1
|
White AL, Talkington GM, Ouvrier B, Ismael S, Solch-Ottaiano RJ, Bix G. Reactive Oxygen Species, a Potential Therapeutic Target for Vascular Dementia. Biomolecules 2024; 15:6. [PMID: 39858401 PMCID: PMC11761268 DOI: 10.3390/biom15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative condition prevalent among elderly adults marked by cognitive decline resulting from injured and/or improperly functioning cerebrovasculature with resultant disruptions in cerebral blood flow. Currently, VaD has no specific therapeutics and the exact pathobiology is still being investigated. VaD has been shown to develop when reactive oxygen species (ROS) form from damaged targets at different levels of organization-mitochondria, endothelial cells, or cerebrovasculature. In this review, we highlight how specific ROS molecules may be important in the development of VaD and how they can be targeted as a potential therapeutic for VaD.
Collapse
Affiliation(s)
- Amanda Louise White
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grant M. Talkington
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Blake Ouvrier
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rebecca J. Solch-Ottaiano
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
| |
Collapse
|
2
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Custodero C, Ciavarella A, Panza F, Gnocchi D, Lenato GM, Lee J, Mazzocca A, Sabbà C, Solfrizzi V. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: a systematic review and meta-analysis. GeroScience 2022; 44:1373-1392. [PMID: 35486344 PMCID: PMC9213626 DOI: 10.1007/s11357-022-00556-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Vascular contribution to cognitive impairment and dementia (VCID) is a clinical label encompassing a wide range of cognitive disorders progressing from mild to major vascular cognitive impairment (VCI), which is also defined as vascular dementia (VaD). VaD diagnosis is mainly based on clinical and imaging findings. Earlier biomarkers are needed to identify subjects at risk to develop mild VCI and VaD. In the present meta-analysis, we comprehensively evaluated the role of inflammatory biomarkers in differential diagnosis between VaD and Alzheimer’s disease (AD), and assessed their prognostic value on predicting VaD incidence. We collected literature until January 31, 2021, assessing three inflammatory markers [interleukin(IL)-6, C-reactive protein (CRP), tumor necrosis factor (TNF)-α] from blood or cerebrospinal fluid (CSF) samples. Thirteen cross-sectional and seven prospective studies were included. Blood IL-6 levels were cross-sectionally significantly higher in people with VaD compared to AD patients (SMD: 0.40, 95% CI: 0.18 to 0.62) with low heterogeneity (I2: 41%, p = 0.13). Higher IL-6 levels were also associated to higher risk of incident VaD (relative risk: 1.28, 95% CI: 1.03 to 1.59, I2: 0%). IL-6 in CSF was significantly higher in people with VaD compared to healthy subjects (SMD: 0.77, 95% CI: 0.17 to 1.37, I2: 70%), and not compared to AD patients, but due to limited evidence and high inconsistency across studies, we could not draw definite conclusion. Higher blood IL-6 levels might represent a useful biomarker able to differentiate people with VaD from those with AD and might be correlated with higher risk of future VaD.
Collapse
Affiliation(s)
- Carlo Custodero
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Ciavarella
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy.,Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, A. Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Francesco Panza
- Population Health Unit-"Salus In Apulia Study", National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Davide Gnocchi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Gennaro M Lenato
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Juhan Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio Mazzocca
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Carlo Sabbà
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
4
|
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel) 2021; 10:antiox10081184. [PMID: 34439432 PMCID: PMC8389018 DOI: 10.3390/antiox10081184] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| | - Adelina Vlad
- Physiology Department, “Carol Davila” UMPh, 020021 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| |
Collapse
|
5
|
Nutritional cognitive neuroscience of aging: Focus on carotenoids and cognitive frailty. Redox Biol 2021; 44:101996. [PMID: 34090844 PMCID: PMC8212151 DOI: 10.1016/j.redox.2021.101996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
The term „nutritional cognitive neuroscience” was recently established to define a research field focusing on the impact of nutrition on cognition and brain health across the life span. In this overview, we summarize the robust evidence on the role of carotenoids as micronutrients with different biological properties in persons with cognitive (pre)frailty. As neurodegenerative processes during aging occur in a continuum from brain aging to dementia, we propose the name „nutritional cognitive neuroscience of aging“ to define research on the role of nutrition and micronutrients in cognitive frailty. Further studies are warranted which integrate carotenoid interventions in multidomain, personalized lifestyle strategies. Cognitive integrity is an essential element of healthy and active ageing. Oxidative distress is strongly linked to neurodegeneration. Consumption and levels of carotenoids are linked to cognitive frailty. There is conflict of evidence for intervention trials with carotenoids in dementia. Future studies with carotenoids should be within personalized and multidomain strategies.
Collapse
|
6
|
Dias IH, Brown CL, Shabir K, Polidori MC, Griffiths HR. miRNA 933 Expression by Endothelial Cells is Increased by 27-Hydroxycholesterol and is More Prevalent in Plasma from Dementia Patients. J Alzheimers Dis 2019; 64:1009-1017. [PMID: 29966198 PMCID: PMC6087455 DOI: 10.3233/jad-180201] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) etiology is complex; gene and environmental risk factors may interact to predispose to disease. From single nucleotide polymorphism analyses and genome-wide association studies, a number of candidate risk genes for the onset of AD have been identified and cluster around lipid metabolism and inflammation. We hypothesized that endothelial cells which line the blood-brain barrier are likely to be critical mediators of systemic metabolism within the brain. Therefore, we have studied the effect of 27 hydroxycholesterol (27-OHC) on microvascular endothelial cell (HMVEC) redox state, inflammatory cytokine secretion, and microRNA (miR) expression. Using a transwell method, we have studied directional secretion profiles for the proinflammatory cytokines TNFα and IL-6 and confirmed that 27-OHC induces discrete and directional inflammatory molecular signatures from HMVEC. The lipids caused depletion of cellular glutathione and cytokine secretion is HMVEC-redox state-dependent. Discovery miR expression change in HMVEC with and without 27-OHC treatment was undertaken. We selected three genes for further analysis by qPCR; miR-144 and 146 expression, which are anti-inflammatory and redox regulating modulators, were not affected significantly by 27-OHC. However, increased expression of a putative neurotrophic regulatory factor miR933 in HMVEC with 27-OHC was confirmed by qPCR. In plasma from patients with dementia, all three miR were found at significantly elevated levels compared to healthy older adults. These data highlight that 27-OHC has an important regulatory effect on endothelial microvascular cells to increase expression of a miR (–933) and secretion of inflammatory cytokines that are elevated in plasma from dementia patients.
Collapse
Affiliation(s)
- Irundika H.K. Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Caroline L. Brown
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK
| | - M. Cristina Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University, Dusseldorf, Germany
- Ageing Clinical Research, Department Medicine II, University Hospital of Cologne, Cologne, Germany
| | - Helen R. Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, UK
- Correspondence to: Professor Helen R. Griffiths, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK. Tel.: +44 1483 689586; E-mail:
| |
Collapse
|
7
|
Vergallo A, Giampietri L, Baldacci F, Volpi L, Chico L, Pagni C, Giorgi FS, Ceravolo R, Tognoni G, Siciliano G, Bonuccelli U. Oxidative Stress Assessment in Alzheimer's Disease: A Clinic Setting Study. Am J Alzheimers Dis Other Demen 2018; 33:35-41. [PMID: 28931301 PMCID: PMC10852477 DOI: 10.1177/1533317517728352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oxidative stress (OS) is a physiological age-related brain process, dramatically overexpressed in neurodegenerative disorders like Alzheimer's disease (AD). Nevertheless, the pathophysiological role of OS in AD pathology has not been clarified yet. OS as a biomarker for AD is a controversial issue. A comparison of previous data is difficult due to a remarkable methodological variability. Most of the previous studies have shown higher levels of OS markers and lower antioxidant power in patients with dementia when compared to mild cognitive impairment (MCI) and healthy controls. METHODS We followed a strict protocol in order to limit intrasite variability of OS assessment. In addition, we have taken into account possible confounding factors. RESULTS In agreement with previous reports, we found both lower plasmatic OS and higher plasmatic antioxidant defenses when comparing patients with AD having dementia that is stably treated to patients with MCI-AD. DISCUSSION A speculative hypothesis based on correlative data is provided.
Collapse
Affiliation(s)
- Andrea Vergallo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leda Volpi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Pagni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Ademowo OS, Dias HKI, Milic I, Devitt A, Moran R, Mulcahy R, Howard AN, Nolan JM, Griffiths HR. Phospholipid oxidation and carotenoid supplementation in Alzheimer's disease patients. Free Radic Biol Med 2017; 108:77-85. [PMID: 28315450 PMCID: PMC5488966 DOI: 10.1016/j.freeradbiomed.2017.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease, characterised by decline of memory, cognitive function and changes in behaviour. Generic markers of lipid peroxidation are increased in AD and reactive oxygen species have been suggested to be involved in the aetiology of cognitive decline. Carotenoids are depleted in AD serum, therefore we have compared serum lipid oxidation between AD and age-matched control subjects before and after carotenoid supplementation. The novel oxidised phospholipid biomarker 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) was analysed using electrospray ionisation tandem mass spectrometry (MS) with multiple reaction monitoring (MRM), 8-isoprostane (IsoP) was measured by ELISA and ferric reducing antioxidant potential (FRAP) was measured by a colorimetric assay. AD patients (n=21) and healthy age-matched control subjects (n=16) were supplemented with either Macushield™ (10mg meso-zeaxanthin, 10mg lutein, 2mg zeaxanthin) or placebo (sunflower oil) for six months. The MRM-MS method determined serum POVPC sensitively (from 10µl serum) and reproducibly (CV=7.9%). At baseline, AD subjects had higher serum POVPC compared to age-matched controls, (p=0.017) and cognitive function was correlated inversely with POVPC (r=-0.37; p=0.04). After six months of carotenoid intervention, serum POVPC was not different in AD patients compared to healthy controls. However, POVPC was significantly higher in control subjects after six months of carotenoid intervention compared to their baseline (p=0.03). Serum IsoP concentration was unrelated to disease or supplementation. Serum FRAP was significantly lower in AD than healthy controls but was unchanged by carotenoid intervention (p=0.003). In conclusion, serum POVPC is higher in AD patients compared to control subjects, is not reduced by carotenoid supplementation and correlates with cognitive function.
Collapse
Affiliation(s)
- O S Ademowo
- Life & Health Sciences, Aston University, Birmingham, UK
| | - H K I Dias
- Life & Health Sciences, Aston University, Birmingham, UK
| | - I Milic
- Life & Health Sciences, Aston University, Birmingham, UK
| | - A Devitt
- Life & Health Sciences, Aston University, Birmingham, UK
| | - R Moran
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - R Mulcahy
- Waterford University Hospital, Age-related Care Unit, Waterford, Ireland
| | - A N Howard
- Howard Foundation, Cambridge, UK; Downing College, University of Cambridge, Cambridge, UK
| | - J M Nolan
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - H R Griffiths
- Life & Health Sciences, Aston University, Birmingham, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
9
|
Calabrese V, Giordano J, Signorile A, Laura Ontario M, Castorina S, De Pasquale C, Eckert G, Calabrese EJ. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 2016; 94:1588-1603. [PMID: 27662637 DOI: 10.1002/jnr.23925] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid-induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - James Giordano
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Concetta De Pasquale
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Italy
| | - Gunter Eckert
- Institute of Nutrition Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts
| |
Collapse
|
10
|
Davies KJA. The Oxygen Paradox, oxidative stress, and ageing. Arch Biochem Biophys 2016; 595:28-32. [PMID: 27095211 DOI: 10.1016/j.abb.2015.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 05/31/2015] [Accepted: 10/11/2015] [Indexed: 11/28/2022]
Abstract
Professor Helmut Sies is being lauded in this special issue of Archives of Biochemistry & Biophysics, on the occasion of his retirement as Editor-in-Chief. There is no doubt that Helmut has exerted an enormously positive influence on this journal, the fields of Biochemistry & Biophysics in general, and the areas of free radical and redox biology & medicine in particular. Helmut Sies' many discoveries about peroxide metabolism, glutathione, glutathione peroxidases, singlet oxygen, carotenoids in general and lycopene in particular, and flavonoids, fill the pages of his more than 600 publications. In addition, he will forever be remembered for coining the term 'oxidative stress' that is so widely used (and sometimes abused) by most of his colleagues.
Collapse
Affiliation(s)
- Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, and Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
11
|
LDL-lipids from patients with hypercholesterolaemia and Alzheimer's disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention. Clin Sci (Lond) 2015; 129:1195-206. [PMID: 26399707 DOI: 10.1042/cs20150351] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023]
Abstract
Elevated low-density lipoprotein (LDL) concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidized LDL (oxLDL) modification and nitration is observed during dementia and hypercholesterolaemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVECs) were maintained in transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naive, normo- and hyper-lipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40 mg of simvastatin intervention/day for 3 months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after 3 months. LDL isolated from statin-naive hyperlipidaemic, AD and AD-plus subjects was more oxidized (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared with control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 compared with 3.95±0.2 nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml compared with 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids (LDL-L) from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7 nmol/mg of protein) compared with untreated cells (23.8±1.2 compared with nmol/mg of protein). Basolateral interleukin (IL)-6 secretion was increased by LDL-L from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared with healthy subject lipids (18.6±3.6 pg/ml). LDL-L isolated after statin intervention did not affect endothelial function. In summary, LDL-L from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVECs. In vivo intervention with statins reduces the damaging effects of LDL-L on HMVECs.
Collapse
|
12
|
Luca M, Luca A, Calandra C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer's Disease and Vascular Dementia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:504678. [PMID: 26301043 PMCID: PMC4537746 DOI: 10.1155/2015/504678] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/08/2015] [Indexed: 01/12/2023]
Abstract
Oxidative stress (OS) has been demonstrated to be involved in the pathogenesis of the two major types of dementia: Alzheimer's disease (AD) and vascular dementia (VaD). Evidence of OS and OS-related damage in AD is largely reported in the literature. Moreover, OS is not only linked to VaD, but also to all its risk factors. Several researches have been conducted in order to investigate whether antioxidant therapy exerts a role in the prevention and treatment of AD and VaD. Another research field is that pertaining to the heat shock proteins (Hsps), that has provided promising findings. However, the role of OS antioxidant defence system and more generally stress responses is very complex. Hence, research on this topic should be improved in order to reach further knowledge and discover new therapeutic strategies to face a disorder with such a high burden which is dementia.
Collapse
Affiliation(s)
- Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Antonina Luca
- Department of “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|
13
|
Dias IHK, Polidori MC, Li L, Weber D, Stahl W, Nelles G, Grune T, Griffiths HR. Plasma levels of HDL and carotenoids are lower in dementia patients with vascular comorbidities. J Alzheimers Dis 2015; 40:399-408. [PMID: 24448787 DOI: 10.3233/jad-131964] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elevated serum cholesterol concentrations in mid-life increase risk for Alzheimer's disease (AD) in later life. However, lower concentrations of cholesterol-carrying high density lipoprotein (HDL) and its principal apolipoprotein A1 (ApoA1) correlate with increased risk for AD. As HDL transports oxocarotenoids, which are scavengers of peroxynitrite, we have investigated the hypothesis that lower HDL and oxocarotenoid concentrations during AD may render HDL susceptible to nitration and oxidation and in turn reduce the efficiency of reverse cholesterol transport (RCT) from lipid-laden cells. Fasting blood samples were obtained from subjects with (1) AD without cardiovascular comorbidities and risk factors (AD); (2) AD with cardiovascular comorbidities and risk factors (AD Plus); (3) normal cognitive function; for carotenoid determination by HPLC, analysis of HDL nitration and oxidation by ELISA, and 3H-cholesterol export to isolated HDL. HDL concentration in the plasma from AD Plus patients was significantly lower compared to AD or control subject HDL levels. Similarly, lutein, lycopene, and zeaxanthin concentrations were significantly lower in AD Plus patients compared to those in control subjects or AD patients, and oxocarotenoid concentrations correlated with Mini-Mental State Examination scores. At equivalent concentrations of ApoA1, HDL isolated from all subjects irrespective of diagnosis was equally effective at mediating RCT. HDL concentration is lower in AD Plus patients' plasma and thus capacity for RCT is compromised. In contrast, HDL from patients with AD-only was not different in concentration, modifications, or function from HDL of healthy age-matched donors. The relative importance of elevating HDL alone compared with elevating carotenoids alone or elevating both to reduce risk for dementia should be investigated in patients with early signs of dementia.
Collapse
Affiliation(s)
- Irundika H K Dias
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Maria Cristina Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University, Duesseldorf, Germany Institute of Geriatrics, University of Cologne, Köln, Germany
| | - Li Li
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | | | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University, Duesseldorf, Germany
| | - Gereon Nelles
- NeuroMed, MedCampus Hohenlind Cologne, Köln, Germany
| | | | - Helen R Griffiths
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| |
Collapse
|
14
|
Jones DP, Radi R. Redox pioneer: professor Helmut Sies. Antioxid Redox Signal 2014; 21:2459-68. [PMID: 25178739 PMCID: PMC4245851 DOI: 10.1089/ars.2014.6037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/12/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022]
Abstract
Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Dias IHK, Mistry J, Fell S, Reis A, Spickett CM, Polidori MC, Lip GYH, Griffiths HR. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic Biol Med 2014; 75:48-59. [PMID: 25048970 PMCID: PMC4180009 DOI: 10.1016/j.freeradbiomed.2014.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.
Collapse
Affiliation(s)
- Irundika H K Dias
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Jayna Mistry
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Shaun Fell
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Ana Reis
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Corinne M Spickett
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Maria C Polidori
- Institute of Geriatrics, University of Cologne, Cologne, Germany
| | - Gregory Y H Lip
- Centre for Cardiovascular Sciences, City Hospital Birmingham, Birmingham B18 7QH, UK
| | - Helen R Griffiths
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK.
| |
Collapse
|
16
|
Dias IHK, Griffiths HR. Oxidative stress in diabetes - circulating advanced glycation end products, lipid oxidation and vascular disease. Ann Clin Biochem 2013; 51:125-7. [PMID: 24146184 DOI: 10.1177/0004563213508747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Irundika H K Dias
- Life and Health Sciences, Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | | |
Collapse
|
17
|
Jin P, Hou S, Ding B, Li D, Liu L, Li H, Li L, Zhao G, Shao Z, Liu X. Association Between MTHFR Gene Polymorphisms, Smoking, and the Incidence of Vascular Dementia. Asia Pac J Public Health 2013; 25:57S-63S. [PMID: 23858518 DOI: 10.1177/1010539513492819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the relationship between N5,N10-methylene tetrahydrofolic acid reductase (MTHFR) polymorphisms, smoking, and vascular dementia (VD). Polymerase chain reaction-restriction fragment length polymorphism analysis was used to analyze the frequency of the C/T polymorphism at position 677 of the MTHFR gene in 304 VD patients and 300 control patients with nondementia cerebral infarction. The CC, CT, and TT genotype frequencies of the MTHFR gene were 43.42%, 32.57%, and 24.01%, respectively, in the VD group, and 50.67%, 32.00%, and 17.33%, respectively, in the control group. The T allele frequency was significantly higher in the VD group than in the control group ( P < .05). Among patients who smoked, the relative risk of VD in patients with the TT genotype and T allele was higher than in the control group ( P < .05). Therefore, the smoking group with the T allele has the highest risk of VD, and synergy appears to exist between the MTHFR gene polymorphisms and smoking in susceptibility to VD.
Collapse
Affiliation(s)
- Pengpeng Jin
- Department of Physiology, Wenzhou Medical college, Wenzhou, China
| | - Shuangxing Hou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Bojun Ding
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Deshuai Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lijuan Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongzeng Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Li Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhongjun Shao
- Department of Epidemilogy, school of Public Health, Fourth Military Medical University, Xi’an, China
| | - Xuedong Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
18
|
Hasuike Y, Hama Y, Nonoguchi H, Hori K, Tokuyama M, Toyoda K, Hazeki S, Nanami M, Otaki Y, Kuragano T, Nakanishi T. Persistent Homocysteine Metabolism Abnormality Accelerates Cardiovascular Disease in Hemodialyzed Patients—the Nishinomiya Study. J Ren Nutr 2012; 22:12-8.e1. [DOI: 10.1053/j.jrn.2011.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 01/22/2023] Open
|
19
|
Bertinaria M, Rolando B, Giorgis M, Montanaro G, Guglielmo S, Buonsanti MF, Carabelli V, Gavello D, Daniele PG, Fruttero R, Gasco A. Synthesis, Physicochemical Characterization, and Biological Activities of New Carnosine Derivatives Stable in Human Serum As Potential Neuroprotective Agents. J Med Chem 2010; 54:611-21. [DOI: 10.1021/jm101394n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Gabriele Montanaro
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Stefano Guglielmo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - M. Federica Buonsanti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Valentina Carabelli
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Daniela Gavello
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Pier Giuseppe Daniele
- Dipartimento di Chimica Analitica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Alberto Gasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|