1
|
Bešić E, Rajić Z, Šakić D. Advancements in electron paramagnetic resonance (EPR) spectroscopy: A comprehensive tool for pharmaceutical research. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:551-594. [PMID: 39686630 DOI: 10.2478/acph-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research. We detail how EPR spectroscopy can be employed to assess free radical scavenging properties in pharmaceutical compounds, elucidate drug mechanisms of action, and explore pharmacokinetics. Additionally, we investigate the role of free radicals in drug-induced toxicity and drug-membrane interactions, while also covering the application of EPR spectroscopy in drug delivery research, advanced studies of metallodrugs, and monitoring of oxygen levels in biological systems through EPR oximetry. The recent advancements in the miniaturization of EPR spectro meters have paved the way for their application in on-site and in-line mo nitoring during the manufacturing process and quality control of pharmaceutical substances and final drug formulations due to being the only direct and non-invasive detection technique for radical detection. Through these discussions, we highlight the substantial contributions of EPR spectroscopy to the advancement of pharmaceutical sciences.
Collapse
Affiliation(s)
- Erim Bešić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Davor Šakić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wang H, Luan F, Shi Y, Yan S, Xin B, Zhang X, Guo D, Sun J, Zou J. Extraction, structural features, and pharmacological effects of the polysaccharides from Porphyra yezoensis: A review. Int J Biol Macromol 2024; 279:134745. [PMID: 39147347 DOI: 10.1016/j.ijbiomac.2024.134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Porphyra yezoensis, an important medicinal seaweed extensively cultivated and consumed in China, Japan, and South Korea, is traditionally considered a precious healthy food and food additive. Published studies showed that the polysaccharides are major bioactive macromolecules from P. yezoensis with great potential for the development of nutraceuticals and functional foods. As an important component of P. yezoensis, P. yezoensis polysaccharide (PYP) is mainly extracted by hot water extraction, ultrasonic-assisted extraction, and microwave-assisted extraction methods. Subsequently obtained by decolorization, deproteinization, removal of other small molecules, and separation on various chromatographic columns. The main structural components of PYP were (1 → 3)-linked β-D-galactose and (1 → 4)-linked 3,6-anhydro-α-L-galactose. Accumulating evidence has revealed that PYP has diverse biological activities, such as antioxidant, suppressing kidney stones, immunomodulatory, etc. This review systematically summarizes the recent preparation progress, chemical structures, bioactivities, and the underlying mechanisms of PYP. Information from this review provides insights into the further development of PYP as therapeutic agents and functional foods. Although there have been extensive studies on PYP, there are gaps in establishing quality standard, toxicological research, clinical application and other aspects. To enhance the utility of P. yezoensis, it is necessary to strengthen the research on these aspects.
Collapse
Affiliation(s)
- He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Kasprzycka W, Szumigraj W, Wachulak P, Trafny EA. New approaches for low phototoxicity imaging of living cells and tissues. Bioessays 2024; 46:e2300122. [PMID: 38514402 DOI: 10.1002/bies.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Fluorescence microscopy is a powerful tool used in scientific and medical research, but it is inextricably linked to phototoxicity. Neglecting phototoxicity can lead to erroneous or inconclusive results. Recently, several reports have addressed this issue, but it is still underestimated by many researchers, even though it can lead to cell death. Phototoxicity can be reduced by appropriate microscopic techniques and carefully designed experiments. This review focuses on recent strategies to reduce phototoxicity in microscopic imaging of living cells and tissues. We describe digital image processing and new hardware solutions. We point out new modifications of microscopy methods and hope that this review will interest microscopy hardware engineers. Our aim is to underscore the challenges and potential solutions integral to the design of microscopy systems. Simultaneously, we intend to engage biologists, offering insight into the latest technological advancements in imaging that can enhance their understanding and practice.
Collapse
Affiliation(s)
- Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego, Warsaw, Poland
| | - Wiktoria Szumigraj
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego, Warsaw, Poland
| | - Przemysław Wachulak
- Laser Technology Division, Institute of Optoelectronics, Military University of Technology, Kaliskiego, Warsaw, Poland
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Kaliskiego, Warsaw, Poland
| |
Collapse
|
4
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
5
|
Bicarbonate-controlled reduction of oxygen by the Q A semiquinone in Photosystem II in membranes. Proc Natl Acad Sci U S A 2022; 119:2116063119. [PMID: 35115403 PMCID: PMC8833163 DOI: 10.1073/pnas.2116063119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In Photosystem II (PSII), O2 reduction by QA•− is often discussed but has not been demonstrated. Here, we show in PSII membranes that QA•− can reduce O2 to superoxide, but only when bicarbonate is absent from its binding site on the nonheme Fe2+. Bicarbonate’s role in PSII was recently shown to involve a regulatory/protective redox-tuning mechanism linking PSII function to CO2 concentration. A key aspect is the presence of stable QA•− causing release of bicarbonate from its site on Fe2+. Here, we show that under these conditions, O2 binds to the empty site on the Fe2+ and is reduced by QA•−. This unexpected reaction may be a further indication of cross-talk between the regulation of PSII and CO2 fixation. Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. QA•−, the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O2, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O2 does oxidize QA•− at physiological O2 concentrations with a t1/2 of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O2 to a binding site near QA•−, with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, QA•− could only reduce O2 when bicarbonate was absent from its binding site on the nonheme iron (Fe2+) and the addition of bicarbonate or formate blocked the O2-dependant decay of QA•−. These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from QA•− to O2 occurs when the O2 is bound to the empty bicarbonate site on Fe2+. A protective role for bicarbonate in PSII was recently reported, involving long-lived QA•− triggering bicarbonate dissociation from Fe2+ [Brinkert et al., Proc. Natl. Acad. Sci. U.S.A. 113, 12144–12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O2 to bind to Fe2+ and to oxidize QA•−. This could be beneficial by oxidizing QA•− and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain.
Collapse
|
6
|
Detection of Superoxide Radical in Adherent Living Cells by Electron Paramagnetic Resonance (EPR) Spectroscopy Using Cyclic Nitrones. Methods Mol Biol 2020. [PMID: 32857354 DOI: 10.1007/978-1-0716-0896-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Spin trapping with cyclic nitrones coupled to electron paramagnetic resonance (EPR) enables the detection and characterization of oxygen-derived free radicals, such as superoxide and hydroxyl radicals, in living cells. Detection is usually performed on cell suspensions introduced in glass capillaries, gas-permeable tubing, or flat cells, even when cells normally require attachment for growth. However, radical production may be influenced by cell adhesion, while enzymatic or mechanical cell harvesting may damage the cells and alter their metabolic rates. Here, we describe the detection on adherent cells attached to microscope coverslip glasses. This method preserves cell integrity, ensures near physiological conditions for naturally adherent cells, and is relatively simple to set up. Up to 12 conditions can be screened in half a day using a single batch of culture cells.
Collapse
|
7
|
Gotham JP, Li R, Tipple TE, Lancaster JR, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med 2020; 154:84-94. [PMID: 32376456 PMCID: PMC7368495 DOI: 10.1016/j.freeradbiomed.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.
Collapse
Affiliation(s)
- John P Gotham
- Science and Technology Honors College, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jack R Lancaster
- Department of Pharmacology & Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Wang X, Ji K, Rockenbauer A, Liu Y, Song Y. Host-guest interaction of nitroxide radicals with water-soluble pillar[6]arenes. Org Biomol Chem 2020; 18:2321-2325. [PMID: 32159569 DOI: 10.1039/d0ob00341g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The host-guest interaction of nitroxide radicals with water-soluble pillar[n]arenes was studied for the first time by electron paramagnetic resonance spectroscopy and NMR spectroscopy. Our results showed that this interaction strongly depended on the 4-substituents of nitroxides and the cavity size of pillar[n]arenes. The host-guest interaction with water-soluble pillar[6]arene WP6 effectively increased the thermodynamic and kinetic stability of nitroxide radical 4-AT toward ascorbic acid, thus expanding its potential biomedical applications.
Collapse
Affiliation(s)
- Xue Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China.
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China.
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, Department of Physics, Budapest University of Technology and Economics, Budafoki ut8, 1111 Budapest, Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China.
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China.
| |
Collapse
|
9
|
Jia M, Mai B, Liu S, Li Z, Liu Q, Wang P. Antibacterial effect of S-Porphin sodium photodynamic therapy on Staphylococcus aureus and multiple drug resistance Staphylococcus aureus. Photodiagnosis Photodyn Ther 2019; 28:80-87. [DOI: 10.1016/j.pdpdt.2019.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
|
10
|
Ingram S, Mengozzi M, Sacre S, Mullen L, Ghezzi P. Differential induction of nuclear factor-like 2 signature genes with toll-like receptor stimulation. Free Radic Biol Med 2019; 135:245-250. [PMID: 30894323 DOI: 10.1016/j.freeradbiomed.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is associated with production of reactive oxygen species (ROS) and results in the induction of thioredoxin (TXN) and peroxiredoxins (PRDXs) and activation of nuclear factor-like 2 (Nrf2). In this study we have used the mouse RAW 264.7 macrophage and the human THP-1 monocyte cell line to investigate the pattern of expression of three Nrf2 target genes, PRDX1, TXN reductase (TXNRD1) and heme oxygenase (HMOX1), by activation of different Toll-like receptors (TLRs). We found that, while the TLR4 agonist lipopolysaccharide (LPS) induces all three genes, the pattern of induction with agonists for TLR1/2, TLR3, TLR2/6 and TLR7/8 differs depending on the gene and the cell line. In all cases, the extent of induction was HMOX1>TXNRD1>PRDX1. Since LPS was a good inducer of all genes in both cell lines, we studied the mechanisms mediating LPS induction of the three genes using mouse RAW 264.7 cells. To assess the role of ROS we used the antioxidant N-acetylcysteine (NAC). Only LPS induction of HMOX1 was inhibited by NAC while that of TXNRD1 and PRDX1 was unaffected. These three genes were also induced by phorbol myristate acetate (PMA), a ROS-inducer acting by activation of protein kinase C (PKC). The protein kinase inhibitor staurosporine inhibited the induction of all three genes by PMA but only that of HMOX1 by LPS. This indicates that activation of these genes by inflammatory agents is regulated by different mechanisms involving either ROS or protein kinases, or both.
Collapse
Affiliation(s)
- Sonia Ingram
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Manuela Mengozzi
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Sandra Sacre
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Lisa Mullen
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, BN1 9PS, United Kingdom.
| |
Collapse
|
11
|
Geroldinger G, Rezk M, Idris R, Gruber V, Tonner M, Moldzio R, Staniek K, Monzote L, Gille L. Techniques to study phagocytosis and uptake of Leishmania tarentolae by J774 macrophages. Exp Parasitol 2019; 197:57-64. [PMID: 30677395 DOI: 10.1016/j.exppara.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
Leishmaniasis is a vector borne parasitic disease affecting millions of people worldwide and is spreading into further areas because of global warming. The development of new active substances against these single-cell eukaryotic parasites is of great importance. Leishmania tarentolae promastigotes (LtP) are non-pathogenic for mammals and serve as model organisms for pathogenic Leishmania in basic research. However, it is important to refine methods to study the process of the infection of mammalian macrophages by LtP and pathogenic Leishmania. Important stages of the infection are phagocytosis by macrophages and multiplication of Leishmania amastigotes in the phagolysosome of macrophages. In this study, advanced methods using electron spin resonance (ESR) spectroscopy and genetically manipulated LtP were used to monitor the infection of adherent J774 macrophages with LtP. An ESR method was established to detect the formation of superoxide radicals directly in adherent J774 cells and to investigate the effect of LtP on this activity. J774 cells responded with a burst of superoxide radicals in the presence of phorbol myristate acetate as positive control. In contrast, challenging J774 cells with LtP resulted in a much lower burst of superoxide radicals. To facilitate LtP detection in the phagolysosome of J774 macrophages, LtP expressing enhanced green fluorescent protein (EGFP-LtP) were constructed. After different infection times with EGFP-LtP, the J774 cells were visualized by phase contrast microscopy and the cell number was determined. The intramacrophage Leishmania tarentolae amastigotes (LtA) expressing EGFP were detected by fluorescence microscopy and then counted with ImageJ. These experiments showed that LtP are taken up by J774 cells and form intraphagolysosomal amastigotes. LtA under our conditions multiplied intracellularly and were able to persist about 48 h in J774 cells. These experiments showed that ESR spectroscopy of attached macrophages and the use of the EGFP-LtP are suitable methods to study the initial phase of Leishmania infection in vitro.
Collapse
Affiliation(s)
- Gerald Geroldinger
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Marlene Rezk
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rugaia Idris
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Victoria Gruber
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Tonner
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Havana, Cuba
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
12
|
Elajaili HB, Hernandez-Lagunas L, Ranguelova K, Dikalov S, Nozik-Grayck E. Use of Electron Paramagnetic Resonance in Biological Samples at Ambient Temperature and 77 K. J Vis Exp 2019. [PMID: 30688300 DOI: 10.3791/58461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accurate and specific detection of reactive oxygen species (ROS) in different cellular and tissue compartments is essential to the study of redox-regulated signaling in biological settings. Electron paramagnetic resonance spectroscopy (EPR) is the only direct method to assess free radicals unambiguously. Its advantage is that it detects physiologic levels of specific species with a high specificity, but it does require specialized technology, careful sample preparation, and appropriate controls to ensure accurate interpretation of the data. Cyclic hydroxylamine spin probes react selectively with superoxide or other radicals to generate a nitroxide signal that can be quantified by EPR spectroscopy. Cell-permeable spin probes and spin probes designed to accumulate rapidly in the mitochondria allow for the determination of superoxide concentration in different cellular compartments. In cultured cells, the use of cell permeable 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) along with and without cell-impermeable superoxide dismutase (SOD) pretreatment, or use of cell-permeable PEG-SOD, allows for the differentiation of extracellular from cytosolic superoxide. The mitochondrial 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido] piperidinium dichloride (mito-TEMPO-H) allows for measurement of mitochondrial ROS (predominantly superoxide). Spin probes and EPR spectroscopy can also be applied to in vivo models. Superoxide can be detected in extracellular fluids such as blood and alveolar fluid, as well as tissues such as lung tissue. Several methods are presented to process and store tissue for EPR measurements and deliver intravenous 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) spin probe in vivo. While measurements can be performed at room temperature, samples obtained from in vitro and in vivo models can also be stored at -80 °C and analyzed by EPR at 77 K. The samples can be stored in specialized tubing stable at -80 °C and run at 77 K to enable a practical, efficient, and reproducible method that facilitates storing and transferring samples.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | | | - Sergey Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
13
|
Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadły R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid Redox Signal 2018; 28:1416-1432. [PMID: 29037049 PMCID: PMC5910052 DOI: 10.1089/ars.2017.7398] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Collapse
Affiliation(s)
- Micael Hardy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Santander, Colombia
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
14
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
15
|
Lescic S, Karoui H, Hardy M, Charles L, Tordo P, Ouari O, Gaudel-Siri A, Siri D. Alkylperoxyl spin adducts of pyrroline-N-oxide spin traps: Experimental and theoretical CASSCF study of the unimolecular decomposition in organic solvent, potential applications in water. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergiu Lescic
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Hakim Karoui
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Micaël Hardy
- Aix-Marseille University, CNRS, ICR; Marseille France
| | | | - Paul Tordo
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Olivier Ouari
- Aix-Marseille University, CNRS, ICR; Marseille France
| | | | - Didier Siri
- Aix-Marseille University, CNRS, ICR; Marseille France
| |
Collapse
|