1
|
Dimitrova L, Mileva M, Georgieva A, Tzvetanova E, Popova M, Bankova V, Najdenski H. Redox-Modulating Capacity and Effect of Ethyl Acetate Roots and Aerial Parts Extracts from Geum urbanum L. on the Phenotype Inhibition of the Pseudomonas aeruginosa Las/RhI Quorum Sensing System. PLANTS (BASEL, SWITZERLAND) 2025; 14:213. [PMID: 39861566 PMCID: PMC11768107 DOI: 10.3390/plants14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance. Therefore, new preparations of natural origin are sought, such as plant extracts, which are phytocomplexes and to which it is practically impossible to develop resistance. Geum urbanum L. (Rosacea) is a perennial herb known for many biological properties. This study aimed to investigate the redox-modulating capacity and effect of ethyl acetate (EtOAc) extracts from roots (EtOAcR) and aerial parts (EtOAcAP) of the Bulgarian plant on the phenotype inhibition of the P. aeruginosa Las/RhI quorum sensing (QS) system, which primarily determines drug resistance in pathogenic bacteria, including biofilm formation, motility, and pigment production. We performed QS assays to account for the effects of the two EtOAc extracts. At sub-minimal inhibitory concentrations (sub-MICs) ranging from 1.56 to 6.25 mg/mL, the biofilm formation was inhibited 85% and 84% by EtOAcR and 62% and 39% by EtOAcAP extracts, respectively. At the same sub-MICs, the pyocyanin synthesis was inhibited by 17-27% after treatment with EtOAcAP and 26-30% with EtOAcR extracts. The motility was fully inhibited at 3.12 mg/mL and 6.25 mg/mL (sub-MICs). We investigated the inhibitory potential of lasI, lasR, rhiI, and rhiR gene expression in biofilm and pyocyanin probes with the PCR method. Interestingly, the genes were inhibited by two extracts at 3.12 mg/mL and 6.25 mg/mL. Antiradical studies, assessed by DPPH, CUPRAC, and ABTS radical scavenging methods and superoxide anion inhibition showed that EtOAcAP extract has effective antioxidant capacity. These results could help in the development of new phytocomplexes that could be applied as biocontrol agents to inhibit the phenotype of the P. aeruginosa QS system and other antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Lyudmila Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tzvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (V.B.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.M.); (A.G.); (E.T.); (H.N.)
| |
Collapse
|
2
|
Schoissengeier V, Maqboul L, Weber D, Grune T, Bürkle A, Moreno-Villaneuva M, Franceschi C, Capri M, Bernhard J, Toussaint O, Debacq-Chainiaux F, Weinberger B, Gonos ES, Sikora E, Dollé M, Jansen E, Slagboom PE, Hervonnen A, Hurme M, Breusing N, Frank J, Bulmer AC, Wagner KH. Association between bilirubin and biomarkers of metabolic health and oxidative stress in the MARK-AGE cohort. iScience 2024; 27:110234. [PMID: 39021797 PMCID: PMC11253506 DOI: 10.1016/j.isci.2024.110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Recent studies have shown that elevated concentrations of unconjugated bilirubin (UCB) may be a protective host factor against the development of noncommunicable diseases (NCDs), whereas low levels of UCB are associated with the opposite effect. The results of this European study, in which 2,489 samples were tested for their UCB concentration using high-performance liquid chromatography (HPLC) and additional data from the MARK-AGE database were used for analysis, provide further evidence that elevated UCB concentrations are linked to a lower risk of developing NCDs and may act as a predictive marker of biological aging as individuals with elevated UCB concentrations showed favorable outcomes in metabolic health and oxidative-stress-related biomarkers. These findings underline the significance of studying individuals with moderate hyperbilirubinemia and investigate UCB routinely, also in the setting of aging, since this condition affects millions of people worldwide but has been underrepresented in clinical research and practice until now.
Collapse
Affiliation(s)
- Vanessa Schoissengeier
- Department of Nutritional Sciences, University of Vienna, Vienna 1090, Austria
- Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Lina Maqboul
- Department of Nutritional Sciences, University of Vienna, Vienna 1090, Austria
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, 40225 Düsseldorf, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Maria Moreno-Villaneuva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78464 Konstanz, Germany
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, Lobachevsky State University, 603005 Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center - Alma Mater Research Institute on Global Challenges and Climate Change - University of Bologna, 40126 Bologna, Italy
| | | | | | | | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Efstathios S. Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 116 35 Athens, Greece
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 00-901 Warsaw, Poland
| | - Martijn Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720BA Bilthoven, the Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720BA Bilthoven, the Netherlands
| | - P. Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, 2333 ZC Leiden, the Netherlands
| | - Antti Hervonnen
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andrew C. Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Vienna 1090, Austria
- Research Platform Active Ageing, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
3
|
Draxler A, Blaschke A, Binar J, Weber M, Haslacher M, Bartak V, Bragagna L, Mare G, Maqboul L, Klapp R, Herzog T, Széll M, Petrera A, Laky B, Wagner KH, Thell R. Age-related influence on DNA damage, proteomic inflammatory markers and oxidative stress in hospitalized COVID-19 patients compared to healthy controls. Redox Biol 2023; 67:102914. [PMID: 37832397 PMCID: PMC10585323 DOI: 10.1016/j.redox.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
COVID-19 infections are accompanied by adverse changes in inflammatory pathways that are also partly influenced by increased oxidative stress and might result in elevated DNA damage. The aim of this case-control study was to examine whether COVID-19 patients show differences in oxidative stress-related markers, unconjugated bilirubin (UCB), an inflammation panel and DNA damage compared to healthy, age-and sex-matched controls. The Comet assay with and without the treatment of formamidopyrimidine DNA glycosylase (FPG) and H2O2 challenge was used to detect DNA damage in whole blood. qPCR was applied for gene expression, UCB was analyzed via HPLC, targeted proteomics were applied using Olink® inflammation panel and various oxidative stress as well as clinical biochemistry markers were analyzed in plasma. Hospitalized COVID-19 patients (n = 48) demonstrated higher serum levels of 55 inflammatory proteins (p < 0.001), including hs-C-reactive protein levels (p < 0.05), compared to healthy controls (n = 48). Interestingly, significantly increased age-related DNA damage (%-DNA in tail) after formamidopyrimidine DNA glycosylase (FPG) treatment was measured in younger (n = 24, average age 55.7 years; p < 0.05) but not in older COVID-19 patients (n = 24, average age 83.5 years; p > 0.05). Although various oxidative stress markers were not altered (e.g., FRAP, malondialdehyde, p > 0.05), a significant increased ratio of oxidized to reduced glutathione was detected in COVID-19 patients compared to healthy controls (p < 0.05). UCB levels were significantly lower in individuals with COVID-19, especially in younger COVID-19 patients (p < 0.05). These results suggest that COVID-19 infections exert effects on DNA damage related to age in hospitalized COVID-19 patients that might be driven by changes in inflammatory pathways but are not altered by oxidative stress parameters.
Collapse
Affiliation(s)
- Agnes Draxler
- Department of Nutritional Sciences, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | | | - Jessica Binar
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Maria Weber
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | | | - Viktoria Bartak
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Laura Bragagna
- Department of Nutritional Sciences, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - George Mare
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Lina Maqboul
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Rebecca Klapp
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Theresa Herzog
- Klinik Donaustadt, Emergency Department, Langobardenstraße 122, 1220, Vienna, Austria.
| | - Marton Széll
- Klinik Donaustadt, Emergency Department, Langobardenstraße 122, 1220, Vienna, Austria.
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Brenda Laky
- Medical University of Vienna, Austria; Austrian Society of Regenerative Medicine, Vienna, Austria.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Rainer Thell
- Medical University of Vienna, Austria; Klinik Donaustadt, Emergency Department, Langobardenstraße 122, 1220, Vienna, Austria.
| |
Collapse
|
4
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
5
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
6
|
Choi BH, Kim MR, Jung YN, Kang S, Hong J. Interfering with Color Response by Porphyrin-Related Compounds in the MTT Tetrazolium-Based Colorimetric Assay. Int J Mol Sci 2022; 24:ijms24010562. [PMID: 36614004 PMCID: PMC9820508 DOI: 10.3390/ijms24010562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Porphyrin compounds are widely distributed in various natural products and biological systems. In this study, effects of porphyrin-related compounds including zinc protoporphyrin (ZnPP), protoporphyrin IX (PPIX), cyanocobalamin (CBL), hemin, and zinc phthalocyanine (ZnPC) were analyzed on color response of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium-based assay, a commonly-used method for analyzing cell viability. Color responses of MTT formazan formed in cells treated with ZnPP, PPIX, or ZnPC were significantly reduced even at submicromolar concentrations without affecting cell viability, whereas hemin and CBL did not. ZnPP, PPIX, and ZnPC rapidly induced degradation of MTT formazan already-produced by cells when exposed to light, but not under a dark condition. Photosensitizing properties of the three compounds were also verified through extensive generation of reactive oxygen species under light. The porphyrins did not affect the stability of water-soluble formazans including XTT, WST-1, WST-8, and MTS formazans. Several factors including different light sources and antioxidants modulated the degradation process of MTT formazan by the porphyrins. The results suggest that certain porphyrin compounds could cause a severe artifact in the MTT assay through rapid degradation of formazan dye due to their photosensitizing property, which needs to be considered carefully in the related assays.
Collapse
Affiliation(s)
| | | | | | | | - Jungil Hong
- Correspondence: ; Tel.: +82-2-970-5639; Fax: +82-2-970-5977
| |
Collapse
|
7
|
Seyed Khoei N, Wagner KH, Carreras-Torres R, Gunter MJ, Murphy N, Freisling H. Associations between Prediagnostic Circulating Bilirubin Levels and Risk of Gastrointestinal Cancers in the UK Biobank. Cancers (Basel) 2021; 13:2749. [PMID: 34206031 PMCID: PMC8198711 DOI: 10.3390/cancers13112749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
We investigated associations between serum levels of bilirubin, an endogenous antioxidant, and gastrointestinal cancer risk. In the UK Biobank, prediagnostic serum levels of total bilirubin were measured in blood samples collected from 440,948 participants. In multivariable-adjusted Cox proportional hazard regression, we estimated hazard ratios (HR) and 95% confidence intervals (CI) for associations between bilirubin levels and gastrointestinal cancer risk (colorectum, esophagus, stomach, mouth, pancreas, and liver). After a median follow-up of 7.1 years (interquartile range: 1.4), 5033 incident gastrointestinal cancer cases were recorded. In multivariable-adjusted models, bilirubin levels were negatively associated with risk of esophageal adenocarcinoma (EAC, HR per 1-SD increment in log-total bilirubin levels 0.72, 95%CI 0.56-0.92, p = 0.01). Weak and less robust negative associations were observed for colorectal cancer (CRC, HR per 1-SD increment in log-total bilirubin levels 0.95, 95%CI 0.88-1.02, p = 0.14). Bilirubin levels were positively associated with risk of hepatocellular carcinoma (HCC, HR per 1-SD increment in log-total bilirubin levels 2.07, 95%CI 1.15-3.73, p = 0.02) and intrahepatic bile duct (IBD) cancer (HR per 1-SD increment 1.67, 95%CI 1.07-2.62, p = 0.03). We found no associations with risks of stomach, oral, and pancreatic cancers. Prediagnostic serum levels of bilirubin were negatively associated with risk of EAC and positively associated with HCC and IBD cancer. Further studies are warranted to replicate our findings for specific GI cancers.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 1, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 1, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de la Granvia de l’Hospitalet 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| |
Collapse
|
8
|
Jiménez E, Pimentel E, Cruces MP, Amaya-Chávez A. Radioprotective effect of chloropyllin, protoporphyrin-IX and bilirubin compared with amifostine® in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103464. [PMID: 32750419 DOI: 10.1016/j.etap.2020.103464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The identification of substances that prevent or minimize the detrimental effects of ionizing radiation is an essential undertaking. The aim of this paper was to evaluate and compare the radioprotective potential of chlorophyllin, protoporphyrin and bilirubin, with amifostine®, an US Food & Drug Administration approved radioprotector Using the somatic mutation and recombination assay in the Drosophila melanogaster wing, it was found that pretreatment (1-9 h) with any of the porphyrins or amifostine® alone, did not affect the larva-adult viability or the basal frequency of mutation. However, they were associated with significant reductions in frequency of somatic mutation and recombination compared with the gamma-irradiated (20 Gy) control as follows: bilirubin (69.3 %)> chlorophyllin (40.0 %)> protoporphyrin (39.0 %)> amifostine® (19.7 %). Bilirubin also caused a 16 % increase in larva-adult viability with 3 h of pretreatment respect to percentage induced in 20 Gy control group. Whilst amifostine® was associated with lower genetic damage after pre-treatment of 1 and 3 h, this did not attain significance. These findings suggest that the tested porphyrins may have some potential as radioprotectant agents.
Collapse
Affiliation(s)
- E Jiménez
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico
| | - E Pimentel
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico.
| | - M P Cruces
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico
| | - A Amaya-Chávez
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
9
|
Seyed Khoei N, Anton G, Peters A, Freisling H, Wagner KH. The Association between Serum Bilirubin Levels and Colorectal Cancer Risk: Results from the Prospective Cooperative Health Research in the Region of Augsburg (KORA) Study in Germany. Antioxidants (Basel) 2020; 9:E908. [PMID: 32987702 PMCID: PMC7598693 DOI: 10.3390/antiox9100908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging studies have suggested that bilirubin, particularly unconjugated bilirubin (UCB), has substantial anti-inflammatory and antioxidant properties that protect against oxidative stress-associated diseases such as cancer. Few observational studies have investigated the etiological role of bilirubin in colorectal cancer (CRC) development. In this case-control study, nested in the population-based prospective cohort of the Cooperative Health Research in the Region of Augsburg (KORA) study in south Germany, pre-diagnostic circulating UCB concentrations were measured by high-performance liquid chromatography in 77 CRC cases and their individually matched controls. Multivariable unconditional logistic regression was used to estimate the odds ratios (OR) and 95% confidence intervals (CI) for associations between log-transformed UCB levels (log-UCB), standardized per one-standard-deviation (one-SD) increment, and CRC risk. The models were a priori stratified by sex based on previous evidence. In the fully adjusted models, each one-SD increment in log-UCB was indicative of a positive association with CRC risk (OR, 1.20; 95% CI, 0.52-2.79) among men, and of an inverse association (OR, 0.76; 95% CI, 0.34-1.84) among women (Pheterogeneity = 0.4 for differences between men and women). We found little evidence for sex-specific associations of circulating bilirubin with CRC risk, and further studies are needed to confirm or refute the potential associations.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Gabriele Anton
- Institute of Epidemiology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; (G.A.); (A.P.)
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; (G.A.); (A.P.)
| | - Heinz Freisling
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France;
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria;
| |
Collapse
|
10
|
Seyed Khoei N, Jenab M, Murphy N, Banbury BL, Carreras-Torres R, Viallon V, Kühn T, Bueno-de-Mesquita B, Aleksandrova K, Cross AJ, Weiderpass E, Stepien M, Bulmer A, Tjønneland A, Boutron-Ruault MC, Severi G, Carbonnel F, Katzke V, Boeing H, Bergmann MM, Trichopoulou A, Karakatsani A, Martimianaki G, Palli D, Tagliabue G, Panico S, Tumino R, Sacerdote C, Skeie G, Merino S, Bonet C, Rodríguez-Barranco M, Gil L, Chirlaque MD, Ardanaz E, Myte R, Hultdin J, Perez-Cornago A, Aune D, Tsilidis KK, Albanes D, Baron JA, Berndt SI, Bézieau S, Brenner H, Campbell PT, Casey G, Chan AT, Chang-Claude J, Chanock SJ, Cotterchio M, Gallinger S, Gruber SB, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu L, Huyghe JR, Jenkins MA, Joshi AD, Kampman E, Larsson SC, Le Marchand L, Li CI, Li L, Lindblom A, Lindor NM, Martín V, Moreno V, Newcomb PA, Offit K, Ogino S, Parfrey PS, Pharoah PDP, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Slattery ML, Thibodeau SN, Ulrich CM, van Duijnhoven FJB, Weigl K, Weinstein SJ, White E, Wolk A, Woods MO, Wu AH, Zhang X, Ferrari P, Anton G, Peters A, Peters U, Gunter MJ, Wagner KH, Freisling H. Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses. BMC Med 2020; 18:229. [PMID: 32878631 PMCID: PMC7469292 DOI: 10.1186/s12916-020-01703-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex. METHODS In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10-8) with circulating total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study. RESULTS The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04-1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76-0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02-1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96-1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2). CONCLUSIONS Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Mazda Jenab
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Neil Murphy
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Krasimira Aleksandrova
- Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Magdalena Stepien
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Andrew Bulmer
- School of Medicine, Griffith University, Brisbane, QLD, Australia
- Alliance for Vascular Access Teaching and Research (AVATAR), Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Christine Boutron-Ruault
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Franck Carbonnel
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Department of Gastroenterology, Bicêtre University Hospital, Public Assistance Hospitals of Paris, Le Kremlin Bicêtre, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany
| | - Manuela M Bergmann
- Department of Epidemiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, "M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- Nutritional Epidemiology Group, School of Food and Nutrition, University of Leeds, Leeds, UK
| | | | - Catalina Bonet
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Miguel Rodríguez-Barranco
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria, ibs. GRANADA, Universidad de Granada, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Leire Gil
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, San Sebastian, Spain
| | - Maria-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Eva Ardanaz
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Robin Myte
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Vicente Martín
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick S Parfrey
- The Clinical Epidemiology Unit, Memorial University Medical School, Newfoundland, Canada
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular, and Transplantation Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, CA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pietro Ferrari
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Gabriele Anton
- Institute of Epidemiology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Marc J Gunter
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Heinz Freisling
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France.
| |
Collapse
|
11
|
The Antioxidants Glutathione, Ascorbic Acid and Uric Acid Maintain Butyrate Production by Human Gut Clostridia in The Presence of Oxygen In Vitro. Sci Rep 2020; 10:7705. [PMID: 32382092 PMCID: PMC7205886 DOI: 10.1038/s41598-020-64834-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/13/2020] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled oxidative stress, reported in Salmonella and HIV infections, colorectal cancer or severe acute malnutrition, has been associated with anaerobic gut microbiome alteration, impaired butyrate production, mucosal immunity dysregulation and disruption of host-bacterial mutualism. However, the role of major antioxidant molecules in the human body, such as glutathione, ascorbic acid and uric acid, has been neglected in this context. Here, we performed an in vitro metabolomics study of the 3 most odorous anaerobic microbes isolated from the human gut in our laboratory (Clostridium sporogenes, Clostridium subterminale and Romboutsia lituseburensis) when grown in anaerobiosis or in aerobiosis with these 3 antioxidant molecules via gas and liquid chromatography-mass spectrometry (GC/MS and LC/MS). There was no growth or volatile organic compound production in aerobic cultures without the 3 antioxidant molecules. In anaerobiosis, the major metabolic products of the bacteria were thiols, alcohols and short-chain fatty acid esters. The production of alkanes, cycloheptatriene and, paradoxically, increased butyrate production, was observed in the cultures grown in aerobiosis with the 3 antioxidant molecules. The qualitative shift suggests specific molecular mechanisms that remain to be elucidated. The increased production of butyrate, but also isobutyrate and isovalerate in vitro suggests that these 3 antioxidant molecules contributed to the maintenance and active resilience of host-bacterial mutualism against mucosal oxygen and uncontrolled oxidative stress in vivo.
Collapse
|
12
|
Effects of stress-induced increases of corticosterone on circulating triglyceride levels, biliverdin concentration, and heme oxygenase expression. Comp Biochem Physiol A Mol Integr Physiol 2020; 240:110608. [DOI: 10.1016/j.cbpa.2019.110608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
|
13
|
Pennell EN, Wagner KH, Mosawy S, Bulmer AC. Acute bilirubin ditaurate exposure attenuates ex vivo platelet reactive oxygen species production, granule exocytosis and activation. Redox Biol 2019; 26:101250. [PMID: 31226648 PMCID: PMC6586953 DOI: 10.1016/j.redox.2019.101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bilirubin, a by-product of haem catabolism, possesses potent endogenous antioxidant and platelet inhibitory properties. These properties may be useful in inhibiting inappropriate platelet activation and ROS production; for example, during storage for transfusion. Given the hydrophobicity of unconjugated bilirubin (UCB), we investigated the acute platelet inhibitory and ROS scavenging ability of a water-soluble bilirubin analogue, bilirubin ditaurate (BRT) on ex vivo platelet function to ascertain its potential suitability for inclusion during platelet storage. Methods The inhibitory potential of BRT (10–100 μM) was assessed using agonist induced platelet aggregation, dense granule exocytosis and flow cytometric analysis of P-selectin and GPIIb/IIIa expression. ROS production was investigated by analysis of H2DCFDA fluorescence following agonist simulation while mitochondrial ROS production investigated using MitoSOX™ Red. Platelet mitochondrial membrane potential and viability was assessed using TMRE and Zombie Green™ respectively. Results Our data shows ≤35 μM BRT significantly inhibits both dense and alpha granule exocytosis as measured by ATP release and P-selectin surface expression, respectively. Significant inhibition of GPIIb/IIIa expression was also reported upon ≤35 μM BRT exposure. Furthermore, platelet exposure to ≤10 μM BRT significantly reduces platelet mitochondrial ROS production. Despite the inhibitory effect of BRT, platelet viability, mitochondrial membrane potential and agonist induced aggregation were not perturbed. Conclusions These data indicate, for the first time, that BRT, a water-soluble bilirubin analogue, inhibits platelet activation and reduces platelet ROS production ex vivo and may, therefore, may be of use in preserving platelet function during storage. The impact of conjugated bilirubin on platelet function has not been investigated to date. Bilirubin ditaurate (BDT) is a water-soluble analogue of conjugated bilirubin. BDT attenuates ex vivo platelet activation and ROS generation. Conjugated forms of bilirubin might inhibit platelet activation during storage.
Collapse
Affiliation(s)
- Evan Noel Pennell
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Austria.
| | - Sapha Mosawy
- School of Medical Science, Griffith University, Gold Coast, Australia; Endeavour College of Natural Health, Melbourne, Australia
| | | |
Collapse
|
14
|
Baylor JL, Butler MW. Immune challenge-induced oxidative damage may be mitigated by biliverdin. ACTA ACUST UNITED AC 2019; 222:jeb.200055. [PMID: 30770399 DOI: 10.1242/jeb.200055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
An effective immune response results in the elimination of pathogens, but this immunological benefit may be accompanied by increased levels of oxidative damage. However, organisms have evolved mechanisms to mitigate the extent of such oxidative damage, including the production and mobilization of antioxidants. One potential mechanism of mitigating immune challenge-induced changes in oxidative physiology is increasing biliverdin production. Biliverdin is chemically an antioxidant, but within-tissue correlations between biliverdin concentration and oxidative damage have never been directly examined. To test how biliverdin tissue concentrations are associated with physiological responses to an immune challenge, we exposed northern bobwhite quail (Colinus virginianus) to one of four treatments: injection of a non-pathogenic antigen - either lipopolysaccharide or phytohemagglutinin, control injection of phosphate-buffered saline or a sham procedure with no injection. Twenty-four hours later, we quantified oxidative damage and triglyceride concentration in the plasma, and biliverdin concentration in the plasma, liver and spleen. We found that both types of immune challenge increased oxidative damage relative to both non-injected and vehicle-injected controls, but treatment had no effects on any other metric. However, across all birds, oxidative damage and biliverdin concentration in the plasma were negatively correlated, which is consistent with a localized antioxidant function of biliverdin. Additionally, we uncovered multiple links between biliverdin concentration, change in mass during the immune challenges and triglyceride levels, suggesting that pathways associated with biliverdin production may also be associated with aspects of nutrient mobilization. Future experiments that manipulate biliverdin levels or oxidative damage directly could establish a systemic antioxidant function or elucidate important physiological impacts on body mass maintenance and triglyceride storage, mobilization or transport.
Collapse
|
15
|
Shiels RG, Vidimce J, Pearson AG, Matthews B, Wagner KH, Battle AR, Sakellaris H, Bulmer AC. Unprecedented Microbial Conversion of Biliverdin into Bilirubin-10-sulfonate. Sci Rep 2019; 9:2988. [PMID: 30814600 PMCID: PMC6393463 DOI: 10.1038/s41598-019-39548-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
Biliverdin (BV) possesses antioxidant and anti-inflammatory properties, with previous reports identifying protection against oxidant and inflammatory injury in animal models. Recent reports indicate that intra-duodenal administration of BV results in the formation of an uncharacterised metabolite, which is potently absorbed into the blood and excreted into the bile. This compound may be responsible for protection against inflammatory responses. This study aimed to identify novel, enterally-derived BV metabolites and determine the source of their metabolic transformation. Rat duodena and bacterial cultures of Citrobacter youngae were treated with BV and subsequently analysed via high performance liquid chromatography/high resolution tandem mass spectrometry to identify and characterise metabolites of BV. A highly abundant metabolite was detected in duodenal wash and bacterial culture supernatants with a 663.215 m/z (3 ppm mass accuracy) and a composition of C33N4O9H36S, which conformed to the predicted structure of bilirubin-10-sulfonate (BRS) and possessed a λmax of 440 nm. Bilirubin-10-sulfonate was then synthesized for comparative LCMS/MS analysis and matched with that of the biologically formed BV metabolite. This report confirms the formation of a previously undocumented metabolite of BV in mammals, indicating that a new metabolic pathway likely exists for BV metabolism requiring enteric bacteria, Citrobacter youngae. These data may have important implications with regard to understanding and harnessing the therapeutic efficacy of oral BV administration.
Collapse
Affiliation(s)
- Ryan G Shiels
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew G Pearson
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ben Matthews
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andrew R Battle
- Translational Research Institute (TRI), Institute for Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4102, Australia
| | - Harry Sakellaris
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Andrew C Bulmer
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
16
|
Affiliation(s)
- Jon Y. Takemoto
- Department of BiologyUtah State University, Logan Utah 84322-5305 U.S.A
| | - Cheng‐Wei T. Chang
- Department of Chemistry and BiochemistryUtah State University Logan, Utah 84322-0300 U.S.A
| | - Dong Chen
- Department of Biological EngineeringUtah State University Logan, Utah 843122 U.S.A
| | - Garrett Hinton
- Department of BiologyUtah State University Logan, Utah 84322-5305 U.S.A
| |
Collapse
|
17
|
Bulmer AC, Bakrania B, Du Toit EF, Boon AC, Clark PJ, Powell LW, Wagner KH, Headrick JP. Bilirubin acts as a multipotent guardian of cardiovascular integrity: more than just a radical idea. Am J Physiol Heart Circ Physiol 2018; 315:H429-H447. [PMID: 29600900 DOI: 10.1152/ajpheart.00417.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert's syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.
Collapse
Affiliation(s)
- Andrew C Bulmer
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Bhavisha Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Centre , Jackson, Mississippi
| | - Eugene F Du Toit
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Ai-Ching Boon
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Paul J Clark
- QIMR-Berghofer Medical Research Institute, School of Medicine, University of Queensland and Princess Alexandra and Mater Hospitals , Brisbane, New South Wales , Australia
| | - Lawrie W Powell
- The Centre for the Advancement of Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Centre for Clinical Research , Brisbane, Queensland , Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Science, University of Vienna , Vienna , Austria
| | - John P Headrick
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| |
Collapse
|
18
|
Immune challenges decrease biliverdin concentration in the spleen of northern Bobwhite quail, Colinus virginianus. J Comp Physiol B 2018; 188:505-515. [DOI: 10.1007/s00360-018-1146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
19
|
Gonzalez-Sanchez E, Perez MJ, Nytofte NS, Briz O, Monte MJ, Lozano E, Serrano MA, Marin JJG. Protective role of biliverdin against bile acid-induced oxidative stress in liver cells. Free Radic Biol Med 2016; 97:466-477. [PMID: 27387768 DOI: 10.1016/j.freeradbiomed.2016.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
The accumulation of bile acids affects mitochondria causing oxidative stress. Antioxidant defense is accepted to include biotransformation of biliverdin (BV) into bilirubin (BR) through BV reductase α (BVRα). The mutation (c.214C>A) in BLVRA results in a non-functional enzyme (mutBVRα). Consequently, homozygous carriers suffering from cholestasis develop green jaundice. Whether BVRα deficiency reduces BV-dependent protection against bile acids is a relevant question because a screening of the mut-BLVRA allele (a) in 311 individuals in Greenland revealed that this SNP was relatively frequent in the Inuit population studied (1% a/a and 4.5% A/a). In three human liver cell lines an inverse correlation between BVRα expression (HepG2>Alexander>HuH-7) and basal reactive oxygen species (ROS) levels was found, however the ability of BV to reduce oxidative stress and cell death induced by deoxycholic acid (DCA) or potassium dichromate (PDC) was similar in these cells. The transduction of BVRα or mutBVRα in human placenta JAr cells with negligible BVRα expression or the silencing of endogenous BVRα expression in liver cells had no effect on DCA-induced oxidative stress and cell death or BV-mediated cytoprotection. DCA stimulated both superoxide anion and hydrogen peroxide production, whereas BV only inhibited the latter. DCA and other dihydroxy-bile acids, but not PDC, induced up-regulation of both BVRα and heme oxygenase-1 (HO-1) in liver cells through a FXR independent and BV insensitive mechanism. In conclusion, BV exerts direct and BVRα-independent antioxidant and cytoprotective effects, whereas bile acid accumulation in cholestasis stimulates the expression of enzymes favoring the heme biotransformation into BV and BR.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| | - Maria J Perez
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | | | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Maria A Serrano
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
20
|
Mölzer C, Wallner M, Kern C, Tosevska A, Schwarz U, Zadnikar R, Doberer D, Marculescu R, Wagner KH. Features of an altered AMPK metabolic pathway in Gilbert's Syndrome, and its role in metabolic health. Sci Rep 2016; 6:30051. [PMID: 27444220 PMCID: PMC4956769 DOI: 10.1038/srep30051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022] Open
Abstract
Energy metabolism, involving the ATP-dependent AMPK-PgC-Ppar pathway impacts metabolic health immensely, in that its impairment can lead to obesity, giving rise to disease. Based on observations that individuals with Gilbert's syndrome (GS; UGT1A1(*)28 promoter mutation) are generally lighter, leaner and healthier than controls, specific inter-group differences in the AMPK pathway regulation were explored. Therefore, a case-control study involving 120 fasted, healthy, age- and gender matched subjects with/without GS, was conducted. By utilising intra-cellular flow cytometry (next to assessing AMPKα1 gene expression), levels of functioning proteins (phospho-AMPK α1/α2, PgC 1 α, Ppar α and γ) were measured in PBMCs (peripheral blood mononucleated cells). In GS individuals, rates of phospho-AMPK α1/α2, -Ppar α/γ and of PgC 1α were significantly higher, attesting to a boosted fasting response in this condition. In line with this finding, AMPKα1 gene expression was equal between the groups, possibly stressing the post-translational importance of boosted fasting effects in GS. In reflection of an apparently improved health status, GS individuals had significantly lower BMI, glucose, insulin, C-peptide and triglyceride levels. Herewith, we propose a new theory to explain why individuals having GS are leaner and healthier, and are therefore less likely to contract metabolic diseases or die prematurely thereof.
Collapse
Affiliation(s)
- Christine Mölzer
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraβe 14 (UZA2), 1090 Vienna, Austria
| | - Marlies Wallner
- University of Applied Sciences, FH JOANNEUM, Institute of Dietetics and Nutrition, Alte Poststraβe 149, 8020 Graz, Austria
| | - Carina Kern
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währinger Straβe 13A, 1090 Vienna, Austria
| | - Anela Tosevska
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraβe 14 (UZA2), 1090 Vienna, Austria
| | - Ursula Schwarz
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraβe 14 (UZA2), 1090 Vienna, Austria
| | - Rene Zadnikar
- Medical University of Vienna, Clinical Institute of Laboratory Medicine, Vienna General Hospital, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Daniel Doberer
- Medical University of Vienna, Department of Clinical Pharmacology, Vienna General Hospital, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Rodrig Marculescu
- Medical University of Vienna, Clinical Institute of Laboratory Medicine, Vienna General Hospital, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraβe 14 (UZA2), 1090 Vienna, Austria
| |
Collapse
|
21
|
Pre- or post-ischemic bilirubin ditaurate treatment reduces oxidative tissue damage and improves cardiac function. Int J Cardiol 2016; 202:27-33. [DOI: 10.1016/j.ijcard.2015.08.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022]
|
22
|
Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons. PLoS One 2015; 10:e0138007. [PMID: 26368930 PMCID: PMC4569575 DOI: 10.1371/journal.pone.0138007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 12/02/2022] Open
Abstract
Stressors frequently increase oxidative damage–unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus), which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen’s importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin’s antioxidant role in this species.
Collapse
|
23
|
Wagner KH, Wallner M, Mölzer C, Gazzin S, Bulmer AC, Tiribelli C, Vitek L. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin Sci (Lond) 2015; 129:1-25. [PMID: 25881719 DOI: 10.1042/cs20140566] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Bilirubin, the principal tetrapyrrole, bile pigment and catabolite of haem, is an emerging biomarker of disease resistance, which may be related to several recently documented biological functions. Initially believed to be toxic in infants, the perception of bilirubin has undergone a transformation: it is now considered to be a molecule that may promote health in adults. Data from the last decade demonstrate that mildly elevated serum bilirubin levels are strongly associated with reduced prevalence of chronic diseases, particularly cardiovascular diseases (CVDs), as well as CVD-related mortality and risk factors. Recent data also link bilirubin to other chronic diseases, including cancer and Type 2 diabetes mellitus, and to all-cause mortality. Therefore, there is evidence to suggest that bilirubin is a biomarker for reduced chronic disease prevalence and a predictor of all-cause mortality, which is of important clinical significance. In the present review, detailed information on the association between bilirubin and all-cause mortality, as well as the pathological conditions of CVD, cancer, diabetes and neurodegenerative diseases, is provided. The mechanistic background concerning how bilirubin and its metabolism may influence disease prevention and its clinical relevance is also discussed. Given that the search for novel biomarkers of these diseases, as well as for novel therapeutic modalities, is a key research objective for the near future, bilirubin represents a promising candidate, meeting the criteria of a biomarker, and should be considered more carefully in clinical practice as a molecule that might provide insights into disease resistance. Clearly, however, greater molecular insight is warranted to support and strengthen the conclusion that bilirubin can prevent disease, with future research directions also proposed.
Collapse
Affiliation(s)
- Karl-Heinz Wagner
- *Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marlies Wallner
- *Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Christine Mölzer
- *Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Silvia Gazzin
- ‡Italian Liver Foundation, Centro Studi Fegato, Trieste, Italy
| | - Andrew Cameron Bulmer
- §Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Queensland, Australia
| | | | - Libor Vitek
- ¶Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Busch AW, Montgomery BL. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol 2015; 4:260-71. [PMID: 25618582 PMCID: PMC4315935 DOI: 10.1016/j.redox.2015.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Tetrapyrroles are involved in light sensing and oxidative stress mitigation. Reactive oxygen species (ROS) can form upon light exposure of free tetrapyrroles. Tetrapyrrole homeostasis must be tightly regulated to avoid oxidative stress. ROS can result in cellular damage or oxidative stress signaling in cells.
Collapse
|
25
|
Bisht K, Wegiel B, Tampe J, Neubauer O, Wagner KH, Otterbein LE, Bulmer AC. Biliverdin modulates the expression of C5aR in response to endotoxin in part via mTOR signaling. Biochem Biophys Res Commun 2014; 449:94-9. [PMID: 24814708 PMCID: PMC4051991 DOI: 10.1016/j.bbrc.2014.04.150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 02/09/2023]
Abstract
Macrophages play a crucial role in the maintenance and resolution of inflammation and express a number of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activation. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression of the pro-inflammatory cytokines TNF-α and IL-6. Collectively, these data indicate that biliverdin regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism underlying biliverdin's anti-inflammatory effects.
Collapse
Affiliation(s)
- Kavita Bisht
- Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Barbara Wegiel
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jens Tampe
- Griffith Enterprise, Griffith University, Nathan, Australia
| | - Oliver Neubauer
- Emerging Field Oxidative Stress and DNA Stability and Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Emerging Field Oxidative Stress and DNA Stability and Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Andrew C Bulmer
- Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|
26
|
Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 2014; 20:1709-22. [PMID: 24180257 PMCID: PMC3961788 DOI: 10.1089/ars.2013.5667] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. RECENT ADVANCES The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CRITICAL ISSUES CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. FUTURE DIRECTIONS In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zsuzsanna Nemeth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Matheus Correa-Costa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew C. Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Queensland, Australia
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Zheng J, Nagda DA, Lajud SA, Kumar S, Mouchli A, Bezpalko O, O'Malley BW, Li D. Biliverdin's regulation of reactive oxygen species signalling leads to potent inhibition of proliferative and angiogenic pathways in head and neck cancer. Br J Cancer 2014; 110:2116-22. [PMID: 24569474 PMCID: PMC3992514 DOI: 10.1038/bjc.2014.98] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In this study, we evaluate whether the use of biliverdin (BV), a natural non-toxic antioxidant product of haeme catabolism, can suppress head and neck squamous cell carcinoma (HNSCC) cell proliferation and improve the tumour survival both in vitro and in vivo. Furthermore, we investigate whether this therapeutic outcome relies on BV's potent antioxidant effect on reactive oxygen species (ROS)-mediated signalling. METHODS Two well-characterised HNSCC cell lines and a mouse model with human HNSCC were used for this study. In vitro, the effect of BV on ROS was assayed. Subsequently, critical regulatory proteins involved in growth, antiapoptotic, and angiogenic pathways were investigated by western blot analysis. In addition, the antiproliferative effect of BV was also evaluated using the clonogenic assay. Moreover, tumour growth inhibition was assessed using a mouse model with HNSCC. RESULTS Biliverdin treatment resulted in decreased ROS, leading to suppression of proliferation and angiogenesis pathways of HNSCC, significantly decreasing the expression and phosphorylation of oncogenic factors such as epidermal growth factor receptor (EGFR), phosphorylation of Akt, and expression of angiogenic marker and transcription factor, hypoxia-inducible factor1-α (HIF1-α). Furthermore, this downregulation of ROS by BV led to a significant suppression of tumour growth in vivo. CONCLUSIONS Our study demonstrates the efficacy of a novel therapeutic approach using BV as an antitumour agent against HNSCC through its effect on EGFR/Akt and HIF1-α/angiogenesis signal transduction pathways. Our findings indicate that BV's inhibitory effect on these tumorigenic pathways relies on its antioxidant effect, and may extend its therapeutic potential to other solid cancers.
Collapse
Affiliation(s)
- J Zheng
- 1] Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA [2] Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - D A Nagda
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - S A Lajud
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - S Kumar
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - A Mouchli
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - O Bezpalko
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - B W O'Malley
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| | - D Li
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 415 Curie Boulevard, Clinical Research Building, Philadelphia, PA, USA
| |
Collapse
|
28
|
Mölzer C, Huber H, Steyrer A, Ziesel GV, Wallner M, Goncharova I, Orlov S, Urbanová M, Ahlfors CE, Vítek L, Bulmer AC, Wagner KH. Interaction between TNFone and tetrapyrroles may account for their anti-genotoxic effects — a novel mechanism for DNA-protection. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bilirubin, the principal and biologically most relevant bile pigment was, until recently, considered a waste product of haem catabolism. However, current data suggest that bile pigments possess biological potential, related to their antioxidant and anti-mutagenic effects. In this context, it is now assumed that bile pigments and their derivatives exert these effects via multiple mechanisms, including discrete anti-oxidative and physico-chemical interactive effects. The major scientific focus so far has concentrated on the compounds' antioxidant action, and mechanistic investigations of possible mutagen-tetrapyrrole interaction are lacking. Therefore we tested structurally related bile pigments/derivatives (bilirubin/-ditaurate/-dimethyl ester, biliverdin/-dimethyl ester, urobilin, stercobilin and protoporphyrin) for anti-genotoxicity in the Salmonella reverse mutation assay (strains TA98, TA102), together with the synthetic mutagen 2,4,7-trinitro-9H-fluoren-9-one (TNFone). To explore possible structural interactions, molecular systems of chlorin e6 porphyrin/bilirubin/biliverdin with TNFone were assayed using circular dichroism. These data consistently revealed, at suprastoichiometric concentrations, that tetrapyrroles interact with TNFone. Addition of TNFone to chlorin e6 porphyrin, bilirubin-albumin and biliverdin-albumin led to a marked change in pigment spectra, providing evidence for tight tetrapyrrole-mutagen interaction. This conclusion was also supported by substantial, TNFone-induced decrease of bilirubin oxidation in the bilirubin-albumin system. This outcome was reflected in a bacterial model, in which most tetrapyrroles and especially protoporphyrin, significantly attenuated TNFone-induced mutagenesis. These data indicate that aromatic, tetrapyrrolic molecules interact with TNFone, providing a novel mechanism to suggest the anti-mutagenic effects of bile pigments in vivo are related to their physico-chemical interaction with genotoxins.
Collapse
Affiliation(s)
- Christine Mölzer
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraße 14, 1090 Vienna, Austria
| | - Hedwig Huber
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraße 14, 1090 Vienna, Austria
| | - Andrea Steyrer
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraße 14, 1090 Vienna, Austria
| | - Gesa V. Ziesel
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraße 14, 1090 Vienna, Austria
| | - Marlies Wallner
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraße 14, 1090 Vienna, Austria
| | - Iryna Goncharova
- Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Sergey Orlov
- Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Marie Urbanová
- Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Charles E. Ahlfors
- Stanford University, School of Medicine, 750 Welch Road, Suite 212, Palo Alto, CA 94304, USA
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Andrew C. Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University (Gold Coast Campus), Australia, 4222, Australia
| | - Karl-Heinz Wagner
- University of Vienna, Faculty of Life Sciences, Department of Nutritional Sciences, Althanstraße 14, 1090 Vienna, Austria
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University (Gold Coast Campus), Australia, 4222, Australia
| |
Collapse
|
29
|
Mölzer C, Huber H, Steyrer A, Ziesel GV, Wallner M, Hong HT, Blanchfield J, Bulmer AC, Wagner KH. Bilirubin and related tetrapyrroles inhibit food-borne mutagenesis: a mechanism for antigenotoxic action against a model epoxide. JOURNAL OF NATURAL PRODUCTS 2013; 76:1958-65. [PMID: 24156291 PMCID: PMC3812704 DOI: 10.1021/np4005807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 05/16/2023]
Abstract
Bilirubin exhibits antioxidant and antimutagenic effects in vitro. Additional tetrapyrroles that are naturally abundant were tested for antigenotoxicity in Salmonella. Un-/conjugated bilirubin (1 and 2), biliverdin (4), bilirubin and biliverdin dimethyl esters (3 and 5), stercobilin (6), urobilin (7), and protoporphyrin (8) were evaluated at physiological concentrations (0.01-2 μmol/plate; 3.5-714 μM) against the metabolically activated food-borne mutagens aflatoxin B1 (9) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (10). Compound 8 most effectively inhibited the mutagenic effects of 9 in strain TA102 and 10 in TA98. Compound 7 inhibited 9-induced mutagenesis in strain TA98 most effectively, while 1 and 4 were promutagenic in this strain. This is likely due to their competition with mutagens for phase-II detoxification. Mechanistic investigations into antimutagenesis demonstrate that tetrapyrroles react efficiently with a model epoxide of 9, styrene epoxide (11), to form covalent adducts. This reaction is significantly faster than that of 11 with guanine. Hence, the evaluated tetrapyrroles inhibited genotoxicity induced by poly-/heterocyclic amines found in foods, and novel evidence obtained in the present investigation suggests this may occur via chemical scavenging of genotoxic metabolites of the mutagens investigated. This may have important ramifications for maintaining health, especially with regard to cancer prevention.
Collapse
Affiliation(s)
- Christine Mölzer
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Hedwig Huber
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Andrea Steyrer
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Gesa V. Ziesel
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Marlies Wallner
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
| | - Hung T. Hong
- School
of Chemistry and Molecular Biosciences, University of Queensland, St.
Lucia, Queensland 4072, Australia
| | - Joanne
T. Blanchfield
- School
of Chemistry and Molecular Biosciences, University of Queensland, St.
Lucia, Queensland 4072, Australia
| | - Andrew C. Bulmer
- Heart
Foundation Research Centre, Griffith Health
Institute, Griffith University (Gold Coast Campus), Queensland 4222, Australia
| | - Karl-Heinz Wagner
- Department
of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability,
Faculty of Life Sciences, University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
- Heart
Foundation Research Centre, Griffith Health
Institute, Griffith University (Gold Coast Campus), Queensland 4222, Australia
| |
Collapse
|
30
|
Novotná J, Goncharova I, Urbanová M. Guanosine assemblies: newly used matrices for chiroptical studies on biliverdin. Supramol Chem 2013. [DOI: 10.1080/10610278.2013.814774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jana Novotná
- Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Prague 6, Czech Republic
| | - Iryna Goncharova
- Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Prague 6, Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements, Institute of Chemical Technology, Prague, Prague 6, Czech Republic
| |
Collapse
|
31
|
In vitro DNA-damaging effects of intestinal and related tetrapyrroles in human cancer cells. Exp Cell Res 2012; 319:536-45. [PMID: 23246570 PMCID: PMC3569715 DOI: 10.1016/j.yexcr.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/23/2022]
Abstract
Epidemiological studies report a negative association between circulating bilirubin concentrations and the risk for cancer and cardiovascular disease. Structurally related tetrapyrroles also possess in vitro anti-genotoxic activity and may prevent mutation prior to malignancy. Furthermore, few data suggest that tetrapyrroles exert anti-carcinogenic effects via induction of cell cycle arrest and apoptosis. To further investigate whether tetrapyrroles provoke DNA-damage in human cancer cells, they were tested in the single cell gel electrophoresis assay (SCGE). Eight tetrapyrroles (unconjugated bilirubin, bilirubin ditaurate, biliverdin, biliverdin-/bilirubin dimethyl ester, urobilin, stercobilin and protoporphyrin) were added to cultured Caco2 and HepG2 cells and their effects on comet formation (% tail DNA) were assessed. Flow cytometric assessment (apoptosis/necrosis, cell cycle, intracellular radical species generation) assisted in revealing underlying mechanisms of intracellular action. Cells were incubated with tetrapyrroles at concentrations of 0.5, 5 and 17μM for 24h. Addition of 300μM tertiary-butyl hydroperoxide to cells served as a positive control. Tetrapyrrole incubation mostly resulted in increased DNA-damage (comet formation) in Caco2 and HepG2 cells. Tetrapyrroles that are concentrated within the intestine, including protoporphyrin, urobilin and stercobilin, led to significant comet formation in both cell lines, implicating the compounds in inducing DNA-damage and apoptosis in cancer cells found within organs of the digestive system.
Collapse
|