1
|
Cui Y, Luo S, Wu B, Li Q, Han F, Wang Z. Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum ( Nibea albiflora). Int J Mol Sci 2024; 25:13641. [PMID: 39769404 PMCID: PMC11728317 DOI: 10.3390/ijms252413641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the Ydsphk1 gene as closely associated with the resistance of yellow drum (Nibea albiflora) to Vibrio harveyi. Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa). By constructing and transfecting Ydsphk1 expression plasmids into yellow drum kidney cells, we found that YDSPHK1 is localized in the cytoplasm. Subsequent RNA-Seq analysis of an overexpression plasmid identified 25 differentially expressed genes (DEGs), including 13 upregulated and 12 downregulated. Notably, nsun5 and hsp90aa1 were significantly upregulated, while Nfkbia and hmox1 were downregulated. Promoter analysis indicated that the core regulatory regions of Ydsphk1 are located between -1931~-1679 bp and -419~+92 bp, with two predicted TFAP2A binding sites in the -419~+92 bp region. Further studies demonstrated that varying concentrations of TFAP2A significantly reduced Ydsphk1 promoter activity. These findings underscore the pivotal role of Ydsphk1 in regulating immune responses in yellow drum, particularly through its impact on key immune-related genes and pathways such as NF-κB signaling and ferroptosis. The identification of Ydsphk1 as a mediator of immune regulation provides valuable insights into the molecular mechanisms of immune defense and highlights its potential as a target for enhancing pathogen resistance in aquaculture practices. This study lays a strong foundation for future research aimed at developing innovative strategies for disease management in aquaculture species.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Shuai Luo
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Baolan Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Qiaoying Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Zhiyong Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Yilmaz A, Koca M, Ercan S, Acar OO, Boga M, Sen A, Kurt A. Amelioration potential of synthetic oxime chemical cores against multiple sclerosis and Alzheimer's diseases: Evaluation in aspects of in silico and in vitro experiments. J Mol Struct 2024; 1318:139193. [DOI: 10.1016/j.molstruc.2024.139193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
3
|
Sikdar S, Mitra D, Das O, Bhaumik M, Dutta S. The functional antagonist of sphingosine-1-phosphate, FTY720, impairs gut barrier function. Front Pharmacol 2024; 15:1407228. [PMID: 39224783 PMCID: PMC11366638 DOI: 10.3389/fphar.2024.1407228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
FTY720 or fingolimod is a known functional antagonist of sphingosine-1-phosphate (S1P), and it is effective in treating multiple sclerosis and preventing inflammatory bowel disease (IBD). Evidence shows that its use in mice can increase the susceptibility to mucosal infections. Despite the significant contribution of S1P to barrier function, the effect of the administration of FTY720 on the mucosal barrier has never been investigated. In this study, we looked into how FTY720 therapy affected the function of the gut barrier susceptibility. Administration of FTY720 to C57BL/6 mice enhances the claudin-2 expression and reduces the expression of claudin-4 and occludin, as studied by qPCR, Western blot, and immunofluorescence. FTY720 inhibits the Akt-mTOR pathway to decrease occludin and claudin-4 expression and increase claudin-2 expression. FTY720 treatment induced increased colonic inflammation, with notably greater immune cell infiltration, colon histopathology, and increased production of TNF-α, IFN-γ, CXCL-1, and CXCL-2 than that in control mice. Taking into account the close association of "the leaky gut" and gut dysbiosis among the major diseases, we therefore can infer that the vigilance of gut pathology should be maintained, where FTY720 is used as a treatment option.
Collapse
Affiliation(s)
- Sohini Sikdar
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Debmalya Mitra
- Center of Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Oishika Das
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Shanta Dutta
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| |
Collapse
|
4
|
Shakeel I, Haider S, Khan S, Ahmed S, Hussain A, Alajmi MF, Chakrabarty A, Afzal M, Imtaiyaz Hassan M. Thymoquinone, artemisinin, and thymol attenuate proliferation of lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed Pharmacother 2024; 177:117123. [PMID: 39004062 DOI: 10.1016/j.biopha.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
6
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|
7
|
Pal P, Millner A, Semina SE, Huggins RJ, Running L, Aga DS, Tonetti DA, Schiff R, Greene GL, Atilla-Gokcumen GE, Frasor J. Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers (Basel) 2022; 14:2380. [PMID: 35625985 PMCID: PMC9140186 DOI: 10.3390/cancers14102380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| | - Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Svetlana E. Semina
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| | - Rosemary J. Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.J.H.); (G.L.G.)
| | - Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Debra A. Tonetti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.J.H.); (G.L.G.)
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| |
Collapse
|
8
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
9
|
Ceramide Metabolism Enzymes-Therapeutic Targets against Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070729. [PMID: 34357010 PMCID: PMC8303233 DOI: 10.3390/medicina57070729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Collapse
|
10
|
Regulation of cell growth, survival and migration by ceramide 1-phosphate - implications in lung cancer progression and inflammation. Cell Signal 2021; 83:109980. [PMID: 33727076 DOI: 10.1016/j.cellsig.2021.109980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ceramide 1-phosphate (C1P) is a bioactive sphingolipid that is implicated in the regulation of vital cellular functions and plays key roles in a number of inflammation-associated pathologies. C1P was first described as mitogenic for fibroblasts and macrophages and was later found to promote cell survival in different cell types. The mechanisms involved in the mitogenic actions of C1P include activation of MEK/ERK1-2, PI3K/Akt/mTOR, or PKC-α, whereas promotion of cell survival required a substantial reduction of ceramide levels through inhibition of serine palmitoyl transferase or sphingomyelinase activities. C1P and ceramide kinase (CerK), the enzyme responsible for its biosynthesis in mammalian cells, play key roles in tumor promotion and dissemination. CerK-derived C1P can be secreted to the extracellular milieu by different cell types and is also present in extracellular vesicles. In this context, whilst cell proliferation is regulated by intracellularly generated C1P, stimulation of cell migration/invasion requires the intervention of exogenous C1P. Regarding inflammation, C1P was first described as pro-inflammatory in a variety of cell types. However, cigarette smoke- or lipopolysaccharide-induced lung inflammation in mouse or human cells was overcome by pretreatment with natural or synthetic C1P analogs. Both acute and chronic lung inflammation, and the development of lung emphysema were substantially reduced by exogenous C1P applications, pointing to an anti-inflammatory action of C1P in the lungs. The molecular mechanisms involved in the regulation of cell growth, survival and migration with especial emphasis in the control of lung cancer biology are discussed.
Collapse
|
11
|
Neree AT, Soret R, Marcocci L, Pietrangeli P, Pilon N, Mateescu MA. Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles. Sci Rep 2020; 10:21563. [PMID: 33299054 PMCID: PMC7726047 DOI: 10.1038/s41598-020-78134-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Excess of histamine in gut lumen generates a pronounced gastrointestinal discomfort, which may include diarrhea and peristalsis dysfunctions. Deleterious effects of histamine can be alleviated with antihistamine drugs targeting histamine receptors. However, many antihistamine agents come with various undesirable side effects. Vegetal diamine oxidase (vDAO) might be a relevant alternative owing to its histaminase activity. Mammalian intestinal mucosa contains an endogenous DAO, yet possessing lower activity compared to that of vDAO preparation. Moreover, in several pathological conditions such as inflammatory bowel disease and irritable bowel syndrome, this endogenous DAO enzyme can be lost or inactivated. Here, we tested the therapeutic potential of vDAO by focusing on the well-known effect of histamine on gut motility. Using ex vivo and in vitro assays, we found that vDAO is more potent than commercial anti-histamine drugs at inhibiting histamine-induced contraction of murine distal colon muscles. We also identified pyridoxal 5′-phosphate (the biologically active form of vitamin B6) as an effective enhancer of vDAO antispasmodic activity. Furthermore, we discovered that rectally administered vDAO can be retained on gut mucosa and remain active. These observations make administration of vDAO in the gut lumen a valid alternative treatment for histamine-induced intestinal dysfunctions.
Collapse
Affiliation(s)
- Armelle Tchoumi Neree
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Rodolphe Soret
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Nicolas Pilon
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Department of Pediatrics, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.
| |
Collapse
|
12
|
Pan Y, Liu L, Zhang Q, Shi W, Feng W, Wang J, Wang Q, Li S, Li M. Activation of AMPK suppresses S1P-induced airway smooth muscle cells proliferation and its potential mechanisms. Mol Immunol 2020; 128:106-115. [PMID: 33126079 DOI: 10.1016/j.molimm.2020.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023]
Abstract
The aims of the present study were to investigate the signaling mechanisms for sphingosine-1-phosphate (S1P)-induced airway smooth muscle cells (ASMCs) proliferation and to explore the effect of activation of adenosine monophosphate-activated protein kinase (AMPK) on S1P-induced ASMCs proliferation and its underlying mechanisms. S1P phosphorylated signal transducer and activator of transcription 3 (STAT3) through binding to S1PR2/3, and this further sequentially up-regulated polo-like kinase 1 (PLK1) and inhibitor of differentiation 2 (ID2) protein expression. Pretreatment of cells with S1PR2 antagonist JTE-013, S1PR3 antagonist CAY-10444, knockdown of STAT3, PLK1 and ID2 attenuated S1P-triggered ASMCs proliferation. In addition, activation of AMPK by metformin inhibited S1P-induced ASMCs proliferation by suppressing STAT3 phosphorylation and therefore suppression of PLK1 and ID2 protein expression. Our study suggests that S1P promotes ASMCs proliferation by stimulating S1PR2/3/STAT3/PLK1/ID2 axis, and activation of AMPK suppresses ASMCs proliferation by targeting on STAT3 signaling pathway. Activation of AMPK might benefit asthma by inhibiting airway remodeling.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Park WJ, Park JW. The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 2020; 594:3632-3651. [PMID: 32538465 DOI: 10.1002/1873-3468.13863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is an important intracellular compartment in eukaryotic cells and has diverse functions, including protein synthesis, protein folding, lipid metabolism and calcium homeostasis. ER functions are disrupted by various intracellular and extracellular stimuli that cause ER stress, including the inhibition of glycosylation, disulphide bond reduction, ER calcium store depletion, impaired protein transport to the Golgi, excessive ER protein synthesis, impairment of ER-associated protein degradation and mutated ER protein expression. Distinct ER stress signalling pathways, which are known as the unfolded protein response, are deployed to maintain ER homeostasis, and a failure to reverse ER stress triggers cell death. Sphingolipids are lipids that are structurally characterized by long-chain bases, including sphingosine or dihydrosphingosine (also known as sphinganine). Sphingolipids are bioactive molecules long known to regulate various cellular processes, including cell proliferation, migration, apoptosis and cell-cell interaction. Recent studies have uncovered that specific sphingolipids are involved in ER stress. This review summarizes the roles of sphingolipids in ER stress and human diseases in the context of pathogenic events.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
14
|
Dawoody Nejad L, Stumpe M, Rauch M, Hemphill A, Schneiter R, Bütikofer P, Serricchio M. Mitochondrial sphingosine-1-phosphate lyase is essential for phosphatidylethanolamine synthesis and survival of Trypanosoma brucei. Sci Rep 2020; 10:8268. [PMID: 32427974 PMCID: PMC7237492 DOI: 10.1038/s41598-020-65248-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
Sphingosine-1-phosphate is a signaling molecule involved in the control of cell migration, differentiation, survival and other physiological processes. This sphingolipid metabolite can be degraded by the action of sphingosine-1-phosphate lyase (SPL) to form hexadecenal and ethanolamine phosphate. The importance of SPL-mediated ethanolamine phosphate formation has been characterized in only few cell types. We show that in the protozoan parasite Trypanosoma brucei, expression of TbSpl is essential for cell survival. Ablation of TbSpl expression increased sphingosine-1-phosphate levels and reduced de novo formation and steady-state levels of the glycerophospholipid phosphatidylethanolamine (PE). Growth of TbSpl-depleted parasites could be in part rescued by ethanolamine supplementation to the growth medium, indicating that the main function of TbSpl is to provide ethanolamine phosphate for PE synthesis. In contrast to most cell types analyzed, where SPL localizes to the endoplasmic reticulum, we found by high-resolution microscopy that TbSpl is a mitochondrial protein. In spite of its mitochondrial localization, TbSpl depletion had no apparent effect on mitochondrial morphology but resulted in aggregation of acidocalcisomes. Our results link mitochondria to sphingolipid metabolism and suggest possible roles for PE in acidocalcisome function.
Collapse
Affiliation(s)
- Ladan Dawoody Nejad
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Stumpe
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Monika Rauch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors' therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
He Y, Shi B, Zhao X, Sui J. Sphingosine-1-phosphate induces islet β-cell proliferation and decreases cell apoptosis in high-fat diet/streptozotocin diabetic mice. Exp Ther Med 2019; 18:3415-3424. [PMID: 31602216 PMCID: PMC6777293 DOI: 10.3892/etm.2019.7999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) has been reported to enhance the function of islet β-cells, providing a potential therapeutic target for diabetes mellitus. In the present study, the effects of S1P on the proliferation and apoptosis of β-cells in type 2 diabetic mice were investigated. The mice were administered intraperitoneal S1P solution daily at a dose of 20 µg/kg for three weeks. The intraperitoneal glucose tolerance test (IPGTT) and homeostatic model assessment of insulin resistance (HOMA-IR) index determination were carried out. Immunohistochemical staining was used to detect the protein expression of insulin, antigen Ki-67 and S1P receptor isoforms (S1PR1/S1PR2/S1PR3) in pancreatic islets. Compared with the diabetic control (DC) group, the IPGTT results and HOMA-IR index in the S1P treatment group were decreased. The islets in the S1P group exhibited higher insulin immunostaining intensity than the DC group, as well as higher proliferation (P<0.05) and lower apoptosis rates (P<0.05). Positive staining for the S1P receptors S1PR1, S1PR2 and S1PR3 was observed in the cytoplasm and membrane of the islet cells. S1PR1 and S1PR2 proteins showed increased expression in the S1P and DC groups compared with the normal control group (P<0.01 and P<0.05, respectively), whereas no significant difference was observed in the expression of S1PR3 among these groups. In conclusion, extracellular S1P can induce islet β-cell proliferation and decrease cell apoptosis in diabetic mice. S1P function may be mediated via S1PR1 and S1PR2; therefore, targeting S1P/S1PR signalling pathways may be a novel therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Yizhi He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinrui Zhao
- Department of Immunology and Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jing Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
17
|
Pulkoski-Gross MJ, Obeid LM. Molecular mechanisms of regulation of sphingosine kinase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1413-1422. [PMID: 30591148 DOI: 10.1016/j.bbalip.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Within the last 3 decades, there has been intense study of bioactive sphingolipids and the enzymes which metabolize those lipids. One enzyme is the critical lipid kinase sphingosine kinase 1 (SK1), which produces the potent and pleiotropic signaling lipid, sphingosine 1-phosphate (S1P). SK1 and S1P have been implicated in a host of different diseases including cancer, chronic inflammation, and metabolic diseases. However, while there is ample knowledge about the importance of these molecules in the development and progression of disease there is a dearth of knowledge of the molecular mechanisms which regulate SK1 function. In this review, we will cover some of the more recent and exciting findings about the different ways SK1 function can be regulated, from transcriptional regulation to protein stability. Finally, we will delve into recent structural insights into SK1 and how they might relate to function at cell membranes.
Collapse
Affiliation(s)
- Michael J Pulkoski-Gross
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA; Department of Medicine, The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11790, USA.
| | - Lina M Obeid
- Department of Medicine, The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11790, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
18
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
19
|
Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135:139-150. [DOI: 10.1016/j.neuropharm.2018.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
|
20
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
21
|
Vettorazzi M, Angelina E, Lima S, Gonec T, Otevrel J, Marvanova P, Padrtova T, Mokry P, Bobal P, Acosta LM, Palma A, Cobo J, Bobalova J, Csollei J, Malik I, Alvarez S, Spiegel S, Jampilek J, Enriz RD. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur J Med Chem 2017; 139:461-481. [PMID: 28822281 DOI: 10.1016/j.ejmech.2017.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Lina M Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Janette Bobalova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Jozef Csollei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
22
|
Hajny S, Christoffersen C. A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. Int J Mol Sci 2017; 18:ijms18081636. [PMID: 28749426 PMCID: PMC5578026 DOI: 10.3390/ijms18081636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, renal proximal tubule cells as well as the highly specialized endothelium of the blood brain barrier (BBB) express and secrete apolipoprotein M (apoM). ApoM is a typical lipocalin containing a hydrophobic binding pocket predominantly carrying Sphingosine-1-Phosphate (S1P). The small signaling molecule S1P is associated with several physiological as well as pathological pathways whereas the role of apoM is less explored. Hepatic apoM acts as a chaperone to transport S1P through the circulation and kidney derived apoM seems to play a role in S1P recovery to prevent urinal loss. Finally, polarized endothelial cells constituting the lining of the BBB express apoM and secrete the protein to the brain as well as to the blood compartment. The review will provide novel insights on apoM and S1P, and its role in hepatic fibrosis, neuroinflammation and BBB integrity.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Książek M, Charmas M, Klusiewicz A, Zabielski P, Długołęcka B, Chabowski A, Baranowski M. Endurance training selectively increases high-density lipoprotein-bound sphingosine-1-phosphate in the plasma. Scand J Med Sci Sports 2017; 28:57-64. [PMID: 28493600 DOI: 10.1111/sms.12910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2017] [Indexed: 12/19/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid that is found in relatively high concentration in human plasma. Erythrocytes, endothelial cells, and activated platelets are the main sources of circulating S1P. The majority of plasma S1P is transported bound to high-density lipoprotein (HDL) and albumin. In recent years, HDL-bound S1P attracted much attention due to its cardioprotective and anti-atherogenic properties. We have previously found that endurance-trained athletes are characterized by higher plasma S1P concentration compared to untrained individuals. This finding prompted us to examine the effect of endurance training on S1P metabolism in blood. Thirteen healthy, untrained, male subjects completed an 8-week training program on a rowing ergometer. Three days before the first, and 3 days after the last training session, blood samples were drawn from an antecubital vein. We found that total plasma S1P concentration was increased after the training. Further analysis of different plasma fractions showed that the training selectively elevated HDL-bound S1P. This effect was associated with activation of sphingosine kinase in erythrocytes and platelets and enhanced S1P release from red blood cells. We postulate that increase in HDL-bound S1P level is one of the mechanisms underlying beneficial effects of regular physical activity on cardiovascular diseases.
Collapse
Affiliation(s)
- M Książek
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - M Charmas
- Department of Biochemistry and Physiology, Faculty of Physical Education and Sport in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Biała Podlaska, Poland
| | - A Klusiewicz
- Department of Biochemistry and Physiology, Faculty of Physical Education and Sport in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Biała Podlaska, Poland
| | - P Zabielski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - B Długołęcka
- Department of Biochemistry and Physiology, Faculty of Physical Education and Sport in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Biała Podlaska, Poland
| | - A Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - M Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
24
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
25
|
Sankella S, Garg A, Agarwal AK. Activation of Sphingolipid Pathway in the Livers of Lipodystrophic Agpat2-/- Mice. J Endocr Soc 2017; 1:980-993. [PMID: 29264548 PMCID: PMC5686665 DOI: 10.1210/js.2017-00157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022] Open
Abstract
A several fold increase in triacylglycerol is observed in the livers of lipodystrophic Agpat2−/− mice. We have previously reported an unexpected increase in the phosphatidic acid (PA) levels in the livers of these mice and that a few specific molecular species of PA were able to transcriptionally upregulate hepatic gluconeogenesis. In the current study, we measured the metabolites and expression of associated enzymes of the sphingolipid synthesis pathway. The entire sphingolipid pathway was activated both at the gene expression and the metabolite level. The levels of some ceramides were increased by as much as ~eightfold in the livers of Agpat2−/− mice. Furthermore, several molecular species of ceramides were increased in the plasma of Agpat2−/− mice, specifically ceramide C16:0, which was threefold elevated in the plasma of both the sexes. However, the ceramides failed to increase glucose production in mouse primary hepatocytes obtained from wild-type and Agpat2−/− mice, further establishing the specificity of PA in the induction of hepatic gluconeogenesis. This study shows elevated levels of sphingolipids in the steatotic livers of Agpat2−/− mice and increased expression of associated enzymes for the sphingolipid pathway. Therefore, this study and those in the literature suggest that ceramide C16:0 could be used as a biomarker for insulin resistance/type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shireesha Sankella
- Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
26
|
Pulkoski-Gross MJ, Uys JD, Orr-Gandy KA, Coant N, Bialkowska AB, Szulc ZM, Bai A, Bielawska A, Townsend DM, Hannun YA, Obeid LM, Snider AJ. Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins Other Lipid Mediat 2017; 130:47-56. [PMID: 28377281 PMCID: PMC5509055 DOI: 10.1016/j.prostaglandins.2017.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/25/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite which has been implicated in many diseases including cancer and inflammatory diseases. Recently, sphingosine kinase 1 (SK1), one of the isozymes which generates S1P, has been implicated in the development and progression of inflammatory bowel disease (IBD). Based on our previous work, we set out to determine the efficacy of a novel SK1 selective inhibitor, LCL351, in a murine model of IBD. LCL351 selectively inhibits SK1 both in vitro and in cells. LCL351, which accumulates in relevant tissues such as colon, did not have any adverse side effects in vivo. In mice challenged with dextran sodium sulfate (DSS), a murine model for IBD, LCL351 treatment protected from blood loss and splenomegaly. Additionally, LCL351 treatment reduced the expression of pro-inflammatory markers, and reduced neutrophil infiltration in colon tissue. Our results suggest inflammation associated with IBD can be targeted pharmacologically through the inhibition and degradation of SK1. Furthermore, our data also identifies desirable properties of SK1 inhibitors.
Collapse
Affiliation(s)
- Michael J Pulkoski-Gross
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA; Department of Medicine and the, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Joachim D Uys
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - K Alexa Orr-Gandy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Nicolas Coant
- Department of Medicine and the, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B Bialkowska
- Department of Medicine and the, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yusuf A Hannun
- Department of Medicine and the, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Lina M Obeid
- Department of Medicine and the, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Ashley J Snider
- Department of Medicine and the, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veterans Affairs Medical Center, Northport, NY, USA.
| |
Collapse
|
27
|
Sanllehí P, Abad JL, Casas J, Bujons J, Delgado A. Bacterial versus human sphingosine-1-phosphate lyase (S1PL) in the design of potential S1PL inhibitors. Bioorg Med Chem 2016; 24:4381-4389. [DOI: 10.1016/j.bmc.2016.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/28/2022]
|
28
|
Sanllehí P, Abad JL, Bujons J, Casas J, Delgado A. Studies on the inhibition of sphingosine-1-phosphate lyase by stabilized reaction intermediates and stereodefined azido phosphates. Eur J Med Chem 2016; 123:905-915. [PMID: 27543882 DOI: 10.1016/j.ejmech.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Two kinds of inhibitors of the PLP-dependent enzyme sphingosine-1-phosphate lyase have been designed and tested on the bacterial (StS1PL) and the human (hS1PL) enzymes. Amino phosphates 1, 12, and 32, mimicking the intermediate aldimines of the catalytic process, were weak inhibitors on both enzyme sources. On the other hand, a series of stereodefined azido phosphates, resulting from the replacement of the amino group of the natural substrates with an azido group, afforded competitive inhibitors in the low micromolar range on both enzyme sources. This similar behavior represents an experimental evidence of the reported structural similarities for both enzymes at their active site level. Interestingly, the anti-isomers of the non-natural enantiomeric series where the most potent inhibitors on hS1PL.
Collapse
Affiliation(s)
- Pol Sanllehí
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain; University of Barcelona (UB), Faculty of Pharmacy, Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - José-Luís Abad
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jordi Bujons
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry and Molecular Modelling, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Josefina Casas
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Antonio Delgado
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain; University of Barcelona (UB), Faculty of Pharmacy, Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Avda. Joan XXIII s/n, 08028, Barcelona, Spain.
| |
Collapse
|
29
|
Lai MKP, Chew WS, Torta F, Rao A, Harris GL, Chun J, Herr DR. Biological Effects of Naturally Occurring Sphingolipids, Uncommon Variants, and Their Analogs. Neuromolecular Med 2016; 18:396-414. [DOI: 10.1007/s12017-016-8424-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
|
30
|
Yang Y, Torta F, Arai K, Wenk MR, Herr DR, Wong PTH, Lai MKP. Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions. Neurochem Int 2016; 94:90-7. [PMID: 26921668 DOI: 10.1016/j.neuint.2016.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
White matter lesions (WML) are thought to contribute to vascular cognitive impairment in elderly patients. Growing evidence show that failure of myelin formation arising from the disruption of oligodendrocyte progenitor cell (OPC) differentiation is a cause of chronic vascular white matter damage. The sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) signaling pathway regulates oligodendroglia differentiation and function, and is known to be altered in hypoxia. In this study, we measured SphK, S1P as well as markers of WML, hypoxia and OPC (NG2) in a mouse bilateral carotid artery stenosis (BCAS) model of chronic cerebral hypoperfusion. Our results indicated that BCAS induced hypoxia inducible factor (HIF)-1α, Sphk2, S1P, and NG2 up-regulation together with accumulation of WML. In contrast, BCAS mice treated with the SphK inhibitor, SKI-II, showed partial reversal of SphK2, S1P and NG2 elevation and amelioration of WML. In an in vitro model of hypoxia, SKI-II reversed the suppression of OPC differentiation. Our study suggests a mechanism for hypoperfusion-associated WML involving HIF-1α-SphK2-S1P-mediated disruption of OPC differentiation, and proposes the SphK signaling pathway as a potential therapeutic target for white matter disease.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Peter T-H Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.
| |
Collapse
|
31
|
A systematic methodology for large scale compound screening: A case study on the discovery of novel S1PL inhibitors. J Mol Graph Model 2015; 63:110-24. [PMID: 26724452 DOI: 10.1016/j.jmgm.2015.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 11/06/2015] [Indexed: 01/30/2023]
Abstract
Decrease in sphingosine 1-phosphate (S1P) concentration induces migration of pathogenic T cells to the blood stream, disrupts the CNS and it is implicated in multiple sclerosis (MS), a progressive inflammatory disorder of the central nervous system (CNS), and Alzheimer's disease (AD). A promising treatment alternative for MS and AD is inhibition of the activity of the microsomal enzyme sphingosine 1-phosphate lyase (S1PL), which degrades intracellular S1P. This report describes an integrated systematic approach comprising virtual screening, molecular docking, substructure search and molecular dynamics simulation to discover novel S1PL inhibitors. Virtual screening of the ZINC database via ligand-based and structure-based pharmacophore models yielded 10000 hits. After molecular docking, common substructures of the top ranking hits were identified. The ligand binding poses were optimized by induced fit docking. MD simulations were performed on the complex structures to determine the stability of the S1PL-ligand complex and to calculate the binding free energy. Selectivity of the selected molecules was examined by docking them to hERG and cytochrome P450 receptors. As a final outcome, 15 compounds from different chemotypes were proposed as potential S1PL inhibitors. These molecules may guide future medicinal chemistry efforts in the discovery of new compounds against the destructive action of pathogenic T cells.
Collapse
|