tungsten (W) interferes with molybdenum (Mo) binding sites and has been associated with prevalent cardiovascular disease (CVD). We evaluated if (1) W exposure is prospectively associated with incident CVD and (2) the association between urinary W levels and incident CVD is modified by urinary Mo levels. METHODS We estimated multi-adjusted hazard ratios (HRs) for incident CVD outcomes by increasing W levels for 2726 American Indian participants in the Strong Heart Study with urinary metal levels measured at baseline (1989-1991) and CVD events ascertained through 2008. RESULTS Increasing levels of baseline urinary W were not associated with incident CVD. Fully-adjusted HRs (95% CIs) of incident CVD comparing a change in the IQR of W levels for those in the lowest and highest tertile of urinary Mo were 1.05 (0.90, 1.22) and 0.80 (0.70, 0.92), respectively (p-interaction = 0.02); for CVD mortality, the corresponding HRs were 1.05 (0.82, 1.33) and 0.73 (0.58, 0.93), respectively (p-interaction = 0.03). CONCLUSIONS The association between W and CVD incidence and mortality was positive although non-significant at lower urinary Mo levels and significant and inverse at higher urinary Mo levels. Although prior cross-sectional epidemiologic studies in the general US population found positive associations between urinary tungsten and prevalent cardiovascular disease, our prospective analysis in the Strong Heart Study indicates this association may be modified by molybdenum exposure.
Collapse
Affiliation(s)
- Anne E Nigra
- Columbia University Mailman School of Public Health, Department of Environmental Health Sciences, New York, NY, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Barbara V Howard
- MedStar Health Research Institute, Washington, DC, USA; Georgetown/Howard Universities Center for Clinical and Translational Sciences, USA
| | - Jason G Umans
- MedStar Health Research Institute, Washington, DC, USA; Georgetown/Howard Universities Center for Clinical and Translational Sciences, USA
| | - Lyle Best
- Epidemiology Department, Missouri Breaks Industries Research Inc., Timber Lake, SD, USA
| | | | | | | | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, Department of Environmental Health Sciences, New York, NY, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
37
|
Bertinat R, Westermeier F, Gatica R, Nualart F. Sodium tungstate: Is it a safe option for a chronic disease setting, such as diabetes? J Cell Physiol 2018; 234:51-60. [DOI: 10.1002/jcp.26913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA Bio‐Bio Facultad de Ciencias Biológicas, Universidad de Concepción Concepción Chile
| | - Francisco Westermeier
- Department of Health Studies Institute of Biomedical Science, FH JOANNEUM Gesellschaft mbH University of Applied Sciences Graz Austria
- Facultad de Ciencia, Universidad San Sebastián Santiago Chile
| | - Rodrigo Gatica
- Laboratorio de Patología Veterinaria Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor Santiago Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA Bio‐Bio Facultad de Ciencias Biológicas, Universidad de Concepción Concepción Chile
| |
Collapse
|
38
|
|
39
|
Abstract
PURPOSE OF REVIEW Tungsten is an emerging environmental toxicant, yet our understanding of the potential risks of exposure on human health is still limited. RECENT FINDINGS In this review, we will discuss populations most at risk of exposure to high concentrations of tungsten. In addition, we will highlight what is known about the toxicity profile of tungsten compounds, based on epidemiological, in vitro, and in vivo studies, focusing on bone, immune, pulmonary, and cancer outcomes. Of note, emerging evidence indicates that tungsten can augment the effects of other stimulants, stressors, and toxicants. Of particular importance may be tungsten-cobalt mixtures that seem to be more toxic than either metal alone. This is important because it means that we cannot just evaluate the toxicity of tungsten in isolation. Finally, we still have limited information of how many of the in vitro and in vivo findings translate to human populations, so it will be important to conduct epidemiology studies in highly exposed populations to adequately address the potential risks of tungsten exposure on human health. Together, we discuss recent findings that support further investigation into the toxicities of tungsten alone and in combination with other metals.
Collapse
|
40
|
Nigra AE, Ruiz-Hernandez A, Redon J, Navas-Acien A, Tellez-Plaza M. Environmental Metals and Cardiovascular Disease in Adults: A Systematic Review Beyond Lead and Cadmium. Curr Environ Health Rep 2018; 3:416-433. [PMID: 27783356 DOI: 10.1007/s40572-016-0117-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Published systematic reviews concluded that there is moderate to strong evidence to infer a potential role of lead and cadmium, widespread environmental metals, as cardiovascular risk factors. For other non-essential metals, the evidence has not been appraised systematically. Our objective was to systematically review epidemiologic studies on the association between cardiovascular disease in adults and the environmental metals antimony, barium, chromium, nickel, tungsten, uranium, and vanadium. We identified a total of 4 articles on antimony, 1 on barium, 5 on chromium, 1 on nickel, 4 on tungsten, 1 on uranium, and 0 on vanadium. We concluded that the current evidence is not sufficient to inform on the cardiovascular role of these metals because of the small number of studies. Few experimental studies have also evaluated the role of these metals in cardiovascular outcomes. Additional epidemiologic and experimental studies, including prospective cohort studies, are needed to understand the role of metals, including exposure to metal mixtures, in cardiovascular disease development.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11 Floor Rm 1105, New York, NY, 10032, USA
| | - Adrian Ruiz-Hernandez
- Department of Internal Medicine, Hospital Clínico de Valencia, Avenida Blasco Ibañez, 17, 46010, Valencia, Spain.,Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinical of Valencia (INCLIVA), Av. Menendez Pelayo, 4 accesorio, 6010, Valencia, Spain
| | - Josep Redon
- Department of Internal Medicine, Hospital Clínico de Valencia, Avenida Blasco Ibañez, 17, 46010, Valencia, Spain.,Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinical of Valencia (INCLIVA), Av. Menendez Pelayo, 4 accesorio, 6010, Valencia, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11 Floor Rm 1105, New York, NY, 10032, USA.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinical of Valencia (INCLIVA), Av. Menendez Pelayo, 4 accesorio, 6010, Valencia, Spain.
| |
Collapse
|
41
|
Ekvall MT, Hedberg J, Odnevall Wallinder I, Hansson LA, Cedervall T. Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology 2018; 12:79-89. [PMID: 29334298 DOI: 10.1080/17435390.2017.1421274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the production and usage of nanomaterials are increasing so are the concerns related to the release of the material into nature. Tungsten carbide (WC) is widely used for its hard metal properties, although its use, in for instance tyre studs, may result in nano-sized particles ending up in nature. Here, we evaluate the potential long-term exposure effects of WC nanoparticles on a pelagic (Daphnia magna) and a benthic (Asellus aquaticus) organism. No long-term effects were observed in the benthic system with respect to population dynamics or ecosystem services. However, long-term exposure of D. magna resulted in increased time to first reproduction and, if the particles were resuspended, strong effects on survival and reproductive output. Hence, the considerable differences in acute vs. long-term exposure studies revealed here emphasize the need for more long-term studies if we are to understand the effects of nanoparticles in natural systems.
Collapse
Affiliation(s)
- Mikael T Ekvall
- a Center for Molecular Protein Science, Department of Biochemistry and Structural Biology , Lund University , Lund , Sweden.,c Aquatic Ecology, Department of Biology , Lund University , Lund , Sweden
| | - Jonas Hedberg
- b Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Inger Odnevall Wallinder
- b Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , Stockholm , Sweden
| | | | - Tommy Cedervall
- a Center for Molecular Protein Science, Department of Biochemistry and Structural Biology , Lund University , Lund , Sweden
| |
Collapse
|
42
|
Popov A, Zholobak N, Balko O, Balko O, Shcherbakov A, Popova N, Ivanova O, Baranchikov A, Ivanov V. Photo-induced toxicity of tungsten oxide photochromic nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:395-403. [DOI: 10.1016/j.jphotobiol.2017.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022]
|
43
|
Laulicht-Glick F, Wu F, Zhang X, Jordan A, Brocato J, Kluz T, Sun H, Costa M. Tungsten exposure causes a selective loss of histone demethylase protein. Mol Carcinog 2017; 56:1778-1788. [PMID: 28218462 DOI: 10.1002/mc.22634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
In the course of our investigations into the toxicity of tungstate, we discovered that cellular exposure resulted in the loss of the histone demethylase protein. We specifically investigated the loss of two histone demethylase dioxygenases, JARID1A and JMJD1A. Both of these proteins were degraded in the presence of tungstate and this resulted in increased global levels of H3K4me3 and H3K9me2, the substrates of JARID1A and JMJD1A, respectively. Treatment with MG132 completely inhibited the loss of the demethylase proteins induced by tungstate treatment, suggesting that tungstate activated the proteasomal degradation of these proteins. The changes in global histone marks and loss of histone demethylase protein persisted for at least 48 h after removing sodium tungstate from the culture. The increase in global histone methylation remained when cells were cultured in methionine-free media, indicating that the increased histone methylation did not depend upon any de novo methylation process, but rather was due to the loss of the demethylase protein. Similar increases of H3K4me3 and H3K9me2 were observed in the livers of the mice that were acutely exposed to tungstate via their drinking water. Taken together, our results indicated that tungstate exposure specifically reduced histone demethylase JARID1A and JMJD1A via proteasomal degradation, leading to increased histone methylation.
Collapse
Affiliation(s)
- Freda Laulicht-Glick
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Feng Wu
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Jason Brocato
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Hong Sun
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| |
Collapse
|
44
|
Hubick S, Jayaraman A, McKeen A, Reid S, Alcorn J, Stavrinides J, Sterenberg BT. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens. Sci Rep 2017; 7:41999. [PMID: 28165020 PMCID: PMC5292749 DOI: 10.1038/srep41999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/03/2017] [Indexed: 01/26/2023] Open
Abstract
The acronymously named “ESKAPE” pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to “eskape” antibiotic treatment12. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.
Collapse
Affiliation(s)
- Shelby Hubick
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - Arumugam Jayaraman
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - Alexander McKeen
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - Shelby Reid
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, Saskatchewan, S7N2Z4, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, Saskatchewan, S7N2Z4, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - Brian T Sterenberg
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| |
Collapse
|
45
|
Prajapati MV, Adebolu OO, Morrow BM, Cerreta JM. Original Research: Evaluation of pulmonary response to inhaled tungsten (IV) oxide nanoparticles in golden Syrian hamsters. Exp Biol Med (Maywood) 2016; 242:29-44. [PMID: 27534980 DOI: 10.1177/1535370216665173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Extensive industrial and military uses of tungsten have raised the possibilities of human occupational and environmental exposure to nanoparticles of this metal, with concomitant health concerns. The goal of this study was to investigate the potential mechanism of pulmonary toxicity associated with inhaled tungsten (IV) oxide nanoparticles (WO3 NPs) in Golden Syrian Hamsters. Animals exposed to WO3 NPs via inhalation were divided into three groups - control and two treatment groups exposed to either 5 or 10 mg/m3 of aerosolized WO3 NPs for 4 h/day for four days. A long-term exposure study (4 h/day for eight days) was also carried out using an additional three groups. Pulmonary toxicity assessed by examining changes in cell numbers, lactate dehydrogenase activity, alkaline phosphatase activity, total protein content, TNF-α, and HMGB1 levels in bronchoalveolar lavage fluids showed a significant difference when compared to control (P < 0.05). The molecular mechanism was established by assessing protein expression of cathepsin B, TXNIP, NLRP3, ASC, IL-1β and caspase-1. Western blot analysis indicated a 1.5 and 1.7 fold changes in NLRP3 in treatment groups (5 mg/m3, P < 0.05 and 10 mg/m3, P < 0.01, respectively), whereas levels of cathepsin B were 1.3 fold higher in lung tissue exposed to WO3 NPs suggesting activation of inflammasome pathway. Morphological changes studied using light and electron microscopy showed localization of nanoparticles and subsequent perturbation in airway epithelia, macrophages, and interstitial areas of alveolar structures. Results from the current study indicate that inhalation exposure to WO3 NPs may induce cytotoxicity, morphological changes, and lung injury via pyroptotic cell death pathway caused by activation of caspase-1.
Collapse
Affiliation(s)
| | - Olujoba O Adebolu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Benjamin M Morrow
- Materials Science & Technology, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joseph M Cerreta
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
46
|
Graczyk H, Lewinski N, Zhao J, Concha-Lozano N, Riediker M. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders. ANNALS OF OCCUPATIONAL HYGIENE 2015; 60:205-19. [PMID: 26464505 PMCID: PMC4738234 DOI: 10.1093/annhyg/mev074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
Abstract
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training.
Collapse
Affiliation(s)
- Halshka Graczyk
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Nastassja Lewinski
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland; 2.Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jiayuan Zhao
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Nicolas Concha-Lozano
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Michael Riediker
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland; 3.SAFENANO, IOM Singapore, Singapore 048622
| |
Collapse
|