1
|
Lutzmann M, Bernex F, da Costa de Jesus C, Hodroj D, Marty C, Plo I, Vainchenker W, Tosolini M, Forichon L, Bret C, Queille S, Marchive C, Hoffmann JS, Méchali M. MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. Cell Rep 2020; 28:2851-2865.e4. [PMID: 31509747 DOI: 10.1016/j.celrep.2019.07.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/26/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoiesis is particularly sensitive to DNA damage. Myeloid tumor incidence increases in patients with DNA repair defects and after chemotherapy. It is not known why hematopoietic cells are highly vulnerable to DNA damage. Addressing this question is complicated by the paucity of mouse models of hematopoietic malignancies due to defective DNA repair. We show that DNA repair-deficient Mcm8- and Mcm9-knockout mice develop myeloid tumors, phenocopying prevalent myelodysplastic syndromes. We demonstrate that these tumors are preceded by a lifelong DNA damage burden in bone marrow and that they acquire proliferative capacity by suppressing signaling of the tumor suppressor and cell cycle controller RB, as often seen in patients. Finally, we found that absence of MCM9 and the tumor suppressor Tp53 switches tumorigenesis to lymphoid tumors without precedent myeloid malignancy. Our results demonstrate that MCM8/9 deficiency drives myeloid tumor development and establishes a DNA damage burdened mouse model for hematopoietic malignancies.
Collapse
Affiliation(s)
- Malik Lutzmann
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| | - Florence Bernex
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | | | - Dana Hodroj
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Caroline Marty
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | - Isabelle Plo
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Luc Forichon
- Animal House Facility, BioCampus Montpellier, UMS3426 CNRS-US009 INSERM-UM, 141 Rue de la Cardonille, 34396 Montpellier, France
| | - Caroline Bret
- Department of Hematology, University Hospital St Eloi, 80 Ave Augustin Fliche, Montpellier, France
| | - Sophie Queille
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Candice Marchive
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, DNA Replication and Genome Dynamics, 141, Rue de la Cardonille, 34396 Montpellier, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
2
|
p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia 2016; 31:1296-1305. [DOI: 10.1038/leu.2016.350] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
|
3
|
Ghassemi F, Khodabande A. Risk definition and management strategies in retinoblastoma: current perspectives. Clin Ophthalmol 2015; 9:985-94. [PMID: 26089630 PMCID: PMC4467752 DOI: 10.2147/opth.s59828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This manuscript focuses on high-risk factors of metastatic disease in retinoblastoma and evaluation of the current treatments of retinoblastoma. Presence of histopathologic high-risk factors is associated with a higher risk of local recurrence and systemic metastasis. Currently, globe-sparing therapies, including systemic chemotherapy, intra-arterial chemoreduction, intravitreal chemotherapy, focal consolidation, and combination therapies, are being used and investigated actively. Major advances are being made in the diagnosis and management of retinoblastoma that will lead to improved morbidity and mortality rates in patients with retinoblastoma. By saving the globes, fronting with some high-risk factors for metastasis would be inevitable. International multi-institutional prospective studies could resolve current uncertainties regarding the main tumor treatment regimens for each patient and indications for chemoprophylaxis for high-risk-factor-bearing retinoblastoma cases.
Collapse
Affiliation(s)
- Fariba Ghassemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Tehran Province, Islamic Republic of Iran
| | - Alireza Khodabande
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Tehran Province, Islamic Republic of Iran
| |
Collapse
|
4
|
Massaro SA, Bajaj R, Pashankar FD, Ornstein D, Gallagher PG, Krause DS, Li P. Bi-allelic deletions within 13q14 and transient trisomy 21 with absence of GATA1s in pediatric acute megakaryoblastic leukemia. Pediatr Blood Cancer 2011; 57:516-9. [PMID: 21538823 PMCID: PMC4517576 DOI: 10.1002/pbc.23156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/21/2011] [Indexed: 11/12/2022]
Abstract
Oligonucleotide array comparative genomic hybridization, karyotype and fluorescence in situ hybridization analyses were employed to delineate the cytogenetic abnormalities in a case of pediatric acute megakaryoblastic leukemia. Here we present a unique genetic profile that includes bi-allelic deletions within 13q14, where the retinoblastoma tumor suppressor gene (RB1) resides, as well as isolated trisomy 21 without a concomitant mutation in the hematopoietic transcription factor GATA1s and translocation (17;22), that does not involve the megakaryoblastic leukemia 1 (MKL1) gene located on chromosome 22. Alteration of the RB1 gene is most likely the critical leukemogenic event in this patient.
Collapse
Affiliation(s)
- Stephanie A. Massaro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520
| | - Renu Bajaj
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Farzana D. Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Deborah Ornstein
- Department of Hematology/Oncology, Dartmouth Medical School, Hanover, NH
| | - Patrick G. Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Diane S. Krause
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
5
|
Tonini T, D'Andrilli G, Fucito A, Gaspa L, Bagella L. Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J Cell Physiol 2007; 214:295-300. [PMID: 17786943 DOI: 10.1002/jcp.21241] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An understanding of the mechanisms that uncover the dynamic changes in the distribution of the chromatin modifying enzymes and regulatory proteins on their target loci could provide further insight into the phenomenon of malignant transformation. Based on the current available data, it seems more and more clear that an abnormal expression of Ezh2, a member of the Polycomb group (PcG) protein, may be involved in the tumorigenesis process, in addition, different studies identify Ezh2 as a potential marker that distinguish aggressive prostate and breast cancer from indolent one. Recent investigation show that ectopic expression of Ezh2 provides proliferative advantage to primary cells through interaction with the pathways of key elements that control cell growth arrest and differentiation, like members of the retinoblastoma (Rb) family. Here, we outline how these pathways converge and we review the recent advances on the molecular mechanisms that promote cell cycle progression through deregulation of Ezh2 protein level, providing novel links between cancer progression and chromatin remodeling machineries.
Collapse
Affiliation(s)
- Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Gombos DS, Hungerford J, Abramson DH, Kingston J, Chantada G, Dunkel IJ, Antoneli CBG, Greenwald M, Haik BG, Leal CA, Medina-Sanson A, Schefler AC, Veerakul G, Wieland R, Bornfeld N, Wilson MW, Yu CBO. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor? Ophthalmology 2007; 114:1378-83. [PMID: 17613328 DOI: 10.1016/j.ophtha.2007.03.074] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To describe a series of patients with secondary acute myelogenous leukemia (sAML) and retinoblastoma (RB). DESIGN Retrospective observational cases series. PARTICIPANTS Ocular and pediatric oncologists at referral centers in Europe and the Americas and the RB databases at the National Institutes of Health and the Ophthalmic Oncology Service at Memorial Sloan-Kettering Cancer Center. METHODS Physician survey, retrospective database review, and literature search. MAIN OUTCOME MEASURES History of RB and development of sAML, management of RB (surgery, radiotherapy, chemotherapy), age at diagnosis of RB and leukemia, French-American-British (FAB) subtype, and current status of patient (alive or dead). RESULTS Fifteen patients with sAML were identified; 13 occurred in childhood. Mean latent period from RB to AML diagnosis was 9.8 years (median, 42 months). Nine cases were of the M2 or M5 FAB subtypes. Twelve patients (79 %) had received chemotherapy with a topoisomerase II inhibitor, 8 (43%) had received chemotherapy with an epipodophyllotoxin. Ten children died of their leukemia. CONCLUSIONS Acute myelogenous leukemia is a rare secondary malignancy among retinoblastoma patients, many of whom were treated with primary or adjuvant chemotherapy. Additional studies are needed to assess potential risk factors contributing to sAML development in this cohort.
Collapse
Affiliation(s)
- Dan S Gombos
- Section of Ophthalmology, Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cheng K, Grisendi S, Clohessy JG, Majid S, Bernardi R, Sportoletti P, Pandolfi PP. The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 2007; 26:7391-400. [PMID: 17546053 DOI: 10.1038/sj.onc.1210549] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations leading to aberrant cytoplasmic localization of Nucleophosmin 1 (NPM1) have been recently identified as the most frequent genetic alteration in acute myelogenous leukemia. However, the oncogenic potential of this nucleophosmin mutant (NPMc+) has never been established, which casts doubt on its role in leukemogenesis. By performing classical transformation assays, we find that NPMc+, but not wild-type NPM, cooperates specifically with adenovirus E1A to transform primary mouse embryonic fibroblasts in soft agar. We demonstrate that NPMc+ blocks the p19(Arf) (Arf) induction elicited by E1A. Surprisingly, however, we find that NPMc+ induces cellular senescence and that E1A is able to overcome this response. We propose a model whereby the NPMc+ pro-senescence activity needs to be evaded for oncogenic transformation, even though NPMc+ can concomitantly blunt the Arf/p53 pathway. These findings identify for the first time NPMc+ as an oncogene and shed new unexpected light on its mechanism of action.
Collapse
Affiliation(s)
- K Cheng
- Cancer Biology and Genetics Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Blasius R, Dicato M, Diederich M. Effect of Curcumin Treatment on Protein Phosphorylation in K562 Cells. Ann N Y Acad Sci 2007; 1095:377-87. [PMID: 17404050 DOI: 10.1196/annals.1397.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deregulation of signaling pathways is a common feature observed in human cancers and other diseases. Therefore, there is a strong need for compounds that are able to modulate or inactivate upregulated signaling events. Natural compounds extracted from plants have long been used and still present a dynamic domain in the research of new therapeutic tools. Among those molecules, curcumin was already described for its antioxidative, anti-inflammatory, and antiseptic properties. Many actions of curcumin target proteins and kinases implicated in the signaling pathways. However, the effects described depend on the treatment conditions used, as well as the cell line studied, and these features vary strongly from one study to the other. During this work, we evaluated the effect of one curcumin treatment (20 muM, 48 h) on the phosphorylation of a number of proteins and kinases in the human chronic myelogenous leukemia cell line K562. These results allow to compare the results obtained in one condition on various proteins.
Collapse
Affiliation(s)
- Romain Blasius
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | |
Collapse
|
10
|
Ikeda A, Shankar DB, Watanabe M, Tamanoi F, Moore TB, Sakamoto KM. Molecular targets and the treatment of myeloid leukemia. Mol Genet Metab 2006; 88:216-24. [PMID: 16678459 DOI: 10.1016/j.ymgme.2006.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Leukemia is a multistep process involving accumulation of genetic alterations over time. These genetic mutations destroy the delicate balance between cell proliferation, differentiation, and apoptosis. Traditional approaches to treatment of leukemia involve chemotherapy, radiation, and bone marrow transplantation. In recent years, specific targeted therapies have been developed for the treatment of leukemia. The success of treatment of acute promyelocytic leukemia with All Trans Retinoic Acid (ATRA) and CML with imatinib have lead to increased efforts to identify targets that can be inhibited by small molecules for treatment of hematological malignancies. In this review, we describe the current advances in the development of targeted therapy in acute myeloid leukemia.
Collapse
Affiliation(s)
- A Ikeda
- Division of Hematology/Oncology, Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories, and Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, USA
| | | | | | | | | | | |
Collapse
|
11
|
Wiesner SM, Freese A, Ohlfest JR. Emerging concepts in glioma biology: implications for clinical protocols and rational treatment strategies. Neurosurg Focus 2005; 19:E3. [PMID: 16241105 DOI: 10.3171/foc.2005.19.4.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM), the most common primary central nervous system neoplasm, is a complex, heterogeneous disease. The recent identification of stem cells in murine tumor xenografts that were capable of recapitulating the tumor phenotype adds a new dimension of complexity to the already challenging treatment of patients with GBMs. Although specific cellular and genetic changes are commonly associated with GBM, the mechanism by which those changes occur may have a significant impact on treatment outcome. Of the many bioinformatics techniques developed in recent years, gene expression profiling has become a commonly used research tool for investigating tumor characteristics, and the development of rationally targeted molecular therapies has also accelerated following the initial success of specifically designed inhibitors in the treatment of malignancies. Despite these advances in research techniques and targeted molecular therapies, however, limited clinical impact has been achieved in the treatment of infiltrative malignancies such as GBMs. Thus, further extension in survival of patients with GBMs may require use of multiple analyses of tumors to develop tailored therapies that reflect the inter- and intratumoral heterogeneity of this disease. In this review, the authors briefly consider the potential use of expression profiling combined with mutation analysis in the development of treatment modalities to address the heterogeneity of this complex tumor phenotype.
Collapse
Affiliation(s)
- Stephen M Wiesner
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
12
|
Sweetser DA, Peniket AJ, Haaland C, Blomberg AA, Zhang Y, Zaidi ST, Dayyani F, Zhao Z, Heerema NA, Boultwood J, Dewald GW, Paietta E, Slovak ML, Willman CL, Wainscoat JS, Bernstein ID, Daly SB. Delineation of the minimal commonly deleted segment and identification of candidate tumor-suppressor genes in del(9q) acute myeloid leukemia. Genes Chromosomes Cancer 2005; 44:279-91. [PMID: 16015647 DOI: 10.1002/gcc.20236] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Deletion of the long arm of chromosome 9, del(9q), is a recurring chromosomal aberration in acute myeloid leukemia (AML) that is frequently associated with t(8;21). The critical gene products affected by del(9q) are unknown but likely cooperate with the AML1/ETO fusion gene created by t(8;21) in leukemogenesis. In 43 AML samples with del(9q), we used high-density microsatellite markers to define the commonly deleted region (CDR) to less than 2.4 Mb. We found no homozygous loss at any locus tested. The CDR contains 7 known genes, FRMD3, UBQLN1, GKAP42, KIF27, HNRPK, SLC28A3, and NTRK2, and 4 novel genes, RASEF, C9orf103, C9orf64, and C9orf76. In addition, TLE1 and TLE4 are adjacent to the CDR. We performed a comprehensive mutational analysis of the coding regions of all these genes. No sequence variations absent in normal controls were seen in more than a single del(9q) AML sample. Expression of 7 of the 10 genes examined was significantly down-regulated in del(19q)AML as compared with the CD34-purified progenitors from normal individuals, a pattern distinct from that seen in AML samples with a normal karyotype. The results of our studies are consistent with a model of tumor suppression mediated by haploinsufficiency of critical genes in del(9q) AML.
Collapse
Affiliation(s)
- David A Sweetser
- Department of Pediatrics, Massachusetts General Hospital, 55 Fruit Street--Jackson 904, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Targeted therapies for hematological malignancies have come of age since the advent of all trans retinoic acid (ATRA) for treating APL and STI571/Imatinib Mesylate/Gleevec for CML. There are good molecular targets for other malignancies and several new drugs are in clinical trials. In this review, we will concentrate on individual abnormalities that exist in the myelodysplastic syndromes (MDS) and myeloid leukemias that are targets for small molecule therapies (summarised in Fig. 1). We will cover fusion proteins that are produced as a result of translocations, including BCR-ABL, the FLT3 tyrosine kinase receptor and RAS. Progression of diseases such as MDS to secondary AML occur as a result of changes in the balance between cell proliferation and apoptosis and we will review targets in both these areas, including reversal of epigenetic silencing of genes such as p15(INK4B).
Collapse
Affiliation(s)
- Alison M John
- Leukaemia Sciences Laboratories, Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
14
|
Abstract
Over the last decade, a growing number of tumor suppressor genes have been discovered to play a role in tumorigenesis. Mutations of p53 have been found in hematological malignant diseases, but the frequency of these alterations is much lower than in solid tumors. These mutations occur especially as hematopoietic abnormalities become more malignant such as going from the chronic phase to the blast crisis of chronic myeloid leukemia. A broad spectrum of tumor suppressor gene alterations do occur in hematological malignancies, especially structural alterations of p15(INK4A), p15(INK4B) and p14(ARF) in acute lymphoblastic leukemia as well as methylation of these genes in several myeloproliferative disorders. Tumor suppressor genes are altered via different mechanisms, including deletions and point mutations, which may result in an inactive or dominant negative protein. Methylation of the promoter of the tumor suppressor gene can blunt its expression. Chimeric proteins formed by chromosomal translocations (i.e. AML1-ETO, PML-RARalpha, PLZF-RARalpha) can produce a dominant negative transcription factor that can decrease expression of tumor suppressor genes. This review provides an overview of the current knowledge about the involvement of tumor suppressor genes in hematopoietic malignancies including those involved in cell cycle control, apoptosis and transcriptional control.
Collapse
Affiliation(s)
- Utz Krug
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California, CA 90048, USA.
| | | | | |
Collapse
|
15
|
Markaki EA, Tsopanomichalou M, Dimitriou H, Stiakaki E, Perdikoyanni C, Spandidos D, Kalmanti M. Mutations of retinoblastoma gene (Rb-1) as a prognostic factor in children with acute leukemia and neuroblastoma. Pediatr Hematol Oncol 2001; 18:101-10. [PMID: 11255727 DOI: 10.1080/088800101300002928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Rb-1 is a tumor suppressor gene encoding for a nuclear phosphoprotein acting as a cell cycle regulator, normally expressed in hematopoietic cells and more often inactivated by point mutations with predominance for exons 20-24. The aim of this study is to correlate the retinoblastoma-1 (Rb-1) gene mutations with the prognosis and progression of childhood acute leukemia and neuroblastoma. Bone marrow slides from 26 children with leukemia (18 acute lymphoblastic leukemia [ALL] and 8 acute myeloid leukemia [AML]) and 4 children with neuroblastoma were studied. Exons 20, 21, and 22 were amplified using the polymerase chain reaction technique. Single strand conformational polymorphism (SSCP) and heterodoublex analysis were performed to detect mutations. In ALL cases, two samples in exon 20 (11.11%), one in exon 21 (5.56%), and four in exon 22 (22.22%) had altered conformation. All but one of these cases were classified as high-risk leukemia patients who either relapsed or never achieved remission. Two of the AML cases who did not achieve remission and one of the neuroblastoma cases with concomitant bone marrow infiltration had altered conformation as well. The SSCP and heterodoublex analysis showed that all but one who did not belong to the high-risk group had the same altered conformation. These data suggest that Rb-1 gene could possibly be used as an independent prognostic factor for the acute leukemia of childhood and result in the intensification of chemotherapy. In solid tumors with bone marrow involvement it could play a role as a marker of aggressive disease.
Collapse
Affiliation(s)
- E A Markaki
- Department of Pediatric Hematology-Oncology, and Laboratory of Clinical Virology, University Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|