1
|
Harr M, Lavik A, McColl K, Zhong F, Haberer B, Aldabbagh K, Yee V, Distelhorst CW. A novel peptide that disrupts the Lck-IP3R protein-protein interaction induces widespread cell death in leukemia and lymphoma. RESEARCH SQUARE 2023:rs.3.rs-2436910. [PMID: 36711753 PMCID: PMC9882657 DOI: 10.21203/rs.3.rs-2436910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There is increasing evidence that the T-cell protein, Lck, is involved in the pathogenesis of chronic lymphocytic leukemia (CLL) as well as other leukemias and lymphomas. We previously discovered that Lck binds to domain 5 of inositol 1,4,5-trisphosphate receptors (IP3R) to regulate Ca2+ homeostasis. Using bioinformatics, we targeted a region within domain 5 of IP3R-1 predicted to facilitate protein-protein interactions (PPIs). We generated a synthetic 21 amino acid peptide, KKRMDLVLELKNNASKLLLAI, which constitutes a domain 5 sub-domain (D5SD) of IP3R-1 that specifically binds Lck via its SH2 domain. With the addition of an HIV-TAT sequence to enable cell permeability of D5SD peptide, we observed wide-spread, Ca2+-dependent, cell killing of hematological cancer cells when the Lck-IP3R PPI was disrupted by TAT-D5SD. All cell lines and primary cells were sensitive to D5SD peptide, but malignant T-cells were less sensitive compared with B-cell or myeloid malignancies. Mining of RNA-seq data showed that LCK was expressed in primary diffuse large B-cell lymphoma (DLBCL) as well as acute myeloid leukemia (AML). In fact, LCK shows a similar pattern of expression as many well-characterized AML oncogenes and is part of a protein interactome that includes FLT3-ITD, Notch-1, and Kit. Consistent with these findings, our data suggest that the Lck-IP3R PPI may protect malignant hematopoietic cells from death. Importantly, TAT-D5SD showed no cytotoxicity in three different non-hematopoietic cell lines; thus its ability to induce cell death appears specific to hematopoietic cells. Together, these data show that a peptide designed to disrupt the Lck-IP3R PPI has a wide range of pre-clinical activity in leukemia and lymphoma.
Collapse
|
2
|
Märklin M, Fuchs AR, Tandler C, Heitmann JS, Salih HR, Kauer J, Quintanilla-Martinez L, Wirths S, Kopp HG, Müller MR. Genetic Loss of LCK Kinase Leads to Acceleration of Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:1995. [PMID: 32983140 PMCID: PMC7492521 DOI: 10.3389/fimmu.2020.01995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Most patients with chronic lymphocytic leukemia (CLL) exhibit an indolent disease course and unresponsive B cell receptors (BCRs) exemplified by an anergic phenotype of their leukemic cells. In up to 5% of patients, CLL transforms from an indolent subtype to an aggressive form of B cell lymphoma (Richter's syndrome), which is associated with worse disease outcome and severe downregulation of NFAT2. Here we show that ablation of the tyrosine kinase LCK, which has previously been characterized as a main NFAT2 target gene in CLL, leads to loss of the anergic phenotype, thereby restoring BCR signaling, which results in an acceleration of CLL. Our study identifies LCK as a main player in mediating BCR unresponsiveness and its role as a crucial regulator of anergy in CLL.
Collapse
Affiliation(s)
- Melanie Märklin
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Alexander R Fuchs
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany
| | - Claudia Tandler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Joseph Kauer
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | - Stefan Wirths
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Department of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany
| | - Martin R Müller
- Department of Hematology, Oncology and Clinical Immunology and Rheumatology, University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hanover, Germany
| |
Collapse
|
3
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
4
|
Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, Eheim A, Lejeune P, Brzezinka K, Zimmermann K, Ferrara S, Meyer H, Lesche R, Stoeckigt D, Bauser M, Haegebarth A, Sykes DB, Scadden DT, Losman JA, Janzer A. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia 2019; 33:2403-2415. [DOI: 10.1038/s41375-019-0461-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
|
5
|
Kazi JU, Rönnstrand L. The role of SRC family kinases in FLT3 signaling. Int J Biochem Cell Biol 2018; 107:32-37. [PMID: 30552988 DOI: 10.1016/j.biocel.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Abstract
The receptor tyrosine kinase FLT3 is expressed almost exclusively in the hematopoietic compartment. Binding of its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. This leads to autophosphorylation of FLT3 on several tyrosine residues which constitute high affinity binding sites for signal transduction molecules. Recruitment of these signal transduction molecules to FLT3 leads to the activation of several signal transduction pathways that regulate cell survival, cell proliferation and differentiation. Oncogenic, constitutively active mutants of FLT3 are known to be expressed in acute myeloid leukemia and to correlate with poor prognosis. Activation of the receptor mediates cell survival, cell proliferation and differentiation of cells. Several of the signal transduction pathways downstream of FLT3 have been shown to include various members of the SRC family of kinases (SFKs). They are involved in regulating the activity of RAS/ERK pathways through the scaffolding protein GAB2 and the adaptor protein SHC. They are also involved in negative regulation of signaling through phosphorylation of the ubiquitin E3 ligase CBL. Initially studied as the SFKs, as if they were a homogenous group of kinases, recent data suggest that each SFK has its own specific signaling capabilities where some are involved in positive signaling, while others are involved in negative signaling. This review discusses some recent insights into how SFKs are involved in FLT3 signaling.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Division of Oncology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
6
|
The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Sci Rep 2017; 7:13734. [PMID: 29062038 PMCID: PMC5653865 DOI: 10.1038/s41598-017-14033-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
The non-receptor tyrosine kinase LCK belongs to the SRC family of kinases. SRC family kinases are proto-oncogenes that have long been known to play key roles in cell proliferation, motility, morphology and survival. Here we show that LCK regulates the function of the type III receptor tyrosine kinase FLT3 in murine pro-B cells. We observed that expression of LCK significantly enhances the colony forming capacity of the constitutively active FLT3 mutant FLT3-ITD (internal tandem duplication). Furthermore, cells expressing LCK developed tumor earlier compared to cells transfected with empty control vector. Staining of the tissues from mouse xenografts showed higher Ki67 staining in cells expressing LCK suggesting that expression of LCK enhances the FLT3-ITD-mediated proliferative capacity. LCK expression did not affect either FLT3-WT or FLT3-ITD -induced AKT, ERK1/2 or p38 phosphorylation. However, LCK expression significantly enhanced FLT3-ITD-mediated STAT5 phosphorylation. Taken together, our data suggest that LCK cooperates with oncogenic FLT3-ITD in cellular transformation.
Collapse
|
7
|
Rustagi Y, Jain A, Saxena S, Rani V. Natural Polyphenols as Prospective Inhibitors for MMPs Remodeling in Human Diseases. PROTEASES IN HUMAN DISEASES 2017:263-283. [DOI: 10.1007/978-981-10-3162-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 2015; 55:255-65. [PMID: 26227856 DOI: 10.1016/j.bcmd.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
Abstract
B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Kamil Bojarczuk
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Michal Dwojak
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Nina Miazek
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Piotr Zapala
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anders Bunes
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Marta Siernicka
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Maria Rozanska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
9
|
Identification of protein kinase inhibitors with a selective negative effect on the viability of Epstein-Barr virus infected B cell lines. PLoS One 2014; 9:e95688. [PMID: 24759913 PMCID: PMC3997413 DOI: 10.1371/journal.pone.0095688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/29/2014] [Indexed: 01/21/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus, which is causally associated with the development of several B lymphocytic malignancies that include Burkitt's lymphomas, Hodgkin's disease, AIDS and posttransplant associated lymphomas. The transforming activity of EBV is orchestrated by several latent viral proteins that mimic and modulate cellular growth promoting and antiapoptotic signaling pathways, which involve among others the activity of protein kinases. In an effort to identify small molecule inhibitors of the growth of EBV-transformed B lymphocytes a library of 254 kinase inhibitors was screened. This effort identified two tyrosine kinase inhibitors and two MEK inhibitors that compromised preferentially the viability of EBV-infected human B lymphocytes. Our findings highlight the possible dependence of EBV-infected B lymphocytes on specific kinase-regulated pathways underlining the potential for the development of small molecule-based therapeutics that could target selectively EBV-associated human B lymphocyte malignancies.
Collapse
|
10
|
Kim EJ, Monje FJ, Li L, Höger H, Pollak DD, Lubec G. Alzheimer's disease risk factor lymphocyte-specific protein tyrosine kinase regulates long-term synaptic strengthening, spatial learning and memory. Cell Mol Life Sci 2013; 70:743-59. [PMID: 23007847 PMCID: PMC11113176 DOI: 10.1007/s00018-012-1168-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/27/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022]
Abstract
The lymphocyte-specific protein tyrosine kinase (Lck), which belongs to the Src kinase-family, is expressed in neurons of the hippocampus, a structure critical for learning and memory. Recent evidence demonstrated a significant downregulation of Lck in Alzheimer's disease. Lck has additionally been proposed to be a risk factor for Alzheimer's disease, thus suggesting the involvement of Lck in memory function. The neuronal role of Lck, however, and its involvement in learning and memory remain largely unexplored. Here, in vitro electrophysiology, confocal microscopy, and molecular, pharmacological, genetic and biochemical techniques were combined with in vivo behavioral approaches to examine the role of Lck in the mouse hippocampus. Specific pharmacological inhibition and genetic silencing indicated the involvement of Lck in the regulation of neuritic outgrowth. In the functional pre-established synaptic networks that were examined electrophysiologically, specific Lck-inhibition also selectively impaired the long-term hippocampal synaptic plasticity without affecting spontaneous excitatory synaptic transmission or short-term synaptic potentiation. The selective inhibition of Lck also significantly altered hippocampus-dependent spatial learning and memory in vivo. These data provide the basis for the functional characterization of brain Lck, describing the importance of Lck as a critical regulator of both neuronal morphology and in vivo long-term memory.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, I, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, I, 1090 Vienna, Austria
| | - Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, I, 1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
11
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
12
|
Harr MW, Caimi PF, McColl KS, Zhong F, Patel SN, Barr PM, Distelhorst CW. Inhibition of Lck enhances glucocorticoid sensitivity and apoptosis in lymphoid cell lines and in chronic lymphocytic leukemia. Cell Death Differ 2010; 17:1381-91. [PMID: 20300113 PMCID: PMC3130993 DOI: 10.1038/cdd.2010.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids are used as part of front-line therapy to treat lymphoid malignancy because of their remarkable ability to induce apoptosis. Yet, in T cells, glucocorticoid-induced apoptosis is readily inhibited by lymphocyte activation and signaling. We have previously shown that the Src family kinase, Lck (lymphocyte cell-specific tyrosine kinase), which is predominantly expressed in T cells, interacts with IP3 receptors to facilitate calcium signaling. Here, we discovered that dexamethasone downregulates Lck, which, in turn, suppresses lymphocyte activation by inhibiting pro-survival calcium oscillations. Moreover, stable expression of shRNAs that selectively targeted Lck or treatment with the Src inhibitor dasatinib (BMS-354825) enhanced apoptosis induction by dexamethasone. To investigate the effect of Lck inhibition in a primary leukemia model, we employed chronic lymphocytic leukemia (CLL) cells that aberrantly expressed Lck and were relatively insensitive to dexamethasone. Lck expression was correlated with resistance to dexamethasone in CLL cells, and its inhibition by dasatinib or other inhibitors markedly enhanced glucocorticoid sensitivity. Collectively, these data indicate that Lck protects cells from glucocorticoid-induced apoptosis and its inhibition enhances sensitivity to dexamethasone. Small-molecule inhibitors of Lck, such as dasatinib, may function to reverse glucocorticoid resistance in some lymphoid malignancies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/immunology
- B-Lymphocytes/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/immunology
- Cell Line, Tumor
- Cells, Cultured
- Dasatinib
- Dexamethasone/pharmacology
- Down-Regulation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Gene Expression Profiling
- Glucocorticoids/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Mice
- Mice, Inbred Strains
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- Receptors, Antigen, T-Cell/agonists
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thiazoles/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- MW Harr
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - PF Caimi
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - KS McColl
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - F Zhong
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - SN Patel
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - PM Barr
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - CW Distelhorst
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals of Cleveland, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Validated quantitative structure–activity relationship analysis of a series of 2-aminothiazole based p56Lck inhibitors. Anal Chim Acta 2009; 631:29-39. [DOI: 10.1016/j.aca.2008.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 10/05/2008] [Accepted: 10/07/2008] [Indexed: 11/19/2022]
|
14
|
Wang Z, Liao YH, Yuan J, Zhang JH, Liu ZP, Dong JH. Analysis of IgG subclass antibodies and expression of T-Cell receptor signaling molecules in anti-CD4 monoclonal antibody treated mice with autoimmune cardiomyopathy. Autoimmunity 2006; 39:455-60. [PMID: 17060024 DOI: 10.1080/08916930600845915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
T-cell immune abnormality in patients of dilated cardiomyopathy has been intensively studied over the past 10 years. In this study, we aim to focus on the molecular mechanism of T-cells in autoimmune cardiomyopathy mouse model by detecting the expression of three T-cell signaling molecules. Balb/C mice (n = 12) were immunized with the peptides derived from human ADP/ATP carrier on the 1st, 14th, 28th, 49th and 79th days, and half of them were also injected with anti-L3T4 McAb on the - 1st, 0 and 1st days. The sham-immunized mice were taken as the controls (n = 6). The main result shows that the antibody response of IgG subclasses such as IgG1, IgG2b and IgG3 were definitely blocked except IgG2a in CD4+ cell-depleted Balb/C mice. In addition, the average mRNA expression of p56lck, p59fyn and zap-70 were all found to be dramatically higher in the mice immunized with only ADP/ATP carrier peptides than in the control-group. At meantime, reduced levels of the protein kinases p56lck, p59fyn and zap-70 were clearly observed in anti-CD4 McAb immunized group compared with DCM group. We propose that the proliferation of T-cells was significantly inhibited in anti-CD4 treated mice and CD4+ T-cells may play a critical role in ADP/ATP carrier caused mouse DCM.
Collapse
Affiliation(s)
- Zhaohui Wang
- Laboratory of Cardiovascular immunology, Tongji Medical College, Institute of Cardiology, Union Hospital, Huazhong Technology and Science University, 1277 Jie-Fang Avenue, Wuhan, 430022, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Hollmann CA, Owens T, Nalbantoglu J, Hudson TJ, Sladek R. Constitutive Activation of Extracellular Signal-Regulated Kinase Predisposes Diffuse Large B-Cell Lymphoma Cell Lines to CD40-Mediated Cell Death. Cancer Res 2006; 66:3550-7. [PMID: 16585179 DOI: 10.1158/0008-5472.can-05-2498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD40 promotes survival, proliferation, and differentiation of normal B cells but can cause activation-induced cell death in malignant B lymphocytes. CD40 ligand and anti-CD40 antibodies have been used successfully to induce apoptosis in lymphoma lines both in vitro and in xenograft tumor models. Although this makes CD40 an attractive target for antitumor therapies, the response of malignant B cells to CD40 signaling is variable, and CD40 stimulation can enhance proliferation and can increase chemoresistance in some cell lines. It would therefore be useful to identify markers that predict whether a specific cell line or tumor will undergo apoptosis when stimulated with CD40 and to identify targets downstream of CD40 that affect only the apoptotic arm of CD40 signaling. We have analyzed gene expression patterns in CD40-sensitive and CD40-resistant diffuse large B-cell lymphoma (DLBCL) cell lines to identify signaling pathways that are involved in CD40-mediated apoptosis. CD40-resistant lines expressed pre-B-cell markers, including RAG and VPREB, whereas CD40-sensitive cells resembled mature B cells and expressed higher levels of transcripts encoding several members of the CD40 signaling pathway, including LCK and VAV. In addition, CD40-sensitive DLBCL cell lines also displayed constitutive activation of extracellular signal-regulated kinase (ERK) and failed to undergo apoptosis when ERK phosphorylation was inhibited. In contrast, CD40-resistant lines showed no constitutive activation of ERK and no increase in ERK activity in response to CD40 stimulation. Our results suggest that constitutive activation of ERK may be required for death signaling by CD40.
Collapse
Affiliation(s)
- C Annette Hollmann
- Neuroimmunology Unit, Montreal Neurological Institute, Departments of Medicine and Human Genetics, McGill University, Duff Medical Bldg. Room 717, 3775 University Street, Montreal, Quebec, Canada H3A 2B4.
| | | | | | | | | |
Collapse
|
16
|
Lee S, Roy F, Galmarini CM, Accardi R, Michelon J, Viller A, Cros E, Dumontet C, Sylla BS. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23:2287-97. [PMID: 14730347 DOI: 10.1038/sj.onc.1207385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a malignant disease characterized by an accumulation of monoclonal CD5+ mature B cells, with a high percentage of cells arrested in the G0/G1 phase of the cell cycle, and a particular resistance toward apoptosis-inducing agents. Dok1 (downstream of tyrosine kinases) is an abundant Ras-GTPase-activating protein (Ras-GAP)-associated tyrosine kinase substrate, which negatively regulates cell proliferation, downregulates MAP kinase activation and promotes cell migration. The gene encoding Dok1 maps to human chromosome 2p13, a region previously found to be rearranged in B-CLL. We have screened the Dok1 gene for mutations from 46 individuals with B-CLL using heteroduplex analysis. A four-nucleotide GGCC deletion in the coding region was found in the leukemia cells from one patient. This mutation causes a frameshift leading to protein truncation at the carboxyl-terminus, with the acquisition of a novel amino-acid sequence. In contrast to the wild-type Dok1 protein, which has cytoplasmic/membrane localization, the mutant Dok1 is a nuclear protein containing a functional bipartite nuclear localization signal. Whereas overexpression of wild-type Dok1 inhibited PDGF-induced MAP kinase activation, this inhibition was not observed with the mutant Dok1. Furthermore the mutant Dok1 forms heterodimers with Dok1 wild type and the association can be enhanced by Lck-mediated tyrosine-phosphorylation. This is the first example of a Dok1 mutation in B-CLL and the data suggest that Dok1 might play a role in leukemogenesis.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert-Thomas, Lyon 69008, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Haralambieva E, Jones M, Roncador GM, Cerroni L, Lamant L, Ott G, Rosenwald A, Sherman C, Thorner P, Kusec R, Wood KM, Campo E, Falini B, Ramsay A, Marafioti T, Stein H, Kluin PM, Pulford K, Mason DY. Tyrosine phosphorylation in human lymphomas. ACTA ACUST UNITED AC 2003; 34:545-52. [PMID: 14626344 DOI: 10.1023/a:1026032902888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated whether oncogenic tyrosine kinase activation also occurs in other categories of lymphoma by staining 145 cases of lymphoma covering those tumours with a range of different subtypes including those with morphological similarity to ALK-positive anaplastic large cell lymphoma (ALCL). Twelve cases of the borderline malignant disorder lymphomatoid papulosis were also studied. Twenty seven of the 28 cases of ALK-positive ALCL showed the extensive cytoplasmic labelling for phosphotyrosine in the neoplastic cells. The remaining case containing moesin-ALK exhibited membrane-associated phosphotyrosine expression. There was no nuclear phosphotyrosine labelling in any of the ALK-positive ALCL, even though ALK was present within the cell nuclei in 23 of the tumours. Variable degrees of phosphotyrosine labelling, usually membrane-restricted, were observed in 7/40 cases of ALK-negative ALCL, 9/29 cases of diffuse large B-cell lymphoma, 3/6 cases of mediastinal B-cell lymphoma, 2/7 cases of Hodgkin's lymphoma, 3/6 cases of peripheral T-cell lymphomas unspecified, 4/6 cases of B-cell chronic lymphocytic leukaemia, 2/6 cases of follicular lymphomas and 2/12 cases of lymphomatoid papulosis studied. However none of these phosphotyrosine-positive cases showed the strong cytoplasmic labelling comparable to that seen in ALK-positive lymphoma. We conclude that activation of a tyrosine kinase is probably not a major oncogenic event in lymphomas other than ALK-positive ALCL.
Collapse
Affiliation(s)
- E Haralambieva
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Majolini MB, Boncristiano M, Baldari CT. Dysregulation of the protein tyrosine kinase LCK in lymphoproliferative disorders and in other neoplasias. Leuk Lymphoma 1999; 35:245-54. [PMID: 10706447 DOI: 10.3109/10428199909145727] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Initially identified as a T-cell specific member of the Src family of protein tyrosine kinases, Lck has become the object of intensive investigations which have revealed a key role for this kinase in the central processes controlling T-cell development, activation, proliferation and survival. Experimental evidence of the oncogenic potential of Lck, together with the identification of defects in the regulation of Lck expression or activity in T-cell leukemias, suggests that dysregulation of Lck might play a role in neoplastic transformation. Here we review the data documenting a potential role for this kinase in the initiation and maintenance of the transformed state in human cancers.
Collapse
Affiliation(s)
- M B Majolini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | |
Collapse
|