1
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
2
|
Bromfield EG, Walters JLH, Cafe SL, Bernstein IR, Stanger SJ, Anderson AL, Aitken RJ, McLaughlin EA, Dun MD, Gadella BM, Nixon B. Differential cell death decisions in the testis: evidence for an exclusive window of ferroptosis in round spermatids. Mol Hum Reprod 2020; 25:241-256. [PMID: 30865280 DOI: 10.1093/molehr/gaz015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a major aetiology in many pathologies, including that of male infertility. Recent evidence in somatic cells has linked oxidative stress to the induction of a novel cell death modality termed ferroptosis. However, the induction of this iron-regulated, caspase-independent cell death pathway has never been explored outside of the soma. Ferroptosis is initiated through the inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and is exacerbated by the activity of arachidonate 15-lipoxygenase (ALOX15), a lipoxygenase enzyme that facilitates lipid degradation. Here, we demonstrate that male germ cells of the mouse exhibit hallmarks of ferroptosis including; a caspase-independent decline in viability following exposure to oxidative stress conditions induced by the electrophile 4-hydroxynonenal or the ferroptosis activators (erastin and RSL3), as well as a reciprocal upregulation of ALOX15 and down regulation of GPX4 protein expression. Moreover, the round spermatid developmental stage may be sensitized to ferroptosis via the action of acyl-CoA synthetase long-chain family member 4 (ACSL4), which modifies membrane lipid composition in a manner favourable to lipid peroxidation. This work provides a clear impetus to explore the contribution of ferroptosis to the demise of germline cells during periods of acute stress in in vivo models.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Shenae L Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | | | - Matthew D Dun
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Barend M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM, Utrecht, The Netherlands
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| |
Collapse
|
3
|
Monzo-Beltran L, Vazquez-Tarragón A, Cerdà C, Garcia-Perez P, Iradi A, Sánchez C, Climent B, Tormos C, Vázquez-Prado A, Girbés J, Estáñ N, Blesa S, Cortés R, Chaves FJ, Sáez GT. One-year follow-up of clinical, metabolic and oxidative stress profile of morbid obese patients after laparoscopic sleeve gastrectomy. 8-oxo-dG as a clinical marker. Redox Biol 2017; 12:389-402. [PMID: 28319890 PMCID: PMC5357674 DOI: 10.1016/j.redox.2017.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity has grown worldwide over the last few decades. In its different degrees, obesity is accompanied by many clinical and biochemical alterations reflecting the pathological condition of various body tissues. Among the mechanisms underlying the pathogenesis of obesity and associated complications, oxidative stress (OS) may be playing an important role. In the present study, we have characterized at systemic level the degree of OS status in a group of morbid obese patients (BMI>40kg/m2) at basal sate and its modulation during one year after bariatric surgery using the laparoscopic sleeve gastrectomy (LSG) technique. As compared with normal weight subjects matched in age, peripheral blood mononuclear cells (PBMc) of obese patients present a significant reduction of the antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) as well as a significant increase of the oxidized/reduced glutathione ratio (GSSG/GSH) in these cells. Lipid peroxidation is significantly increased in the patient group as shown by the increased levels of malondialdehyde (MDA) in PBMc and the amount of F2-Isoprostanes (F2-IsoPs) released in urine. In addition, the DNA damage product 8-oxo-7,8-2'-deoxyguanosine (8-oxo-dG) was also observed to be increased in serum and urine of morbid obese patients as compared with the control group. After LSG, an improvement of their ponderal and metabolic profile was accompanied by a progressive recovery of antioxidant enzyme activities and the decline of oxidative byproducts both in PBMc and biological fluids. The observed changes of urinary 8-oxo-dG levels correlate positively with its serum concentration, the lipid peroxidation products MDA and F2-IsoPs, triglycerides, glucose, insulin, HOMA index and body weight and negatively with the percentage of weight and BMI loss and antioxidant activities. We conclude that the analysis of urinary 8-oxo-dG could be validated as a useful marker for the monitoring of ponderal and metabolic status of morbid obese patients.
Collapse
Affiliation(s)
- Lidia Monzo-Beltran
- Dept. of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, University of Valencia, Spain.
| | | | - Concha Cerdà
- Service of Clinical Analysis, General University Hospital, Valencia, Spain.
| | - Paula Garcia-Perez
- Dept. of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, University of Valencia, Spain.
| | - Antonio Iradi
- Dept. of Physiology, Faculty of Medicine and Odontology, University of Valencia, Spain.
| | - Carlos Sánchez
- Endocrinology and Nutrition Unit, General University Hospital, Valencia, Spain.
| | - Benjamin Climent
- Service of Internal Medicine, General University Hospital, Valencia, Spain.
| | - Carmen Tormos
- Dept. of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, University of Valencia, Spain.
| | - Antonio Vázquez-Prado
- Service of General and Digestive Surgery, General University Hospital, Valencia, Spain.
| | - Javier Girbés
- Service of Clinical Analysis, University Hospital Dr. Peset, Valencia, Spain.
| | - Nuria Estáñ
- Service of Clinical Analysis, University Hospital Dr. Peset, Valencia, Spain.
| | - Sebastián Blesa
- Genomic and Genetic Diagnosis Unit, INCLIVA, CIBEREDEM University of Valencia, Spain.
| | - Raquel Cortés
- Genomic and Genetic Diagnosis Unit, INCLIVA, CIBEREDEM University of Valencia, Spain.
| | - Felipe J Chaves
- Genomic and Genetic Diagnosis Unit, INCLIVA, CIBEREDEM University of Valencia, Spain.
| | - Guillermo T Sáez
- Dept. of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology-INCLIVA, University of Valencia, Spain; Service of Clinical Analysis, University Hospital Dr. Peset, Valencia, Spain.
| |
Collapse
|
4
|
Gostimskaya I, Grant CM. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radic Biol Med 2016; 94:55-65. [PMID: 26898146 PMCID: PMC4851219 DOI: 10.1016/j.freeradbiomed.2016.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron-sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1(M1L) mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron-sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own.
Collapse
Affiliation(s)
- Irina Gostimskaya
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chris M Grant
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
5
|
Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, Zurmanova J. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genomics 2015; 47:612-20. [PMID: 26465708 DOI: 10.1152/physiolgenomics.00058.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
It has been documented that adaptation to hypoxia increases myocardial tolerance to ischemia-reperfusion (I/R) injury depending on the regimen of adaptation. Reactive oxygen species (ROS) formed during hypoxia play an important role in the induction of protective cardiac phenotype. On the other hand, the excess of ROS can contribute to tissue damage caused by I/R. Here we investigated the relationship between myocardial tolerance to I/R injury and transcription activity of major antioxidant genes, transcription factors, and oxidative stress in three different regimens of chronic hypoxia. Adult male Wistar rats were exposed to continuous normobaric hypoxia (FiO2 0.1) either continuously (CNH) or intermittently for 8 h/day (INH8) or 23 h/day (INH23) for 3 wk period. A control group was kept in room air. Myocardial infarct size was assessed in anesthetized open-chest animals subjected to 20 min coronary artery occlusion and 3 h reperfusion. Levels of mRNA transcripts and the ratio of reduced and oxidized glutathione (GSH/GSSG) were analyzed by real-time RT-PCR and by liquid chromatography, respectively. Whereas CNH as well as INH8 decreased infarct size, 1 h daily reoxygenation (INH23) abolished the cardioprotective effect and decreased GSH/GSSG ratio. The majority of mRNAs of antioxidant genes related to mitochondrial antioxidant defense (manganese superoxide dismutase, glutathione reductase, thioredoxin/thioredoxin reductase, and peroxiredoxin 2) were upregulated in both cardioprotective regimens (CNH, INH8). In contrast, INH23 increased only PRX5, which was not sufficient to induce the cardioprotective phenotype. Our results suggest that the increased mitochondrial antioxidant defense plays an important role in cardioprotection afforded by chronic hypoxia.
Collapse
Affiliation(s)
- Dita Kasparova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Mraz
- National Institute of Public Health, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic;
| |
Collapse
|
6
|
Kermanizadeh A, Chauché C, Brown DM, Loft S, Møller P. The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity: a review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:111-24. [PMID: 25427446 DOI: 10.1002/em.21926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 05/22/2023]
Abstract
The terms oxidative stress, free radical generation, and intracellular antioxidant protection have become part of everyday nanotoxicology terminology. In recent years, an ever increasing number of in vitro and in vivo studies have implicated disruptions to the redox balance and oxidative stress as one of the main contributors to nanomaterial (NM) induced adverse effects. One of the most important and widely investigated of these effects is genotoxicity. In general, systems that defend an organism against oxidative damage to DNA are very complex and include prevention of reactive oxygen species (ROS) production, neutralizing ROS (scavengers), enzymatic nucleotide pool sanitation, and DNA repair. This review discusses the importance of the maintenance of the redox balance in this context before examining studies that have investigated engineered NM induced redox imbalance and genotoxicity. Furthermore, we identify data gaps, and highlight a number of issues that exist with the methodologies that are routinely utilized to investigate intracellular ROS production or anti-oxidant depletion. We conclude that for a large number of engineered NM types changes in the redox balance toward oxidative stress are normally associated with DNA damage.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, 1014, Denmark
| | | | | | | | | |
Collapse
|
7
|
Chatterjee A. Reduced glutathione: a radioprotector or a modulator of DNA-repair activity? Nutrients 2013; 5:525-42. [PMID: 23434907 PMCID: PMC3635210 DOI: 10.3390/nu5020525] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/15/2012] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
Abstract
The tripeptide glutathione (GSH) is the most abundant intracellular nonprotein thiol, and it is involved in many cellular functions including redox-homeostatic buffering. Cellular radiosensitivity has been shown to be inversely correlated to the endogenous level of GSH. On the other hand, controversy is raised with respect to its role in the field of radioprotection since GSH failed to provide consistent protection in several cases. Reports have been published that DNA repair in cells has a dependence on GSH. Subsequently, S-glutathionylation (forming mixed disulfides with the protein-sulfhydryl groups), a potent mechanism for posttranslational regulation of a variety of regulatory and metabolic proteins when there is a change in the celluar redox status (lower GSH/GSSG ratio), has received increased attention over the last decade. GSH, as a single agent, is found to affect DNA damage and repair, redox regulation and multiple cell signaling pathways. Thus, seemingly, GSH does not only act as a radioprotector against DNA damage induced by X-rays through glutathionylation, it may also act as a modulator of the DNA-repair activity. Judging by the number of publications within the last six years, it is obvious that the field of protein glutathionylation impinges on many aspects of biology, from regulation of protein function to roles of cell cycle and apoptosis. Aberrant protein glutathionylation and its association with cancer and other diseases is an area of increasing interest.
Collapse
Affiliation(s)
- Anupam Chatterjee
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
8
|
Cavia-Saiz M, Muñiz P, Ortega N, Busto M. Effect of enzymatic debittering on antioxidant capacity and protective role against oxidative stress of grapefruit juice in comparison with adsorption on exchange resin. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1238-44. [PMID: 20394007 DOI: 10.1002/jsfa.3959] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND This study was designed to evaluate and compare antioxidant capacity and radical scavenging activity of naringin and its aglycone by different in vitro assays. The effects of flavanones on lipid peroxidation, glutathione (GSH) oxidation and DNA cleavage were also assessed. RESULTS The results showed that naringenin exhibited higher antioxidant capacity and hydroxyl and superoxide radical scavenger efficiency than naringin. Our results evidenced that glycosylation attenuated the efficiency in inhibiting the enzyme xanthine oxidase and the aglycone could act like a more active chelator of metallic ions than the glycoside. Additionally, naringenin showed a greater effectiveness in the protection against oxidative damage to lipids in a dose-dependent manner. Both flavanones were equally effective in reducing DNA damage. However, they show no protective effect on oxidation of GSH. CONCLUSION The data obtained support the importance of characterizing the ratio naringin/naringenin in foods when they are evaluated for their health benefits.
Collapse
Affiliation(s)
- Monica Cavia-Saiz
- Department of Biotechnology and Food Science, Area of Biochemistry and Molecular Biology, University of Burgos, E-09001 Burgos, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Spanakis E. Human DNA Sampling and Banking. MOLECULAR GENETIC EPIDEMIOLOGY — A LABORATORY PERSPECTIVE 2002. [DOI: 10.1007/978-3-642-56207-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Muñiz P, Sáez P, Iradi A, Viña J, Oliva MR, Sáez GT. Differences between cysteine and homocysteine in the induction of deoxyribose degradation and DNA damage. Free Radic Biol Med 2001; 30:354-62. [PMID: 11182290 DOI: 10.1016/s0891-5849(00)00480-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of two naturally occurring thiols, such as cysteine and homocysteine, has been examined for their ability to induce deoxyribose degradation and DNA damage. Copper(II) ions have been added to incubation mixtures and oxygen consumption measurements have been performed in order to correlate the observed damaging effects with the rate of metal catalyzed thiol oxidation. Ascorbic acid plus copper has been used as a positive control of deoxyribose and DNA oxidation due to reactive oxygen species. Cysteine or homocysteine in the presence of copper ions induce the degradation of deoxyribose and the yield of 8-hydroxy-2'-deoxyguanosine (8-OHdG), although important differences are observed between the two thiols tested, homocysteine being less reactive than cysteine. DNA cleavage is induced by cysteine in the presence of copper(II) ions but not by homocysteine. Catalase and thiourea, but not superoxide dismutase (SOD), were shown to inhibit the damaging effects of cysteine on deoxyribose or DNA suggesting that H(2)O(2) and *OH radicals are responsible for the observed induced damage. The results indicate that there are differences between the damaging effects of the two thiols tested towards deoxyribose and DNA damage. The pathophysiological importance will be discussed.
Collapse
Affiliation(s)
- P Muñiz
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Rao DN, Cederbaum AI. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes. Free Radic Biol Med 1997; 22:439-46. [PMID: 8981035 DOI: 10.1016/s0891-5849(96)00335-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rifamycin S and rifabutin are clinical drugs used to treat tuberculosis and leprosy. The formation of reactive oxygen species during the redox-cycling of rifamycin S (quinone) and rifabutin (quinonimine) was evaluated. The semiquinone (or semiquinonimine) and hydroquinone (or hydroquinonimine) formed during the reduction of the parent molecules by microsomal electron transfer in the presence of nicotinamide-adenine dinucleotide phosphate, reduced (NADPH) or nicotinamide-adenine dinucleotide, reduced (NADH) reoxidizes in air to generate superoxide radical and hydrogen peroxide. In the presence of added iron, hydroxyl radicals, formed by the Fenton reaction, were detected using 5,5'-dimethyl-1-pyroline-N-oxide as the spin-trap. Rifamycin S, a quinone, redox cycles more efficiently than rifabutin, a quinonimine, as approximately five times the concentration of hydroxyl radical adduct of 5,5'-dimethyl-1-pyroline-N-oxide (DMPO) was detected, when compared with rifabutin. The NADPH-dependent microsomal production of hydroxyl radical in the presence of rifamycin S was somewhat higher than the NADH-rifamycin S system with most iron chelators. However, with rifabutin, NADH-dependent microsomal production of hydroxyl radical was higher than that found with the NADPH-rifabutin system. An exception was the iron chelator, diethylene-triamine-pentacetic acid (DTPA), in which NADPH-dependent rates exceeded the rates with NADH with both antibiotics. Rat liver sub-mitochondrial particles also generated hydroxyl radical in the presence of NADH and either rifamycin S or rifabutin. The electron transport chain inhibitors such as rotenone and antimycin A enhanced the signal intensity of DMPO-OH, suggesting NADH dehydrogenase (complex I) as the major component involved in the reduction of rifamycin S. Rifamycin S was shown to be readily reduced to rifamycin SV, the corresponding hydroquinone by Fe(II); under similar conditions Fe(II) did not reduce rifabutin. Using optical spectroscopy, we determined that rifamycin S forms a complex with Fe(II). The stoichiometry of the complex was Fe(rifamycin S)3 in phosphate buffer at pH 7.4. Rifabutin did not form a detectable complex with Fe(II). The redox cycling of rifamycin S and rifabutin did not cause microsomal lipid peroxidation. In fact, the Fe:ATP induced lipid peroxidation was completely inhibited by these two molecules. These results indicate that rifamycin S and rifabutin can interact with rat liver microsomes to undergo redox-cycling, with the subsequent production of hydroxyl radicals when iron complexes are present. Compared to NADPH, NADH is almost as effective (rifamycin S) or even more effective (rifabutin) in promoting these interactions. These interactions may play a role in the hepatotoxicity associated with the use of these antibiotics.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, NY 10029, USA
| | | |
Collapse
|
13
|
Muñiz P, Valls V, Perez-Broseta C, Iradi A, Climent JV, Oliva MR, Sáez GT. The role of 8-hydroxy-2'-deoxyguanosine in rifamycin-induced DNA damage. Free Radic Biol Med 1995; 18:747-55. [PMID: 7750799 DOI: 10.1016/0891-5849(94)00200-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of rifamycin SV on the formation of 8-hydroxy-2'-deoxyguanosine (8-0HdG) has been investigated in vitro and in vivo. Oxidative modification of 2'-deoxyguanosine has been measured as an indication of DNA damage using high-performance liquid chromatography with electrochemical detection. Rifamycin SV in the presence of copper(II) ions induces the formation of 8-0HdG in calf thymus DNA. The effect is enhanced by increasing the antibiotic concentration and inhibited by catalase and hydroxyl radical (.0H) scavengers, such as thiourea and ethanol, in a rifamycin SV concentration-dependent manner. The reduced glutathione (GSH) inhibits DNA damage, and this effect is proportional to the final concentration of the tripeptide in the incubation medium. A significant increase in the formation of 8-0HdG and of malondialdehyde (MDA) in rat liver DNA was observed only in GSH-depleted animals after 5 days of rifamycin SV treatment. These results support the involvement of hydrogen peroxide (H2(0)2) and .0H in the mechanism of the oxidative modification of DNA achieved by rifamycin SV. The role of other reactive species and the antioxidant properties of GSH against oxidative damage is also discussed.
Collapse
Affiliation(s)
- P Muñiz
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|