1
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
2
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
3
|
Rajeshkumar RR, Pavadai P, Panneerselvam T, Deepak V, Pandian SRK, Kabilan SJ, Vellaichamy S, Jeyaraman A, Kumar ASK, Sundar K, Kunjiappan S. Glucose-conjugated glutenin nanoparticles for selective targeting and delivery of camptothecin into breast cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2571-2586. [PMID: 37022437 DOI: 10.1007/s00210-023-02480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Receptor-mediated drug delivery systems are a promising tool for targeting malignant cells to suppress/inhibit the malignancy without disturbing healthy cells. Protein-based nanocarrier systems possess numerous advantages for the delivery of variety of chemotherapeutics, including therapeutic peptides and genes. In the present work, glucose-conjugated camptothecin-loaded glutenin nanoparticles (Glu-CPT-glutenin NPs) were fabricated to deliver camptothecin to MCF-7 cells via GLUT-1 transporter protein. Initially, Glu-conjugated glutenin polymer was successfully synthesized through reductive amination reaction, and this was confirmed by FTIR and 13C-NMR. Then, camptothecin (CPT) was loaded into Glu-conjugated glutenin polymer forming Glu-CPT-glutenin NPs. The nanoparticles were studied for their drug releasing capacity, morphological shape, size, physical nature, and zeta potential. The fabricated Glu-CPT-glutenin NPs were found to be spherical in shape and amorphous in nature with 200-nm size range and a zeta potential of - 30 mV. Furthermore, MTT assay using Glu-CPT-glutenin NPs confirmed concentration-dependent cytotoxicity against MCF-7 cells after 24-h treatment, and IC50 was found to be 18.23 μg mL-1. In vitro cellular uptake study demonstrated that the Glu-CPT-glutenin NPs had enhanced endocytosis and delivered CPT in MCF-7 cells. A typical apoptotic morphological change of condensed nuclei and distorted membrane bodies was found after treatment with IC50 concentration of NPs. The released CPT from NPs also targeted mitochondria of MCF-7 cells, significantly increasing the level of reactive oxygen species and causing the damage of mitochondrial membrane integrity. These outcomes confirmed that the wheat glutenin can positively serve as a significant delivery vehicle and enhance the anticancer potential of this drug.
Collapse
Affiliation(s)
- Raja Rajeswari Rajeshkumar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Namakkal, 637205, India
| | - Venkataraman Deepak
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
- Maternal and Fetal Health Research Centre, 5Th Floor St. Mary's Hospital, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
| | | | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil, Virudhunagar, 626126, India
| | - Anbu Jeyaraman
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-Sen University, Gushan District, No. 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059, Krakow, Poland
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, 626126, India.
| |
Collapse
|
4
|
Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med 2023; 12:jcm12072648. [PMID: 37048731 PMCID: PMC10095028 DOI: 10.3390/jcm12072648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer accounts for approximately 25% of cancer cases and 16.5% of cancer deaths in women, and the World Health Organization predicts that the number of new cases will increase by almost 70% over the next two decades, mainly due to an ageing population. Effective diagnostic and treatment strategies are, therefore, urgently required for improving cure rates among patients since current therapeutic modalities have many limitations and side effects. Nanomedicine is evolving as a promising approach for cancer management, including breast cancer, and various types of organic and inorganic nanomaterials have been investigated for their role in breast cancer diagnosis and treatment. Following an overview on breast cancer characteristics and pathogenesis and challenges of the current treatment strategies, the therapeutic potential of biocompatible organic-based nanoparticles such as liposomes and polymeric micelles that have been tested in breast cancer models are reviewed. The efficacies of different drug delivery and targeting strategies are documented, ranging from synthetic to cell-derived nanoformulations together with a summary of the interaction of nanoparticles with externally applied energy such as radiotherapy. The clinical translation of nanoformulations for breast cancer treatment is summarized including those undergoing clinical trials.
Collapse
Affiliation(s)
- Salma T. Rafik
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21516, Egypt
| | - Jayant S. Vaidya
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
5
|
Kelany NA, El-Sayed ASA, Ibrahim MA. Aspergillus terreus camptothecin-sodium alginate/titanium dioxide nanoparticles as a novel nanocomposite with enhanced compatibility and anticancer efficiency in vivo. BMC Biotechnol 2023; 23:9. [PMID: 37005635 PMCID: PMC10067238 DOI: 10.1186/s12896-023-00778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Camptothecin derivatives are one of the most prescribed anticancer drugs for cancer patients, however, the availability, efficiency, and water solubility are the major challenges that halt the applicability of this drug. METHODS Biosynthetic potency of camptothecin by Aspergillus terreus, open a new avenue for commercial camptothecin production, due to their short-life span, feasibility of controlled growth conditions, and affordability for higher growth, that fulfill the availability of the scaffold of this drug. RESULTS Camptothecin (CPT) was purified from the filtrates of A. terreus, and their purity was checked by HPLC, and its chemical structure was verified by LC/MS, regarding to the authentic one. To improve the anticancer efficiency of A. terreus CPT, the drug was conjugated with sodium alginate (SA)/Titanium dioxide nanoparticles (TiO2NPs) composites, and their physicochemical properties were assessed. From the FT-IR profile, a numerous hydrogen bond interactions between TiO2 and SA chains in the SA/TiO2 nanocomposites, in addition to the spectral changes in the characteristic bands of both SA/TiO2 and CPT that confirmed their interactions. Transmission electron microscopy analysis reveals the spherical morphology of the developed SA/TiO2NPs nanocomposite, with the average particle size ~ 13.3 ± 0.35 nm. From the results of zeta potential, successful loading and binding of CPT with SA/TiO2 nanocomposites were observed. CONCLUSION The in vivo study authenticates the significant improvement of the antitumor activity of CPT upon loading in SA/TiO2 nanocomposites, with affordable stability of the green synthesized TiO2NPs with Aloe vera leaves extract.
Collapse
Affiliation(s)
- Nermeen A Kelany
- Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Manar A Ibrahim
- Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt
| |
Collapse
|
6
|
Rosa A, Nieddu M, Pitzanti G, Pireddu R, Lai F, Cardia MC. Impact of solid lipid nanoparticles on 3T3 fibroblasts viability and lipid profile: The effect of curcumin and resveratrol loading. J Appl Toxicol 2023; 43:272-286. [PMID: 35978497 PMCID: PMC10087382 DOI: 10.1002/jat.4379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 01/17/2023]
Abstract
This study focused on the impact in 3T3 fibroblasts of several types of empty and curcumin- and resveratrol-loaded solid lipid nanoparticles (SLN) on cell viability and lipid metabolism in relation to their lipid content and encapsulated drug. SLN, prepared by hot homogenization/ultrasonication, were characterized with respect to size, polydispersity index, and zeta potential. Compritol® 888 ATO at different concentrations (4%, 5%, and 6% wt/wt) was chosen as lipid matrix while Poloxamer 188 (from 2.2% to 3.3% wt/wt) and Transcutol (TRC; 2% or 4%) were added as nanoparticle excipients. Prepared SLN were able to encapsulate high drug amount (encapsulation efficiency percentage of about 97-99%). All empty SLN did not show cytotoxicity (by MTT assay, at 24 h of incubation) in 3T3 cells independently of the lipid and TRC amount, while a viability reduction in the range 5-11% and 12-27% was observed in 3T3 cells treated with curcumin-loaded and resveratrol-loaded SLN, respectively. SLN without TRC did not affect cell lipid metabolism, independently from the lipid content. Empty and loaded SLN formulated with 4% of Compritol and 4% of TRC significantly affected, after 24 h of incubation at the dose of 5 μl/ml, cell polar lipids (phospholipids and free cholesterol) and fatty acid profile, with respect to control cells. Loaded compounds significantly modulated the impact of the corresponding empty formulation on cell lipids. Therefore, the combined impact on lipid metabolism of SLN and loaded drug should be taken in consideration in the evaluation of the toxicity, potential application, and therapeutic effects of new formulations.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Giulia Pitzanti
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Linear-like polypeptide-based micelle with pH-sensitive detachable PEG to deliver dimeric camptothecin for cancer therapy. Asian J Pharm Sci 2023; 18:100773. [PMID: 36711109 PMCID: PMC9871073 DOI: 10.1016/j.ajps.2022.100773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin (CPT). However, many challenges for CPT delivery remain, including low drug loading efficiency, premature drug leakage, and poor cellular internalization. Herein, we report a novel dual-sensitive polypeptide-based micelle with remarkably high drug loading of CPT for cancer therapy. This self-assembled micelle possesses the following essential components for CPT: (1) pH-sensitive PEG (OHC-PEG-CHO) for prolonging blood circulation and allowing biocompatibility by shielding the cationic micelles, which can be detached under the tumor acidic microenvironment and facilitates the cellular uptake; (2) polypeptide polylysine-polyphenylalanine (PKF) synthesized via ring-opening polymerization for micelle formation and CPT analogue loading; (3) dimeric CPT (DCPT) with redox-sensitive linker for increasing CPT loading and ensuring drug release at tumor sites. Interestingly, the linear-like morphology of PEG-PKF/DCPT micelles was able to enhance their cellular internalization when compared with the spherical blank PKF micelles. Also, the anticancer efficacy of DCPT against lung cancer cells was significantly improved by the micelle formation. In conclusion, this work provides a promising strategy facilitating the safety and effective application of CPT in cancer therapy.
Collapse
|
8
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Nahvi I, Belkahla S, Biswas S, Chakraborty S. A Review on Nanocarrier Mediated Treatment and Management of Triple Negative Breast Cancer: A Saudi Arabian Scenario. Front Oncol 2022; 12:953865. [PMID: 35941873 PMCID: PMC9356294 DOI: 10.3389/fonc.2022.953865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
People have continued to be petrified by the devastating effects of cancer for decades and thus a pursuit for developing anticancer agents have seen an ever-increasing trend in the past few decades. Globally, breast cancer is the most common malignancy in women and the second most common cause of cancer-related deaths. In Saudi Arabia, breast cancer is the most common type of cancer among women, constituting almost 14.2% of the total cancer burden. Triple-negative breast cancer (TNBC) is a subtype of breast cancer, which is a pathologically diverse disease of higher grade characterized by the absence of the estrogen receptor (ER), the progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) expressions. Despite the considerable advancements achieved in the therapeutic management of cancer, TNBC remains an unbeatable challenge, which requires immediate attention as it lacks conventional targets for treatment, leading to a poor clinical prognosis. The present research goals are directed toward the development and implementation of treatment regimens with enhanced bioavailability, targetability, minimized systemic toxicity, and improved outcomes of treatment options. The present treatment and management scenario of TNBC continues to provoke oncologists as well as nanomedical scientists to develop novel and efficient nanotherapies. Lately, scientific endeavors have addressed the importance of enhanced availability and targeted cellular uptake with minimal toxicity, which are achieved by the application of nano drug-carriers. This review intends to summarize the incidence rates of TNBC patients, the importance of nanotherapeutic options for patients suffering from TNBC, the identification of promising molecular targets, and challenges associated with the development of targeted nanotherapeutics with special reference to the Saudi Arabian context.
Collapse
Affiliation(s)
- Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
- *Correspondence: Insha Nahvi,
| | - Sana Belkahla
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
| | - Supratim Biswas
- University of Cape Town, Department of Human Biology, Cape Town, South Africa
| | - Suparna Chakraborty
- University of Cape Town, Department of Human Biology, Cape Town, South Africa
| |
Collapse
|
10
|
Zewail M, E Gaafar PM, Ali MM, Abbas H. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management. Drug Deliv 2022; 29:1663-1674. [PMID: 35616281 PMCID: PMC9154769 DOI: 10.1080/10717544.2022.2079770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the fact of availability of several treatments for breast cancer, most of them fail to attain the desired therapeutic response due to their poor bioavailability, high doses, non-selectivity and as a result systemic toxicity. Here in an attempt made to study the transdermal effect of leflunomide (LEF) against breast cancer. In order to improve the poor physicochemical properties of LEF, it was loaded into cubosomes. Cubosomes were prepared by the emulsification method. Colloidal characteristics of cubosomes including particle size, ζ-potential, entrapment efficiency, in-vitro release profile and ex-vivo permeation were studied. In addition, morphology, stability, cytotoxicity and cell uptake in MDA-MB-231 cell line were carried out for the selected cubosomal formulation. The selected LEF loaded cubosomal formulation showed a small particle size (168 ± 1.08) with narrow size distribution (PI 0.186 ± 0.125) and negative ζ potential (–25.5 ± 0.98). Its Entrapment efficiency (EE%) was 93.2% and showed sustained release profile that extended for 24 h. The selected formulation showed stability when stored at 25 °C for three months in terms of size and EE%. TEM images illustrated the cubic structure of the cubosome. Cell culture results revealed the superiority of LEF cubosomes compared to LEF suspension in their cytotoxic effects with an IC50 close to that of doxorubicin. Furthermore, LEF cell uptake was significantly higher for LEF cubosomes. This may be attributed to the effect of nano-encapsulation on enhancing drug pharmacological effects and uptake indicating the potential usefulness of LEF cubosomes for breast cancer management.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mai M Ali
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
11
|
Kumari P, Meena A. Application of enzyme-mediated cellulose nanofibers from lemongrass waste for the controlled release of anticancer drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46343-46355. [PMID: 32215793 DOI: 10.1007/s11356-020-08358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
In the present study, an application of cellulose nanofibers has been established for the controlled release of an anticancer drug, i.e., camptothecin. The camptothecin is known for its antitumor activity. However, it has certain limitations like instability, low solubility in aqueous solution, and biological fluids. Firstly, the camptothecin was encapsulated into the cellulose nanofiber complex by adjusting the composition ratio of cellulose nanofibers-camptothecin, i.e., 10:3, 10:5, and 10:7. In the 10:3 composition ratio of cellulose nanofibers, camptothecin showed the highest encapsulation efficiency, i.e., 65.28%. The binding of camptothecin with cellulose nanofibers was confirmed by FT-IR analysis. Also, the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm studies demonstrate physical adsorption of camptothecin onto the homogeneous as well as the heterogeneous surface of cellulose nanofibers. Further, the controlled and extended-release profile was observed at different physiological pH, and different kinetics models were used to understand the drug release mechanism. The highest correlation in all pH conditions was obtained in Korsmeyer-Peppas with R2 value = 0.93 (pH 1.2), 0.89 (pH 6.8), and 0.97 (pH 7.4), whereas in Higuchi model, R2 value = 0.89 (pH 1.2), 0.91 (pH 6.8), and 0.98 (pH 7.4), suggesting the release of a drug via a diffusion mechanism. Hence, the results established that enzyme-mediated cellulose nanofibers may also be an optimal carrier for the controlled drug release formulation without any chemical excipients.
Collapse
Affiliation(s)
- Priyanka Kumari
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abha Meena
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Olanzapine Loaded Nanostructured Lipid Carriers via High Shear Homogenization and Ultrasonication. Sci Pharm 2021. [DOI: 10.3390/scipharm89020025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to understand the effect of high shear homogenization (HSH) and ultrasonication (US) on the physicochemical properties of blank and olanzapine loaded nanostructured lipid carriers (NLCs) along with their drug loading potential and drug release profiles from formulated particles. NLCs were prepared with different ratios of Compritol and Miglyol as the solid and liquid lipids, respectively, under changing HSH and US times between 0 to 15 min. The surfactants (Poloxamer 188 (P188) and tween 80) and the drug content was kept constant in all formulations. The prepared NLCs were evaluated for particle size, polydispersity index, zeta potential, drug crystallinity and chemical interactions between lipids and OLZ. The in-vitro drug release was performed using dialysis tube method in phosphate buffer solution (PBS) at pH 7.4. The formulated NLCs were negatively charged, spherically shaped and monodisperse, with particle sizes ranging from 112 to 191 nm. There was a significant influence of US time on the preparation of NLCs in comparison to HSH, where a significant reduction in the mean particle diameter was seen after 5 min of sonication. An increase of Miglyol content in NLCs led to an increase in particle size. In general, application of US led to decrease in particle size after HSH but an increase in particle diameter of low Miglyol containing preparation was also observed with longer sonication time. OLZ was successfully encapsulated in the NLCs and a total release of 89% was achieved in 24 h in PBS at pH 7.4.
Collapse
|
13
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
14
|
Schoeman R, Beukes N, Frost C. Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells. Molecules 2020; 25:molecules25204682. [PMID: 33066359 PMCID: PMC7587381 DOI: 10.3390/molecules25204682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis. The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G2 phase, followed by the induction of apoptosis. Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed. The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.
Collapse
|
15
|
Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326:628-647. [PMID: 32653502 DOI: 10.1016/j.jconrel.2020.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) in which the three major receptors i.e. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), are absent is known to express the most aggressive phenotype and increased metastasis which results in the development of resistance to chemotherapy. It offers various therapeutic advantages in treating BC and TNBC. Nanotechnology offers various unique characteristics such as small size (nanometric), active and passive targeting, and the ability to attach multiple targeting moieties, controlled release, and site-specific targeting. This review focuses on conventional drug therapies, recent treatment strategies, and unique therapeutic approaches available for BC and TNBC. The role of breast cancer stem cells in the recurrence of BC and TNBC has also been highlighted. Several chemotherapeutic agents delivered using nanocarriers such as polymeric nanoparticles/micelles, metallic/inorganic NPs, and lipid-based NPs (Liposome, solid-lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs)), etc. with excellent responses in the treatment of BC/TNBC along with breast cancer stem cells have been discussed in details. Moreover, the application of nanomedicine including CRISPR nanoparticle, exosomes for the treatment of BC/TNBC and other molecular targets available such as poly (ADP-ribose) polymerase (PARP), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor (VEGF), etc. for further exploration have also been discussed.
Collapse
Affiliation(s)
- Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Haritha V Anod
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Pallavi Chand
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Surajit Dey
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | | |
Collapse
|
16
|
Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, Al Khulaifi MM, AL-Shwaiman HA, Elgorban AM, Syed A, Kim HJ. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci 2020; 27:706-712. [PMID: 32210692 PMCID: PMC6997865 DOI: 10.1016/j.sjbs.2019.12.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the anticancer potentials of the gold nanoparticles (NPs) obtained by green synthesis method using an endophytic strain Fusarium solani ATLOY - 8 has been isolated from the plant Chonemorpha fragrans. The formation of the NPs was analyzed by UV, FTIR, SEM and XRD. The synthesized NPs showed pink-ruby red colors and high peak plasmon band was observed between 510 and 560 nm. It is observed that intensity of absorption steadily increases the wavelength and band stabilizes at 551 nm. The XRD pattern revealed the angles at 19, 38.32, 46.16, 57.50, and 76.81° respectively. Interestingly, the FTIR band absorption noted at 1413 cm-1, 1041 cm-1 and 690 cm-1 ascribed the presence of amine II bands of protein, C-N and C-H stretching vibrations of the nanoparticles. SEM analysis indicated that the average diameter of the synthesized nanoparticles was between 40 and 45 nm. These NPs showed cytotoxicity on cervical cancer cells (He La) and against human breast cancer cells (MCF-7) and the NPs exhibited dose dependent cytotoxic effect. IC50 value was 0.8 ± 0.5 μg/mL on MCF-7 cell line and was found to be 1.3 ± 0.5 μg/mL on MCF-7 cell lines. The synthesized NPs induced apoptosis on these cancer cell lines. The accumulation of apoptotic cells decreased in sub G0 and G1 phase of cell cycle in the MCF-7 cancer cells were found to be 55.13%, 52.11% and 51.10% after 12 h exposure to different concentrations. The results altogether provide an apparent and versatile biomedical application for safer chemotherapeutic agent with little systemic toxicity.
Collapse
Affiliation(s)
- Prince Clarance
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Ben Luvankar
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Jerin Sales
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Ameer Khusro
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Paul Agastian
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - J.-C. Tack
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Manal M. Al Khulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hind A. AL-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - H.-J. Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
17
|
Lipid Nanoarchitectonics for Natural Products Delivery in Cancer Therapy. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Dimeric camptothecin-loaded mPEG-PCL nanoparticles with high drug loading and reduction-responsive drug release. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Andrade LN, Oliveira DML, Chaud MV, Alves TFR, Nery M, da Silva CF, Gonsalves JKC, Nunes RS, Corrêa CB, Amaral RG, Sanchez-Lopez E, Souto EB, Severino P. Praziquantel-Solid Lipid Nanoparticles Produced by Supercritical Carbon Dioxide Extraction: Physicochemical Characterization, Release Profile, and Cytotoxicity. Molecules 2019; 24:molecules24213881. [PMID: 31661906 PMCID: PMC6864877 DOI: 10.3390/molecules24213881] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) can be produced by various methods, but most of them are difficult to scale up. Supercritical fluid (SCF) is an important tool to produce micro/nanoparticles with a narrow size distribution and high encapsulation efficiency. The aim of this work was to produce cetyl palmitate SLNs using SCF to be loaded with praziquantel (PZQ) as an insoluble model drug. The mean particle size (nm), polydispersity index (PdI), zeta potential, and encapsulation efficiency (EE) were determined on the freshly prepared samples, which were also subject of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), drug release profile, and in vitro cytotoxicity analyses. PZQ-SLN exhibited a mean size of ~25 nm, PdI ~ 0.5, zeta potential ~−28 mV, and EE 88.37%. The DSC analysis demonstrated that SCF reduced the crystallinity of cetyl palmitate and favored the loading of PZQ into the lipid matrices. No chemical interaction between the PZQ and cetyl palmitate was revealed by FTIR analysis, while the release or PZQ from SLN followed the Weibull model. PZQ-SLN showed low cytotoxicity against fibroblasts cell lines. This study demonstrates that SCF may be a suitable scale-up procedure for the production of SLN, which have shown to be an appropriate carrier for PZQ.
Collapse
Affiliation(s)
- Luciana N Andrade
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
| | - Daniele M L Oliveira
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, SP 18023-000, Brazil.
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, SP 18023-000, Brazil.
| | - Marcelo Nery
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
| | - Classius F da Silva
- Laboratory of Biotechnology and Natural Products, Federal University of São Paulo, Diadema, SP 09913-030, Brazil.
| | | | - Rogéria S Nunes
- Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil.
| | | | - Ricardo G Amaral
- Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil.
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine, Institute of Technology and Research, Aracaju, SE 49032-490, Brazil.
- School of Pharmacy, University Tiradentes, Aracaju, SE 49032-490, Brazil.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA.
| |
Collapse
|
20
|
Bardhi E, Marchetti C, Scopelliti A, Musacchio L, Tomao F, Schiavi M, Carraro C, Palaia I, Monti M, Muzii L, Benedetti Panici P. Etirinotecan pegol in women with recurrent platinum-resistant or refractory ovarian cancer. Expert Opin Investig Drugs 2019; 28:667-673. [PMID: 31353973 DOI: 10.1080/13543784.2019.1648430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: A PEGylated form of irinotecan, a topoisomerase I inhibitor, is now available in commerce; its safety and efficacy have been tested in platinum resistant/refractory ovarian cancer (PROC) patients. This novel agent is known as Etirinotecan Pegol (EP). EP, like irinotecan, exerts its action through its principal metabolite SN-38. Areas covered: This drug evaluation article focuses on the most recent investigations and clinical progress regarding EP, a long-acting polymer conjugate of irinotecan for the treatment of PROC. Expert opinion: EP provides prolonged and continuous exposure of SN-38 in tumors, when compared to its parent drug irinotecan. Results from phase II studies are comparable in terms of efficacy to other agents of proven use in PROC. A limitation of the use of EP is the schedule-dependent toxicities (mainly diarrhea and dehydration). In the future, EP could be investigated in association with other agents, even in attempts to restore sensitivity to other treatments. PROC remains a very difficult setting and EP might be a valid agent for patients with good performance status that have exhausted therapeutic options. In such a setting, participation in clinical trials is strongly encouraged.
Collapse
Affiliation(s)
- Erlisa Bardhi
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Claudia Marchetti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy.,b Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Rome , Italy
| | - Annalisa Scopelliti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Lucia Musacchio
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Federica Tomao
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Michele Schiavi
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Carlo Carraro
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Innocenza Palaia
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Marco Monti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Ludovico Muzii
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Pierluigi Benedetti Panici
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| |
Collapse
|
21
|
Nasr EE, Mostafa AS, El‐Sayed MAA, Massoud MAM. Design, synthesis, and docking study of new quinoline derivatives as antitumor agents. Arch Pharm (Weinheim) 2019; 352:e1800355. [DOI: 10.1002/ardp.201800355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Eman E. Nasr
- Pharmaceutical Organic Chemistry Department, Faculty of PharmacyMansoura UniversityMansoura Egypt
| | - Amany S. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of PharmacyMansoura UniversityMansoura Egypt
| | - Magda A. A. El‐Sayed
- Pharmaceutical Organic Chemistry Department, Faculty of PharmacyMansoura UniversityMansoura Egypt
- Pharmaceutical Chemistry Department, Faculty of PharmacyHorus UniversityNew Damietta Egypt
| | - Mohammed A. M. Massoud
- Pharmaceutical Organic Chemistry Department, Faculty of PharmacyMansoura UniversityMansoura Egypt
| |
Collapse
|
22
|
Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6121328. [PMID: 30647812 PMCID: PMC6311846 DOI: 10.1155/2018/6121328] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used metal nanoparticles in health care industries, particularly due to its unique physical, chemical, optical, and biological properties. It is used as an antibacterial, antiviral, antifungal, and anticancer agent. Camptothecin (CPT) and its derivatives function as inhibitors of topoisomerase and as potent anticancer agents against a variety of cancers. Nevertheless, the combined actions of CPT and AgNPs in apoptosis in human cervical cancer cells (HeLa) have not been elucidated. Hence, we investigated the synergistic combinatorial effect of CPT and AgNPs in human cervical cancer cells. We synthesized AgNPs using sinigrin as a reducing and stabilizing agent. The synthesized AgNPs were characterized using various analytical techniques. The anticancer effects of a combined treatment with CPT and AgNPs were evaluated using a series of cellular and biochemical assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. The findings from this study revealed that the combination of CPT and AgNPs treatment significantly inhibited cell viability and proliferation of HeLa cells. Moreover, the combination effect significantly increases the levels of oxidative stress markers and decreases antioxidative stress markers compared to single treatment. Further, the combined treatment upregulate various proapoptotic gene expression and downregulate antiapoptotic gene expression. Interestingly, the combined treatment modulates various cellular signaling molecules involved in cell survival, cytotoxicity, and apoptosis. Overall, these results suggest that CPT and AgNPs cause cell death by inducing the mitochondrial membrane permeability change and activation of caspase 9, 6, and 3. The synergistic cytotoxicity and apoptosis effect seems to be associated with increased ROS formation and depletion of antioxidant. Certainly, a combination of CPT and AgNPs could provide a beneficial effect in the treatment of cervical cancer compared with monotherapy.
Collapse
|
23
|
Guo Z, Zhou X, Xu M, Tian H, Chen X, Chen M. Dimeric camptothecin-loaded RGD-modified targeted cationic polypeptide-based micelles with high drug loading capacity and redox-responsive drug release capability. Biomater Sci 2018; 5:2501-2510. [PMID: 29119997 DOI: 10.1039/c7bm00791d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Camptothecin (CPT) is a broad spectrum anticancer drug, but its application is limited due to the poor water solubility, lactone ring instability, and low drug loading potential. In this study, biocompatible cationic polypeptide-based micelles were developed to deliver dimeric CPT (DCPT) with the aim of overcoming the above-mentioned obstacles and achieving favorable therapeutic effects. Cationic polypeptide poly-lysine-block-poly-leucine (PLys-b-PLeu) was fabricated via the ring-opening polymerization of N-ε-carbobenzoxy-l-lysine (ε-Lys(Z)) and l-leucine (Leu) and further grafted with polyethylene glycol (PEG) and an arginine-glycine-aspartic acid (RGD) peptide. DCPT was synthesized by reacting CPT and 2-hydroxyethyl disulfide, and micelles were prepared using a dialysis method. The obtained DCPT-loaded RGD-PEG-g-poly-l-lysine-b-poly-l-leucine (DRPPP) micelles showed a high encapsulation efficiency of 89.7% and a high drug loading capacity of 46.1%. In addition, the DRPPP micelles remained stable under physiological conditions (PBS at a pH of 7.4) but showed rapid release when triggered by a reductive environment (PBS at a pH of 7.4 with 10 mM dithiothreitol). Compared to micelles without RGD decoration, the DRPPP micelles exhibited an increased cellular uptake through RGD targeting and were internalized into cells via caveolae-mediated endocytosis and macropinocytosis. Furthermore, the DRPPP micelles exerted an enhanced cytotoxicity against MDA-MB-231 cells compared to MCF-7 cells, which expressed less αvβ3 receptors. Besides, the DRPPP micelles induced cell apoptosis and caused a decrease of mitochondrial membrane potential. These results indicate that dimeric camptothecin-loaded cationic polypeptide-based micelle is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | | | | | | | | | | |
Collapse
|
24
|
Martinkova P, Brtnicky M, Kynicky J, Pohanka M. Iron Oxide Nanoparticles: Innovative Tool in Cancer Diagnosis and Therapy. Adv Healthc Mater 2018; 7. [PMID: 29205944 DOI: 10.1002/adhm.201700932] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Although cancer is one of the most dangerous and the second most lethal disease in the world, current therapy including surgery, chemotherapy, radiotherapy, etc., is highly insufficient not in the view of therapy success rate or the amount of side effects. Accordingly, procedures with better outcomes are highly desirable. Iron oxide nanoparticles (IONPs) present an innovative tool-ideal for innovation and implementation into practice. This review is focused on summarizing some well-known facts about pharmacokinetics, toxicity, and the types of IONPs, and furthermore, provides a survey of their use in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pavla Martinkova
- Faculty of Military Health Science; University of Defense; Trebesska 1575 50011 Hradec Kralove Czech Republic
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
| | - Martin Brtnicky
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| | - Jindrich Kynicky
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Science; University of Defense; Trebesska 1575 50011 Hradec Kralove Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| |
Collapse
|
25
|
Gigliotti CL, Ferrara B, Occhipinti S, Boggio E, Barrera G, Pizzimenti S, Giovarelli M, Fantozzi R, Chiocchetti A, Argenziano M, Clemente N, Trotta F, Marchiò C, Annaratone L, Boldorini R, Dianzani U, Cavalli R, Dianzani C. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv 2017; 24:670-680. [PMID: 28368209 PMCID: PMC8241155 DOI: 10.1080/10717544.2017.1303856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Anaplastic carcinoma of the thyroid (ATC) is a lethal human malignant cancer with median survival of 6 months. To date, no treatment has substantially changed its course, which makes urgent need for the development of novel drugs or novel formulations for drug delivery. Nanomedicine has enormous potential to improve the accuracy of cancer therapy by enhancing availability and stability, decreasing effective doses and reducing side effects of drugs. Camptothecin (CPT) is an inhibitor of DNA topoisomerase-I with several anticancer properties but has poor solubility and a high degradation rate. Previously, we reported that CPT encapsulated in β-cyclodextrin-nanosponges (CN-CPT) increased solubility, was protected from degradation and inhibited the growth of prostate tumor cells both in vitro and in vivo. The aim of this study was to extend that work by assessing the CN-CPT effectiveness on ATC both in vitro and in vivo. Results showed that CN-CPT significantly inhibited viability, clonogenic capacity and cell-cycle progression of ATC cell lines showing a faster and enhanced effect compared to free CPT. Moreover, CN-CPT inhibited tumor cell adhesion to vascular endothelial cells, migration, secretion of pro-angiogenic factors (IL-8 and VEGF-α), expression of β-PIX, belonging to the Rho family activators, and phosphorylation of the Erk1/2 MAPK. Finally, CN-CPT significantly inhibited the growth, the metastatization and the vascularization of orthotopic ATC xenografts in SCID/beige mice without apparent toxic effects in vivo. This work extends the previous insight showing that β-cyclodextrin-nanosponges are a promising tool for the treatment of ATC.
Collapse
Affiliation(s)
- Casimiro Luca Gigliotti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Benedetta Ferrara
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Boggio
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Roberto Fantozzi
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Torino, Italy, and
| | - Caterina Marchiò
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Renzo Boldorini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| |
Collapse
|
26
|
Leiva MC, Ortiz R, Contreras-Cáceres R, Perazzoli G, Mayevych I, López-Romero JM, Sarabia F, Baeyens JM, Melguizo C, Prados J. Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Sci Rep 2017; 7:13506. [PMID: 29044153 PMCID: PMC5647375 DOI: 10.1038/s41598-017-13816-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/29/2017] [Indexed: 01/24/2023] Open
Abstract
Paclitaxel (PTX) is one of the drugs of choice in the treatment of breast and lung cancer. However, its severe side effects, including mielosuppression, cardiotoxicity and neurotoxicity, frequently cause treatment to be discontinued. Solid lipid nanoparticles (NPs) of glyceril tripalmitate (tripalmitin) loaded with PTX (Tripalm-NPs-PTX) including modifications by the addition of hexa(ethylene glycol), β-cyclodextrin and macelignan were developed. All NPs-PTX formulations displayed excellent hemocompatibility and significantly enhanced PTX antitumor activity in human breast (MCF7, MDAMB231, SKBR3 and T47D) and lung (A549, NCI-H520 and NCI-H460) cancer cells. Tripalm-NPs-PTX decreased PTX IC50 by as much as 40.5-fold in breast and 38.8-fold in lung cancer cells and Tripalm-NPs-PTX macelignan inhibited P-glycoprotein in resistant tumor cells. In addition, Tripalm-NPs-PTX significantly decreased the volume of breast and lung multicellular tumor spheroids that mimics in vivo tumor mass. Finally, Tripalm-NPs-PTX decreased the PTX IC50 of cancer stem cells (CSCs) derived from both lung and breast cancer cells (6.7- and 14.9-fold for MCF7 and A549 CSCs, respectively). These results offer a new PTX nanoformulation based on the use of tripalmitin which improves the antitumor activity of PTX and that may serve as an alternative PTX delivery system in breast and lung cancer treatment.
Collapse
Affiliation(s)
- María Carmen Leiva
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Health Science, University of Jaén, 23071, Jaén, Spain
| | | | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
| | - Iryna Mayevych
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain
| | - Juan Manuel López-Romero
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain.
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain
| | - Jose Manuel Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| |
Collapse
|
27
|
Mazuryk J, Deptuła T, Polchi A, Gapiński J, Giovagnoli S, Magini A, Emiliani C, Kohlbrecher J, Patkowski A. Rapamycin-loaded solid lipid nanoparticles: Morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv 2015; 23:1291-305. [DOI: 10.3109/10717544.2015.1092183] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Siddartha Venkata Talluri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | | | - Shashank Tummala
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Udhagamandalam, Tamil Nadu, India and
| | | |
Collapse
|
29
|
Singh J, Garg T, Rath G, Goyal AK. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – a critical review. Drug Deliv 2015; 23:1676-98. [DOI: 10.3109/10717544.2015.1074765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2015; 10:4981-5003. [PMID: 26345528 PMCID: PMC4531021 DOI: 10.2147/ijn.s87148] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|